IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 January 2025, accepted 3 March 2025, date of publication 20 March 2025, date of current version 4 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3553311

=5 RESEARCH ARTICLE

Leveraging Pre-Built Catalogs and Object-Level
Scheduling to Eliminate 1/0 Bottlenecks
in HPC Environments

SEOYEONG LEE"'!, JUNGHWAN PARK', YOOCHAN KIM“'1, SAFDAR JAMIL“1,
AWAIS KHAN"“2, SEUNG WOO SON3, (Member, IEEE), JAE-KOOK LEE?,
DO-SIK AN%, TAEYOUNG HONG*, AND YOUNGIJAE KIM ', (Member, IEEE)

! Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea

20ak Ridge National Laboratory, Oak Ridge, TN 37831, USA

3Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Amherst, MA 01003, USA
“4Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, South Korea

Corresponding author: Youngjae Kim (youkim@sogang.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean Government [Ministry
of Science and ICT (MSIT)] under Grant RS-2024-00416666; in part by Korea Institute of Science and Technology Information (KISTI)
under Grant K25L.2M2C2; and in part by Oak Ridge Leadership Computing Facility, located at the National Center for Computational

Sciences at the Oak Ridge National Laboratory, which is supported by the Office of Science of the DOE under Contract
DE-AC05-000R22725.

ABSTRACT Modern High-Performance Computing (HPC) environments face mounting challenges due
to the shift from large to small file datasets, along with an increasing number of users and parallelized
applications. As HPC systems rely on Parallel File Systems (PFS), such as Lustre for data processing,
performance bottlenecks stemming from Object Storage Target (OST) contention have become a significant
concern. Existing solutions, such as LADS with its object-level scheduling approach, fall short in large-scale
HPC environments due to their inability to effectively address metadata I/O bottlenecks and the growing
number of I/O processes. This study highlights the pressing need for a comprehensive solution that tackles
both OST contention and metadata I/O challenges in diverse HPC workloads. To address these challenges,
we propose SwiftLoad, an object-level 1/0 scheduling framework that leverages a metadata catalog to
enhance the performance and efficiency of parallel HPC utilities. The adoption of the metadata catalog
mitigates the metadata I/O bottlenecks that commonly occur in HPC utilities, a challenge that is particularly
pronounced in object-level I/O scheduling. SwiftLoad addresses OST contention and the uneven distribution
of I/0 processes across different OSTs through mathematical modeling and incorporates a Loader
Configuration Module to regulate the number of I/O processes. Evaluated with two representative utilities—
data deduplication profiling and data augmentation—SwiftLoad achieved performance improvements of up
to 5.63x and 11.0x, respectively, on a production supercomputer.

INDEX TERMS HPC, I/O, parallel file system, parallel processing.

I. INTRODUCTION computing, and, if necessary, writing. This cycle repeats until

Within the High-Performance Computing (HPC) community,
a suite of popular HPC utilities is extensively employed to
leverage the capabilities of HPC infrastructure and preprocess
data efficiently. These utilities, including deduplication,
copying, integrity checking, and others, operate in parallel
and typically follow a cyclic process of bulk data reading,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh

the processing of the entire dataset is complete.

Scientific data in HPC facilities are often managed using
Parallel File Systems (PFS) like GPFS [1] and Lustre [2],
with top HPC systems (e.g., Frontier [3], LUMI [4],
Perlmutter [5]) utilizing Lustre for storage. The Lustre PFS
consists of a Metadata Server (MDS) with Metadata Targets
(MDTs) and an Object Storage Server (OSS) with Object
Storage Targets (OSTs). This architecture is designed to
accommodate multiple user accesses and support large-scale
operations, originally tailored for “‘hero” applications that

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

55984 For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 13, 2025

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

IEEE Access

involve reading and writing a single exceptionally large file
at high speeds. Such workloads typically do not encounter
performance bottlenecks.

However, the shift towards the modern Big Data and
AI/ML era has transformed the datasets stored in PFS from
predominantly large files to small files [6]. Additionally,
an influx in the number of users and parallelization of
applications has led HPC facilities to face the significant
challenge of managing hundreds of tasks performing billions
of read and write operations to the shared PFS environment,
exceeding the capabilities and scalability of conventional PFS
design. Consequently, overwhelming shared PFS resources,
such as Lustre, can result in notable bottlenecks due to OST
contention [7]. This significantly degrades overall system
performance.

In parallel HPC utilities, simultaneous access to the
PFS can lead to OST contention, necessitating a scalable
solution. LADS [7] introduces object-level scheduling to
mitigate OST contention by performing I/O scheduling at the
object level rather than the file level. However, this method
falls short in addressing the metadata I/O bottleneck and
does not adequately consider scenarios with an increased
number of I/O processes, making it unsuitable for large-scale
HPC systems. The limitations of object-level scheduling
become evident in the execution sequence of parallel HPC
utilities, which begins with metadata operations for directory
traversal, followed by read I/O operations based on the
extracted metadata. While this approach can enhance data
I/O, it is less effective when dealing with numerous small
files, where metadata I/O becomes predominant. Addition-
ally, object-level scheduling necessitates extra MDS requests
through the Lustre layout retrieval API llapi_layout_*, which
exacerbates the metadata I/O bottleneck. Moreover, object-
level scheduling is not always the optimal solution, as its
effectiveness depends on the number of I/O processes and
the number of OSTs. Consequently, there is a need for a new
object-level scheduling approach that addresses both OST
contention and the metadata I/O bottleneck bottleneck across
varying scenarios.

In this paper, we present SwiftLoad, a metadata catalog-
based object-level I/O scheduling approach designed to
enhance the performance of parallel utilities in HPC environ-
ments.

SwiftLoad introduces a technique for creating a metadata
catalog that eliminates the need for directory traversal—a
resource-intensive metadata I/O request—by preemptively
capturing file metadata. By overlapping metadata collection
with file creation in scientific applications, this approach
significantly reduces future metadata I/O overhead for HPC
utilities. Our evaluation demonstrates that this technique
imposes a negligible performance impact on the application.

The implementation of object-level scheduling in Swift-
Load leveraging the metadata catalog effectively mitigates
OST contention in HPC utilities. This method utilizes the
metadata catalog to identify file layouts, which enables data
loading I/O processes to efficiently retrieve objects from each

VOLUME 13, 2025

_ . L. .. . <::|DataI/O
I Application A I I Application B I I Application C I -— Metadata 1/0

Compute Compute Compute Compute
Node 0 Node 1 Node 2 Node 3 Node N-1
FA LA B \ A A\ A A A

| High-Speed Interconnect Network (e.g. Infiniband) |
i N N
[mps]| |[_osso][osst ossm-1 |

e
|

- < ||| <
o510 || |{_o5T0] | o510}
- | B

FIGURE 1. An overview of HPC applications running on Lustre PFS in an
HPC facility.

OST. Consequently, this approach resolves OST contention
without exacerbating the metadata I/O bottleneck.

We define and analyze OST contention and the imbalance
of 1/O process access across OSTs, which can lead to
the straggler problem, using mathematical modeling. These
issues, which were previously challenging to clearly identify,
are thoroughly explained and addressed in our work. Based
on this analysis and model, we implement a Loader
Configuration Module to adaptively adjust the number of
1/0O processes, thereby avoiding severe OST contention and
enhancing resource efficiency.

To demonstrate the effectiveness and feasibility of Swift-
Load, we implemented the parallel (multi-node) version of a
data deduplication profiler, FS-C [8], and a data augmentation
tool atop SwiftLoad. Extensive evaluations showed that
SwiftLoad significantly improved the performance of these
HPC utilities. SwiftLoad achieved a 5.63x enhancement in
performance for the data deduplication profiler and an 11.0x
improvement in performance for the data augmentation tool.

Il. BACKGROUND AND RELATED WORK

A. LUSTRE FILE SYSTEM

Figure 1 depicts a conventional high-performance computing
HPC infrastructure based on the Lustre PFS. Lustre PFS
consists of three primary components: Compute Nodes, the
MDS, and OSS. The MDS is responsible for storing and
managing file metadata [9], such as file paths, permissions,
and layout information, which indicates the physical location
of data chunks. Traditionally, Lustre utilizes a single MDS to
handle metadata operations. While modern HPC systems can
incorporate multiple MDSes, their quantity is considerably
lower than that of OSSes. Conversely, OSSes utilize OSTs to
store the file contents across multiple OSTs in a distributed
manner [9].

Lustre uses file striping to divide files into fixed-size
chunks, called ‘““data objects”, which are distributed across
multiple OSTs in parallel to enhance performance and
concurrency [9], [10]. These data objects are the fundamental
units of storage managed by OSTs. Consequently, the MDS
maintains the file layout information required to reconstruct
the files” content and deliver it back to the user or application.
This file layout metadata includes the identifiers of OSTs,

55985

IEEE Access

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

Loader
® assignment

® computation

Task "
Scheduler ® scheduling

@ directory |

Q traversal | O loading ﬁ
User Dataset Disk
FIGURE 2. Workflow of the HPC utility.
Filea [a]b]c]d] File b [Tiiiii] File c [A]B]C]

Loader K

FIGURE 3. Diagram illustrating files (a, b, c) processed by loader modules
(I, J, K) into separate OSTs, converging at a congested OST i, highlighting
1/0 bottleneck situation in file-level scheduling.

stripe size, and stripe count. The stripe size, typically set
at 1 MB, represents the size of each object. The stripe
count indicates the number of OSTs across which the objects
are distributed, and it is determined by the file size and
configuration parameters set by the system administrator.

B. HPC UTILITIES

In HPC, a variety of parallel utilities are employed, such
as copying, restriping, comparison tools [11], integrity
checkers [12], deduplication profiler [8], [13], and data
augmentation tool. These utilities process, transform, and
analyze data produced by scientific applications or datasets
obtained from external sources, enabling more efficient data
management and preparation for subsequent computational
workflows.

Figure 2 illustrates the typical workflow of an HPC utility.
When a user submits a job, a task scheduler initiates a
directory traversal to resolve the paths of the target files.
This involves metadata operations that request information
from the MDS. The task scheduler then assigns the data I/O
operations of the retrieved file paths to data loaders.

During this phase, data I/O operations are scheduled using
a file-level approach, where I/O tasks are performed on a
file unit basis across multiple processes. Figure 3 illustrates
how the file-level approach handles data I/O. Each assigned
file consists of multiple objects striped across OSTs. The
data loader performs I/O read operations on the file objects
in sequential manner, moving from one OST to another.
However, this mismatch between the scheduling unit and the
storage structure can lead to OST congestion when multiple
I/0 processes access the same OST simultaneously. This
mismatch is particularly relevant, as this phase involves bulk
file reading, which demands intensive I/O operations from
the shared PFS. Once the data is read, it is transferred to
workers that perform data preprocessing, a compute-intensive
task, followed by bulk writing if necessary. A key point in this
process is that the data loading performed by the loader and

55986

the subsequent computation carried out by the worker form
a recurring cycle of read and compute operations [14], [15].
This cycle underscores the critical role of I/O performance in
HPC utilities, as evidenced by the I/O bottlenecks observed
in both our simulation results and experimental environment
(Sections IIT and V).

C. RELATED WORK

LADS [7] introduces object-level scheduling for data trans-
fer, thereby enhancing data I/O. However, it lacks detailed
evidence on the causes and escalation of OST contention
and does not address the critical metadata I/O bottleneck,
which is essential for large-scale HPC utilities. Additionally,
its solution is confined to small-scale scenarios with fewer
I/O processes than OSTs, making it unsuitable for larger
deployments.

Several previous research efforts have focused on miti-
gating the metadata server bottleneck in PFS. XFast [16]
employs prediction and prefetching techniques to anticipate
required file metadata, thereby reducing the number of
metadata requests to the server. HVAC [17] aims to alleviate
the General Parallel File System (GPFS) metadata I/O
bottleneck in large-scale training on HPC systems by utilizing
alocal storage cache layer. XFast primarily focuses on scaling
directory traversal at the system level, while HVAC is tailored
specifically for deep learning applications.

While these studies provide valuable insights, we identify
several critical points that require further attention. First,
a detailed analysis of OST contention is necessary, along
with a solution for managing a large number of I/O processes
relative to the number of OSTs in object-level scheduling.
Second, the metadata I/O bottleneck is intertwined with OST
contention and needs to be addressed. Third, previous studies
on the metadata I/O bottleneck are either designed at the
system level or for specific-purpose applications. None of
said studies addresses the metadata 1/O bottleneck from the
perspective of HPC utilities, particularly the challenges that
arise when resolving OST contention. These gaps highlight
the need for new object-level scheduling solutions that can
efficiently manage both metadata I/O and data I/O for
generalized utilities in HPC environments.

Ill. ANALYSIS OF I/0 BOTTLENECKS IN HPC UTILITIES

A. OST CONTENTION AND IMBALANCE ANALYSIS

OST contention refers to the situation where multiple
processes attempt to perform I/O operations on the same
OST, leading to performance degradation by increasing I/O
times and causing potential bottlenecks. Figure 4 shows the
slowdown in read time relative to a single process performing
I/0 on an OST, illustrating the impact of multiple processes
on OST performance. As the number of processes accessing a
single OST increases, the read time increases exponentially.
This slowdown occurs because multiple processes compete
for the same I/O resources, causing contention and resulting
in delays. Additionally, the graph shows that as the number of

VOLUME 13, 2025

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

IEEE Access

c 241% a
3

<)

©

=

o

7]

©

_g 98%

® :m
S 20%F

© 10% L 1 1 1 1 1

4 8 16 32 64 128 256
of processes on single OST

FIGURE 4. Pread time slowdown relative to the number of processes
performing 1/0 on a single OST. As the number of processes increases,
the pread time increases exponentially.

processes increases, the read time slowdown becomes more
severe, emphasizing the impact of increased contention. The
experimental settings are detailed in Section V.

In distributed environments, processes access the neces-
sary OSTs, and the number of processes performing I/O
on each OST varies over time. This imbalance can lead to
more severe I/O performance issues for processes accessing
certain OSTs compared to others due to contention, creat-
ing “stragglers.” Stragglers are processes that experience
significant delays because they are competing for access to
heavily contended OSTs, resulting in overall performance
degradation. To understand when such imbalances become
severe and the resulting performance degradation in HPC
utilities, we developed an entropy-based mathematical model
representing imbalance and conducted simulations emulating
HPC utility scenarios.

First, we apply the concept of entropy from information
theory to define the entropy value H as follows:

[0 if pi =0

H= ZHi where H; = (1)

4

—pilogp; otherwise

Here, p; = n;/n, where n; denotes the number of
processes performing I/O on OST i, and n is the total
number of processes. The value H represents the entropy,
indicating how uniformly the processes are distributed across
the OSTs. In our system, entropy effectively captures the
overall distribution and helps identify nonlinear relationships.
Higher entropy values indicate a more uniform distribution
of processes across the OSTs, reflecting a balanced system.
However, simply observing the entropy value does not
provide an understanding of how close the distribution is to an
ideal state. To facilitate numerical comparison, we introduce
the Contention Imbalance Intensity (CI), a standardized
measure ranging from 0 to 1, using entropy to quantify the
degree of imbalance. CI is defined as follows:

Cl=1-

2
max

Here, Hynax = logm represents the maximum entropy,

achieved when processes are evenly distributed across all

OSTs, where m is the number of OSTs. The CI metric

provides a clear numerical representation of the concentration

and dispersion of processes accessing the OSTs during utility

VOLUME 13, 2025

execution. A higher Cl indicates greater imbalance, whereas a
lower CI suggests a more balanced distribution. For instance,
CI = 1 indicates that all processes are accessing a single
OST, representing maximum imbalance. The relationship
between CI and the number of processes is not straightfor-
ward and can vary significantly. A small number of processes
might concentrate on a single OST, increasing imbalance,
while a larger number of processes might distribute more
evenly across multiple OSTs, potentially reducing imbalance.

According to Figure 7(a) in Section V-B, as the number
of processes grows, the likelihood of increased imbalance
also rises. Consequently, there is a higher probability that
more OSTs will experience greater contention compared
to others, leading to higher contention imbalance intensity.
Furthermore, CI values are not zero regardless of the
number of processes. This indicates that in conventional HPC
utilities, there is a consistent likelihood of processes favoring
specific OSTs, which can invariably result in straggler issues.
For example, when the process-to-OST ratio is 32:1, the
most balanced distribution would have each OST handling
32 processes. However, if the distribution is imbalanced,
the performance degradation becomes more pronounced. For
instance, one OST can have three times as many processes
as another (e.g., 48 processes on one OST and 16 on
another). This imbalance leads to increased read times due to
higher contention on more heavily loaded OSTs. According
to Figure 7(b) in Section V-B, higher CI values lead to
more severe straggler problems, emphasizing the impact of
increased contention imbalance on execution time disparities.

Therefore, OST contention and file-level scheduling can
substantially degrade read performance and exacerbate
imbalance issues respectively. These two factors collectively
contribute to increased end-to-end latency and overall
performance degradation due to stragglers in distributed HPC
environments.

B. LIMITATIONS OF OBJECT-LEVEL SCHEDULING IN HPC
UTILITIES

Object-level scheduling [7], which schedules I/O at the
object level, has been proposed as an approach to address
OST contention. Unlike file-level scheduling, object-level
scheduling manages I/O operations by dividing the file into
object-sized units. With this methodology, each process can
read an object from a specific OST rather than the entire
file, allowing processes to be assigned to specific OSTs. This
approach helps to avoid contention that occurs when multiple
processes access the same OST simultaneously.

Despite its advantages, object-level scheduling is not
without limitations. While it effectively mitigates OST
contention, it does not fully address the challenges posed by
metadata 1/O.

1) METADATA 1/0 BOTTLENECK

In file-level scheduling, particularly when reading a large
number of small files, the directory traversal problem arises
due to excessive metadata I/O resulting in performance

55987

IEEE Access

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

degradation. Metadata I/O is time-consuming for several
reasons. First, parallel file systems such as Lustre and GPFS
typically employ centralized metadata servers [18], [19].
Although modern HPC systems are designed with multiple
metadata servers and adopt a distributed namespace to
enable metadata distribution across these MDSes, the number
of MDSes remains significantly smaller compared to the
number of OSSes. Consequently, the capabilities of MDSes
can become saturated under an excessive number of metadata
server requests, even in leading supercomputers [17]. Second,
the POSIX interface readdir, which is invoked for directory
traversal, reads one dirent at a time, making it difficult to
parallelize at the thread level and thus becomes a sequential
operation. Third, most file systems organize directories
and files in a hierarchical tree structure. In this structure,
acquiring metadata information for a single file requires
obtaining a lock on the respective directory through the lock
manager. Therefore, when multiple processes simultaneously
send detailed metadata requests such as star for files within
a directory, lock contention can occur, potentially serializing
the requests [19].

However, object-level scheduling fails to resolve these
issues. Addressing OST contention alone does not mitigate
the Metadata 1/0 bottleneck. In fact, object-level scheduling
necessitates that tens to thousands of processes retrieve
object information. This results in additional metadata 1/O,
as the task scheduler requests file layout information from
the MDS. When a substantial number of file information
requests are issued, this can become a significant bottleneck.
Figure 9 in Section V demonstrates that both approaches have
nearly the same metadata I/O time for directory traversal.
However, the object-level scheduling is even more slower
than file-level scheduling due to layout information requests.
These two sources of metadata I/O time negate the benefits
of object-level scheduling and can even lead to performance
degradation.

2) INEFFICIENCIES OF NUMEROUS PROCESSES ON OSTS
There is a threshold for the number of processes that a single
OST can manage effectively. Figure 4 implies the following:
when more than 64 processes execute 1/O operations on a
single OST, the pread time increases substantially. Hence,
there is likely to be an optimal number of processes that
can leverage parallelism effectively, as determined by pread
time. However, traditional object-level scheduling does not
consider this issue.

According to Figure 7(c) in Section V-B, the difference
between the traditional file-level scheduling method and
the ideal object-level scheduling method, where processes
are distributed most evenly across all OSTs, decreases as
the pread value sharply increases at the threshold of 64.
This suggests that evenly distributing processes across OSTs
has limitations in improving performance. As the pread
time increases rapidly, both file-level and ideal object-
level scheduling methods encounter significant bottlenecks,
resulting in similar performance levels.

55988

Thus, to mitigate the straggler effect resulting from
OST contention and imbalance, a novel object scheduling
method that considers metadata server bottlenecks, layout
information function call overhead, and an optimal number
of processes is required.

IV. DESIGN OF SWIFTLOAD

A. SWIFTLOAD OVERVIEW

SwiftLoad introduces an object-level I1/O scheduling
approach utilizing a Metadata Catalog. The Metadata Catalog
is a prebuilt log file containing metadata information.
By using the catalog, the need for directory traversal and
path resolution during HPC utility execution is eliminated.
Additionally, other metadata system calls can be directed
to the catalog without requiring MDS requests. For shared
datasets, once the catalog is built, it can be reused by multiple
users, enabling faster and more efficient data access for
repeated analyses or shared computational tasks, significantly
improving overall system performance.

As illustrated in Figure 5, SwiftLoad’s architecture encom-
passes two aspects: the construction of the catalog and its
subsequent utilization. When scientific applications or HPC
utilities create a file, @ a Catalog Agent intercepts open
and close requests, and @ the Catalog Server records
the file’s corresponding metadata information in real-time.
This information may include details necessary for directory
traversal, as well as other relevant metadata system calls
which require MDS calls.

Parallel HPC utilities employ multiple processes and
nodes. In the Swiftl.oad design, each process includes a Data
Loader, an Object Scheduler, and a Computational Module.
The Object Scheduler is comprises of the Catalog Loader and
Mapper. Additionally, a single Loader Configuration Module
is employed. When metadata I/O is requested, @ the Catalog
Loader reads the pre-built metadata catalog and loads it into
memory. Once loaded, any request that would typically go to
the MDS is first checked against the catalog, thereby reducing
the need for direct MDS queries.

® The Mapper within the Object Scheduler maps the
OSTs and Data Loaders, taking into account the results
provided by the Loader Configuration Module regarding
the optimal number of processes for a given number of
OSTs. It then retrieves the metadata information for directory
traversal and file layout from the catalog. @ This layout
information is subsequently sent to the corresponding Data
Loader. With this information, the Data Loader reads objects
from its explicitly paired OST with minimal contention.
Following this, ® the Computational Module performs
necessary computations, such as calculating the deduplica-
tion ratio for deduplication analysis tools or computing a
checksum for integrity checkers.

B. CATALOG CONSTRUCTION
The Metadata Catalog delivers critical metadata, enabling
HPC utilities to circumvent the MDS. It encompasses two

VOLUME 13, 2025

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

IEEE Access

Node N

Catalog
Builder

1
Catalog
Agent

Catalog
Server

Metadata Configuration =
on of
Catalog Mgdule J Computation
y PO P1
Data Data
Loader Loader

Catalog A ———

Loader Mapper

—e - 1
0STO | |0ST1 |- | OSTk

FIGURE 5. Architectural overview of SwiftLoad.

Scientific Catalog Catalog
Application Agent Server

st Qi
1* Sim. — Function call flow

Object
Scheduler

e e

1/0 start———=

) initialization
™ Sim. P — record(
N k, *“/foo/bar*;
open() | o CREAT
messag
(open) fstat(k)(

running directory entry

ftat: {
—_— -
close() [

—> Intercepted
by LD_PRELOAD
=== Asynchronous write

open map

path: /foo/bar
flag: O CREAT

= ook o
checientry dynamic array

check flag r— 5

—

catalog entry j
fstat: { .. }
path: /foo/bar
flag: O_CREAT
layout: { ...}

llapi_layout
get_by_path(foo/bar)

e

:/
'\asynchmnaus write
&
"X) Metadata B
-->
end Catalog

terminate(Catalog_Dir

FIGURE 6. Catalog construction process during scientific application
execution. The Catalog Agent intercepts 1/0 calls, logs file paths, and
updates metadata. The Catalog Server dynamically stores and
asynchronously writes catalog entries, optimizing performance.

primary categories of information: metadata system call data
pertinent to file operations and layout information necessary
for object-level scheduling. This includes readdir, stat, and
Istat for providing directory entries, file status, and link status
respectively, as well as file path, stripe size, stripe count, and
OST index for layout information. The catalog is stored and
retrieved in the SwiftLoad_Catalog_Dir, allowing multiple
reuses and minimizes the number of MDS calls.

Catalog Builder comprises two modules, Catalog Server
and Catalog Agent. Catalog Server is a separate process
running parallel to the application on each node, whereas
Catalog Agent is a shared library loaded into the application
process. The server listens for and receives messages from
the clients, and executes the appropriate metadata operations
and records the results in the catalog. Each client monitors
and intercepts specific system calls related to file operations
by sending messages containing information captured from
system calls, such as file paths or file descriptors, using
LD_PRELOAD.

Figure 6 illustrates the catalog construction process while
the scientific simulation application is running. When the
application calls open, the client intercepts it and logs the
file path to mitigate path-resolution overhead associated with
directory-level checks, such as those performed by readdir.
The flags are then checked; if the flags are O_CREAT,
O_RDWR, or O_WRONLY, indicating that the file is newly
created or updated, metadata updates are required. Hence,

VOLUME 13, 2025

a message containing the original file path, flags, and file
descriptor is written to the shared memory buffer and sent
to the server. If the flags are such that metadata (other than
access time) do not change, as in O_RDONLY, no message
is sent to the server. The server continuously monitors the
shared memory buffer for new messages and initially verifies
the message type upon detection. If the message type is open,
fstat is called to obtain information about the file. This is
done as the message includes the file descriptor, eliminating
the need to call the stat function and reducing the load on
the MDS. The acquired file information, combined with the
initial message, forms a “‘directory entry”. This entry is
stored in a structure termed the open map, which can be
referenced later using the file descriptor.

When the application issues close, the client intercepts
this call and logs the corresponding fd to the buffer. When
the server detects a close type message, it checks whether
the received file descriptor is recorded on the open map.
If not included, the message is ignored. Otherwise, the server
checks if the flag is O_CREAT to determine if the file was
newly created. For newly created files, layout information is
gathered using the Lustre API.

If the layout configuration has not changed, layout infor-
mation collection is not performed. Our observations indicate
that the application does not perform explicit layout changes,
such as with [fs setstripe, making this approach valid. The
server creates a ‘““catalog entry” from the layout information
and the directory entry and stores them dynamically in
memory. When the number of elements in the dynamic
array reaches a certain threshold, the recorded catalog
entries are asynchronously written in the catalog file. This
method mitigates I/O overhead and prevents performance
degradation that would result from frequent catalog file
updates.

The Catalog Builder is designed to operate seamlessly
with scientific applications, enabling the creation of a catalog
at runtime as raw data is generated. This ensures that the
catalog is readily available when the data is later processed,
transformed, or analyzed by HPC utilities or during sub-
sequent computational phases of the application. When the
application starts I/O, the client sets environment variables,
initializes shared memory, and writes the application’s PID to
it for server monitoring. The server periodically checks this
PID, ensuring that all data is properly logged into the catalog
upon application termination.

This catalog construction methodology decouples meta-
data collection from the scientific application processing.
It asynchronously performs metadata 1/O, optimizing file
operations and minimizing application impact. Performance
evaluation is discussed in Section V.

To utilize the catalog, each file’s metadata must be loaded
into the catalog. However, data creation occurs in various
ways, such as being generated by scientific simulation
applications or downloaded from external sources. Therefore,
a single method for creating a catalog is insufficient.
SwiftLoad addresses this challenge by supporting not only

55989

IEEE Access

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

runtime catalog construction but also a post-process catalog
construction method. The latter is designed for files that
already exist in storage or are downloaded from the
web. In such cases, post-process catalog construction is
scheduled prior to the application’s execution, similar to data
preprocessing. At an extremely large scale where datasets
are vast, this post-process construction could become time-
intensive. In such cases, adequate time must be allocated to
ensure catalog construction is completed before performing
dependent operations. However, this represents a one-time
cost, as the created catalog can be reused multiple times
thereafter. To further mitigate this one-time cost, future work
could investigate system-level catalog construction, where
the catalog is generated immediately as files are created from
external sources. This approach could significantly reduce
the overhead of post-processing catalog construction and
enhance usability.

C. SCHEDULING WITH CATALOG

The object-level scheduling process begins with the cata-
log loader reading the catalog into memory. For readdir
information, the data is stored in an array, while other
metadata, such as stat, is sorted by file path to allow efficient
retrieval via binary search. Along with these metadata
operations, layout information is also loaded and sorted.
The object scheduler retrieves the object layout information
of each file, distinguishes them based on the OST index,
and creates multiple object tasks accordingly. The scheduler
maps 1/O processes to the OSTs using a round-robin
approach and places the object tasks into the task queues
of the I/O processes bound to the corresponding OSTs.
Binding processes to OSTs implies that each I/O process is
dedicated to a specific OST and does not switch to another
OST. As illustrated in Figure 5, this approach mitigates
OST contention by ensuring that each process consistently
accesses only its designated OST. Consequently, this reduces
the CI value and minimizes overall slowdown. The ratio of
I/0 processes mapped to each OST is adjusted based on the
results from the Loader Configuration Module to ensure that
the potential OST contention does not outweigh the benefits
of parallelism. Any remaining I/O processes that are not
mapped to OSTs remain idle.

D. LOADER CONFIGURATION MODULE

As mentioned in Section III, increasing the number of data
loaders does not always guarantee optimal performance. This
remains an issue even when applying object-level scheduling,
particularly when a large number of processes access a single
OST. Consequently, beyond a certain threshold, additional
loaders can degrade performance rather than improve it. Even
when the data loaders are evenly distributed across OSTs,
the absolute number of loaders can still be excessive, leading
to degraded performance due to overall system contention.
To address this issue, SwiftLoad introduces a Loader
configuration module. This module profiles the system’s
read slowdown in advance to regulate the number of loaders

55990

Algorithm 1 Optimal Loader Management

Input: Profiled slowdown g, Loaders L = {Ly, Ly, - - - }
1: Function configurelLoaders(g,L):
2 Let x be the number of loaders
3 hx) < ﬁ

4 Find x where //(x) =0

5: Solve g(x) = x - g'(x)

6 |L|0pt <~ [x]

7 if |L|opr < % then

8 Deactivate L; where i > |L|,p - |OST|
9: end

10: return

accessing each OST. By leveraging these profiling results,
the module dynamically adjusts the number of active loaders
to optimize performance. The module prevents performance
degradation due to excessive contention on a single OST
while allowing the utilization of more loaders when system
resources are available. This method balances efficient
resource utilization, mitigating risks of both over-contention
and under-utilization of available loaders.

For example, consider a system with 3 OSTs labeled
A, B, and C, and 9 loaders evenly distributed across the
OSTs, with 3 loaders per OST. If the threshold for optimal
performance per OST is 2 loaders, having 3 loaders per
OST would exceed this threshold, resulting in contention
and degraded performance despite the even distribution. The
Loader Configuration Module identifies this issue and adjusts
the number of loaders to ensure only 2 loaders per OST are
active, maintaining optimal performance.

Algorithm 1 illustrates the method for determining the
optimal number of loaders. Here, % represents the
expected average number of loaders per OST. The optimal
number of loaders is determined by identifying the point
where the marginal benefit of additional loaders equals the
marginal slowdown caused by contention. This mechanism
optimizes resource utilization and mitigates the adverse
effects of OST contention, thereby maintaining optimal I/O
performance.

E. CATALOG CONSISTENCY

The metadata catalog is intentionally designed to offer weak
consistency rather than strong consistency, as its primary
purpose is to serve as a utility for user convenience rather
than a critical component that necessitates strict consistency
guarantees. There are a few consistency scenarios to consider.
First, if a fault occurs during the building or updating of the
catalog, the catalog may become incomplete. In this case,
since the original metadata resides on the MDS, the user
can simply rebuild the catalog to restore its integrity. The
second scenario involves the catalog becoming inconsistent
due to metadata updates. However, this scenario is relatively
rare.

VOLUME 13, 2025

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

IEEE Access

Typically, scientific applications, which are among the
most commonly run workloads in HPC environments,
generate data once, and this data is used for analysis without
modification. Additionally, users rarely alter preprocessed
data once it is downloaded. Therefore, even if there is a time
gap between when the catalog is built and when it is used,
it generally does not pose a significant issue. Nonetheless,
if users are concerned about consistency, they can calculate a
checksum for each object when initially building the catalog
and store these checksums in a separate checksum catalog
file. Later, when the user reads data using the catalog, they can
recalculate the checksum for the data content and compare
it with the stored checksum to verify consistency. If an
inconsistency is detected, the user can update the catalog
by retrieving the latest metadata from the MDS, ensuring
that subsequent data I/O operations are based on the updated
information.

It should be noted that layout modifications, such as
those performed using [fs setstripe, are not detected through
checksum calculations. While the application does not
perform such layout changes explicitly, if a user does make
such modifications, it is their responsibility to update the
catalog accordingly.

F. CATALOG SIZE ANALYSIS

Given the critical role of the metadata catalog, concerns may
arise regarding the feasibility of this approach in terms of
catalog file size. However, it is important to emphasize that
the catalog size remains well within manageable limits, which
is crucial for maintaining system efficiency. Our observations
indicate that a catalog file of approximately 8 MB is sufficient
to store the metadata for 100,000 files. For instance, a user
with 1 TB of storage and an average file size of | MB would
require only about 80 MB to catalog 1,000,000 files. This
relatively small size ensures that loading the catalog into
memory during utilization is not resource-intensive. Even
with limited memory, the Catalog Loader can implement a
replacement algorithm to manage catalog entries effectively.
While catalog sizes may vary depending on usage, the
system is designed to adapt by generating additional catalog
files as needed. Furthermore, in HPC environments where
files are frequently archived or purged from PES, strategies
such as compressing the catalog for tape storage archiving,
particularly with application-generated datasets, can further
mitigate concerns regarding catalog file size.

V. EVALUATION

A. EXPERIMENTAL SETUP

1) TESTBED

We used a petascale supercomputer, Nurion [20], hosted
by Korean Institute of Science and Technology Information
(KISTI). We conducted experiments using one of the Lustre
partitions in Nurion. The partition contains 2 MDSes and
24 OSTs. The compute and storage nodes are connected via
a 100G interconnect. Further details are listed in Table 1.

VOLUME 13, 2025

TABLE 1. Testbed setup specifications.

Processor Intel Xeon Phi 7250 (KNL) processor
1.4 GHz, # of Cores per Node: 68
DDR4-2400, 16 GB x 6 per Node
Lustre 2.7.21.3, 0.76 PB

Bandwidth: 0.3 TB/, RAID6(8D+2P)

Linux version 3.10.0-1062.el7.x86_64

Main Memory
Parallel File System

OS Kernel

It is important to note that this partition was not isolated and
was shared with other users. To mitigate potential bias due to
variability, the experiments were repeated multiple times, and
the results were averaged. Additionally, the experiments were
conducted during similar time periods to ensure consistency.
Implementation: To evaluate SwiftLoad, we implemented a
parallel (multi-node) version of a data deduplication profiler,
FS-C [8], and a data augmentation tool within the SwiftL.oad
framework. The parallel deduplication profiler, written in
C++, operates in two phases: the file system walk phase
and the analysis phase. During the file system walk phase,
it traverses directories and performs I/O reads. The read
content is then divided into smaller chunks, and a hash
value is calculated for each chunk. The deduplication ratio
is determined by dividing the number of duplicated chunks
by the total number of chunks. In this setup, one process
handles the directory traversal while the other processes exe-
cute the remaining steps in parallel. The data augmentation
tool is developed using C, C++, and Python, and leverages
the Keras preprocessing library for image augmentation.
To simulate OST performance degradation based on loader
count, we measured the reduction in OST read times in an
actual HPC environment as the number of loaders increased.
We mathematically modeled this relationship and conducted
simulations to emulate file reading behavior. The simulation
was developed using Python. This allowed us to evaluate
the impact of varying loader numbers on CI values and
overall system performance. Data Loaders (I/O processes)
were generated in multiples of the number of OSTs, with each
data loader bound to a specific OST. Number of Data Loaders
per node was 4.

2) APPROACHES
We compare the following approaches.

e Swiftload: The SwiftLoad model we propose. A model
scheduling I/O work at the object level using a catalog.

e Object-level (OL): A model scheduling I/O work at the
object level without using a catalog.

e File-level (FL): A model scheduling I/O work at file level.

Workloads: For the Deduplication Profiler, we used a
synthetic dataset consisting of 100,000 files, each 1 MB
in size. For the data augmentation tool, we employed the
CIFAR-10 dataset, which comprises 60,000 files with an
average size of approximately 2.7 KB. To assess the overhead
of catalog construction, we utilized a dataset of 400,000 files,
each 1 MB in size, as a makespan of 100,000 files proved
insufficient for a meaningful comparison.

55991

IEEE Access

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

=3
o

1.6

o o

= o>

X
X

1.4

o lx 1.2

o
©
X
Straggler Ratio

1.0

—e— SwiftLoad --e-- OL K

-

N

=4
)

Contention Imbalance Intensity
X

AT 8 D & P ®
R RN

Process-to-OST Ratio Contention Imbalance Intensity

(a) Contention Imbalance Intensity

X n n L L L L
5 00 01 02 03 04 05 06 0.7

(b) Straggler Slowdown

(FL-IOL)/IOL (%)
»
8
Simulation Time
Y-

$
1 1 T hd T
64 128 256 512 1024
Process-to-OST Ratio

(d) SwiftLoad vs OL Perf.

.
o

ol
A A

Process-to-OST Ratio

(c) FL vs IOL Perf.

FIGURE 7. Simulation results. (a) Contention imbalance intensity increases as the process-to-OST ratio rises. (b) Straggler ratio, the time difference
between longest and shortest process, grows nonlinearly with contention intensity. (c) Difference in performance between file-level and
ideal-object-level scheduling diminishes as the process-to-OST ratio exceeds 64, showcasing OL scalability limits. (d) Comparison of SwiftLoad and
OL simulation times shows SwiftLoad's consistent efficiency across different process-to-OST ratios.

B. SIMULATION STUDY

We conducted HPC simulations based on the read time
results modeled in Fig. 4. The simulation was designed to
mimic the Nurion storage system environment. Specifically,
we assumed a scenario with 24 OSTs, adopted a Progress
File Layout (PFL) for the file striping policy, and utilized a
Round Robin allocator for OST allocation. The simulation
involved 1 million files, each with sizes representative of
real HPC workloads. We assumed that a single process
performing one object I/O read on an OST would take a
single time unit. Using the results from Fig. 4, which reflect
how read performance degrades with an increasing number
of contending processes in our simulated environment, the
simulation was designed to model scenarios where multiple
processes reading simultaneously would collectively read
less than one object per time unit on an OST. This simulation
modeled scenarios where multiple processes accessed data
concurrently. The file placement (OST configuration) was
re-generated for each simulation run, ensuring a fresh dataset
layout for every iteration of the experiment.

At each time unit, we calculated H; to derive H and
subsequently CI. Here, H represents the entropy, indicating
the uniformity of process distribution across OSTs, while
CI (Contention Imbalance Intensity) quantifies the degree
of imbalance, ranging from 0 to 1, as previously discussed
in Section III. The overall CI value was obtained by
averaging the CI values over multiple unit times. Through this
simulation, we analyzed the imbalance in process distribution
during data reads for various file placements, examining
how processes were concentrated on OSTs and assessing the
temporal overhead caused by contention on heavily loaded
OSTs.

The results are shown in Figure 7. Figure 7(a) shows CI
as a function of the process-to-OST ratio. As the number
of processes increases, the CI value consistently rises.
Figure 7(b) illustrates the straggler ratio, defined as the ratio
of the execution time of the longest process to the shortest
process as a function of CI in the simulation. For instance,
at CI = 0.204, the straggler ratio is 1.019, indicating a 1.9%
increase in the longest process time relative to the shortest.
As Clincreases to 0.701, the straggler ratio rises significantly
to 1.756, indicating a 75.6% increase. Figure 7(c) shows the
performance difference between file-level (FL) scheduling
and ideal object-level (IOL) scheduling through simulation.
In this figure, FL denotes the traditional scheduling method

55992

that concentrates processes on specific OSTs, whereas IOL
signifies the ideal scheduling approach that distributes an
equal number of I/O processes across all OSTs. Refer to
Section III for the interpretation of these three simulation
results.

Figure 7(d) illustrates the simulation times of SwiftL.oad
and OL as a function of the number of processes. SwiftLoad
maintains a stable read time even as the process-to-OST ratio
increases. This demonstrates the effectiveness of the loader
configuration module in managing the number of loaders
performing I/O operations to stay within the optimal range.
In contrast, the OL method exhibits a significant increase
in time when the process-to-OST ratio exceeds 512, due to
an excessive number of loaders assigned to a single OST,
which prolongs the simulation duration. This trend highlights
the limitations of traditional scheduling approaches when
faced with multiple concurrent I/O processes and underscores
the necessity of SwiftLoad’s loader configuration module to
maintain efficiency in high-load scenarios.

C. PERFORMANCE EVALUATION

1) OVERALL PERFORMANCE

Figure 8(a) presents the makespan for the deduplication
profiler when FL, OL, and SwiftLoad are applied. SwiftLoad
demonstrates a significantly lower makespan compared to
the other models, FL. and OL. When the number of data
loaders is 24 or 48, OL shows a higher makespan than FL
due to increased metadata operations required for object-
level scheduling. However, at 96 and 192 data loaders,
there is a slight decrease or similar performance to FL.
This is because at this point, the benefits of object-level
scheduling outweigh the additional metadata request over-
head. In contrast, SwiftLoad exhibits a 2.73 times lower
latency than FL. when the number of data loaders is 24, and
a 5.63 times lower makespan than FL. when the number of
data loaders reaches 192. This improvement is attributed to
the metadata catalog introduced by SwiftLoad, which nearly
eliminates the metadata I/O time—a substantial portion of the
utility’s makespan. For FL and OL, metadata operation time
becomes the dominant factor, resulting in minimal makespan
reduction beyond 48 data loaders. However, SwiftLoad,
which effectively removes metadata I/O time, consistently
scales up from 24 data loaders, achieving 2.73 times better
performance at 192 data loaders compared to 24 data
loaders. However, while this represents consistent scaling,

VOLUME 13, 2025

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

IEEE Access

[CJFL CJOL [SwiftLoad [CFL T OL [SwiftLoad

5 100F 1 =
g 8 0]
50F 1 g
£ 2f 1
0 R 48 % 192

24 48 96 192
of Data Loader # of Data Loader

(a) Deduplication Profiler (b) Data Augmentation Tool

FIGURE 8. Makespan of each utility with an increasing number of data
loaders.

Time (

CJFL CJOL B SwiftLoad

< BE] <
i Zaof
g 50 F k! g
£ 25 1 £ 20r
0 0
24 48 96 192 24 48 96 192
of Data Loader # of Data Loader

(a) Deduplication Profiler (b) Data Augmentation Tool

FIGURE 9. Metadata 1/0 time of each utility with an increasing number of
data loaders.

CJFL CJOL B SwiftLoad

the improvement is not linear in relation to the increase
in data loaders. This is because the bottleneck shifts from
metadata [/O to data I/O. Although SwiftLoad addresses
this by introducing object-level scheduling, as the number
of loaders increases, the process-to-OST ratio also rises,
diminishing the effectiveness of object-level scheduling over
time.

Figure 8(b) shows the makespan for the data augmentation
tool under FL, OL, and SwiftLoad. The results follow
a similar pattern to those observed in the deduplication
profiler. FL consistently exhibits a lower makespan than
OL. For example, at 24 data loaders, FL. has a makespan
of approximately 55.6 seconds, which is about 9.9% lower
than OL’s makespan of 61.7 seconds. At 192 data loaders,
FL’s makespan is approximately 56.0 seconds, which is
about 4.9% lower than OL’s 58.9 seconds. For both FL
and OL, increasing the number of data loaders does not
significantly reduce the makespan, as the overall makespan
is primarily determined by the directory traversal time.
Conversely, SwiftLoad shows a linear decrease in makespan
as the number of data loaders increases, with a makespan
of 47.8 seconds at 24 loaders and a drastic reduction to just
5.3 seconds at 192 loaders, demonstrating its efficiency.

2) METADATA I/O LATENCY

Figure 9(a) and (b) show the metadata I/O time for the two
utilities using FL, OL, and Swiftl.oad. Metadata I/O time
encompasses the combined duration spent on open and close
operations for each data loader and the directory traversal
time. For SwiftLoad, this also includes the time required
to load the catalog into memory. In Figure 9(a), When the
number of data loaders is 24, FL exhibits a traversal time
of 83.0 seconds, while OL shows a slightly higher time of
90.6 seconds. At 192 data loaders, these times are reduced to
75.3 and 74.4 seconds, respectively. In contrast, SwiftLoad
demonstrates significantly lower traversal times, with only
5.3 seconds at 24 data loaders and a mere 0.6 seconds at
192 data loaders. In (b), the FL time was 55.6 seconds,

VOLUME 13, 2025

/‘8\ 0.06 —e— FL 1
N3 SwiftLoad

= 0.04 wiftLoa)
0

g

= 0.02 - q
-

0.00

24 48 96 192 384 768 1536
of Data Loader

FIGURE 10. 1/0 read latency of FL and SwiftLoad for the data
deduplication profiler with an increasing number of Data Loaders.

OL time was 58.9 seconds, and SwiftLoad completed the
operation in less than a second. This substantial reduction is
due to SwiftLoad only requiring the catalog to be loaded into
memory, bypassing traditional directory traversal.

For the data augmentation tool, the minimal differences
in the overall makespan and the metadata I/O time between
FL and OL can be attributed to the parallelization of
metadata, data I/O, and computation. As these processes
are parallelized, the overall makespan becomes heavily
dependent on the metadata I/O time. However, in the case of
SwiftLoad, the metadata I/O time is negligible, as shown in
Figure 9(b), leading to a scenario where the overall makespan
in Figure 8(b) is primarily dependent on data I/O time. The
reason the deduplication profiler exhibits some metadata I/O
while the data augmentation tool does not is due to the
different workloads they handle. The deduplication profiler
manages files of varying sizes, from tiny files to those
reaching tens of GBs. In such cases, multiple processes may
simultaneously open and close the same files to perform
reads, leading to potential lock contention. Conversely, the
data augmentation tool primarily handles smaller files, which
avoids such scenarios, making the metadata I/O-particularly
open and close operations-negligible.

These results demonstrate that the metadata 1I/0O time for
both utilities is nearly eliminated through the introduction
of the proposed catalog. By eliminating directory traversal
time and calls to functions that retrieve stat or file layout
information in the applications, the proposed metadata
catalog removes the need to access the metadata server,
except for essential file handling metadata I/Os such as
open/close operations.

3) 1/0 READ LATENCY

Figure 10 represents the comparison of average read latency
of SwiftLoad and FL across different number of data
loaders. When the numbers of data loaders is small, the
I/O latency of OL shows little difference compared to FL.
Although with 24 data loaders, the OL exhibits slightly
higher latency than FL, it remains within the error bounds.
This indicates that with a small number of data loaders, the
metadata I/O bottleneck is dominant. However, as the number
of data loaders increases, the difference in read latency
between FL and OL becomes significantly more pronounced.
Specifically, with 192 data loaders, OL achieves a 7% lower
latency than FL. This advantage increases to 33% and 55%

55993

IEEE Access

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

512 Baseline] With Catalog

c UL]
(0] - S N e PR -4
- [P]
= 0.8 // % 0]
° | /]
N b 4
g 04 / 1
£ |]
s |]
=z 00 32KB 1MB 4MB

File Size

FIGURE 11. Normalized latency of the baseline application and the
baseline application with runtime catalog construction for different file
sizes.

with 768 and 1536 data loaders, respectively. The reason for
this improvement is that OL induces less OST contention as
I/0 scales up compared to FL scheduling. These experimental
results validate that the proposed method is significantly more
effective than file-level scheduling in scalable environments.

4) OVERHEAD ANALYSIS ON CATALOG CONSTRUCTION

To investigate the potential overhead of runtime catalog con-
struction, we examine the additional performance impact of
system call interception. Figure 11 compares the normalized
latency between the baseline application and the application
with catalog construction. The application simulates a
scientific workload by opening a file, calculating the hash of
dummy content, and writing the hash value to an output file.
For this experiment, we configured the application to write
400,000 files. As the created file size from the application
increases, the overhead becomes negligible. When the file
size is 32KB, the normalized latency is about 1.1; for IMB,
it is 1.04; and for 4MB, it is 1.002. This is because when
the file size is small, the application writes and computes
less, resulting in a high density of open/close requests which
causes a slight delay due to the Catalog Server’s throughput.
At the same time, the benefit of using the catalog is greater
for smaller files, as they intensify MDS bottlenecks. This
is particularly evident in HPC utilities, where metadata
I/0 dominates due to shorter computational and data I/O
phases relative to metadata operations. Consequently, there
is a trade-off between the slight overhead introduced during
catalog construction and the significant performance gains
achieved by alleviating MDS bottlenecks. However, even in
the case of 32KB files, the absolute overhead time is only
about one to two seconds.

VI. CONCLUSION

In this paper, we present SwiftLoad, a novel approach
designed to enhance the performance of parallel utilities in
HPC environments by addressing both metadata I/O bottle-
necks and OST contention through metadata catalog-based
object-level 1/0O scheduling. We evaluated SwiftLoad using
two representative utilities: a parallel data deduplication pro-
filer, FS-C [8], and a data augmentation tool in a production
HPC environment. The results demonstrate that SwiftLoad
significantly improves performance, achieving a 5.63-fold
and 11-fold increase in the makespan of the deduplication
profiler and data augmentation tool, respectively.

55994

REFERENCES

(1

(2]
(3]
(4]
(3]

[l

(71

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

IBM Spectrum Scale (Formerly General Parallel File System, GPFS).
Accessed: 2021. [Online]. Available: https://www.ibm.com/docs/
en/spectrum-scale

(Oct. 2023). Lustre File System. [Online]. Available: https://www.
lustre.org/

(Oct. 2023). The Frontier. [Online]. Available: https://www.olcf.ornl.gov/
frontier/

(Oct. 2023). Supercomputer Lumi. [Online]. Available: https://www.lumi-
supercomputer.eu/

(Oct. 2023). Supercomputer Perlmutter. [Online]. Available: https://docs.
nersc.gov/systems/perlmutter/

B. Welch and G. Noer, “Optimizing a hybrid SSD/HDD HPC storage
system based on file size distributions,” in Proc. IEEE 29th Symp. Mass
Storage Syst. Technol. (MSST), May 2013, pp. 1-12.

Y. Kim, S. Atchley, G. Vallée, and G. Shipman, “LADS: Optimizing data
transfers using layout-aware data scheduling,” in Proc. 13th USENIX Conf.
File Storage Technol. (FAST), Jan. 2015, pp. 1-14.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel,
““A study on data deduplication in HPC storage systems,” in SC : Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2012, pp. 1-11.
P.J. Braam and P. Schwan, “‘Lustre: The intergalactic file system,” in Proc.
Ottawa Linux Symp., Jan. 2002, pp. 3429-3441.

P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in
Proc. Linux Symp., 2003, pp. 380-386.

D. Sikich, G. D. Natale, M. Legendre, and A. Moody, ‘“MpiFileUtils:
A parallel and distributed toolset for managing large datasets,” in Proc.
PDSW-DISCS, Oct. 2017, pp. 1-4.

S. Xiong, F. Wang, and Q. Cao, “A Bloom filter based scalable data
integrity check tool for large-scale dataset,” in Proc. Ist Joint Int.
Workshop Parallel Data Storage Data Intensive Scalable Comput. Syst.
(PDSW-DISCS), Nov. 2016, pp. 55-60.

W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Z. Wang, “P-dedupe:
Exploiting parallelism in data deduplication system,” in Proc. IEEE 7th
Int. Conf. Netw., Archit., Storage, Jun. 2012, pp. 338-347.

I. Raicu, I. Foster, M. Wilde, Z. Zhang, K. Iskra, P. Beckman, Y. Zhao,
A. Szalay, A.Choudhary, P. Little, C. Moretti, A. Chaudhary, and D.
Thain, “Middleware support for many-task computing,” Cluster Comput.,
vol. 13, no. 3, pp. 291-314, Sep. 2010.

A. Kougkas, H. Devarajan, J. Lofstead, and X. Sun, “LABIOS,” in Proc.
28th Int. Symp. High-Performance Parallel Distrib. Comput., Jun. 2019,
pp. 1-14.

Y. Qian, W. Cheng, L. Zeng, X. Li, M.-A. Vef, A. Dilger, S. Lai, S. Thara,
Y. Fan, and A. Brinkmann, “Xfast: Extreme file attribute stat acceleration
for lustre,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2023, pp. 1-12.

A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and
F. Wang, “Hvac: Removing I/O bottleneck for large-scale deep learning
applications,” in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER),
Sep. 2022, pp. 324-335.

J. Liao, G. Xiao, and X. Peng, “Log-less metadata management on
metadata server for parallel file systems,” Scientific World J., vol. 2014,
no. 1, 2014, Art. no. 813521.

L. Wang, Y. Lu, W. Zhang, and Y. Lei, “Distributed and scalable directory
service in a parallel file system,” IEICE Trans. Inf. Syst., vol. E99.D, no. 2,
pp. 313-323, 2016.

J.-K. Lee and T. Hong, “Analysis of traffic and attack frequency in
the NURION supercomputing service network,” KIPS Trans. Comput.
Commun. Syst., vol. 9, no. 5, pp. 113-120, Jan. 2020.

SEOYEONG LEE received the B.S. degree in
computer science from Sogang University, Seoul,
South Korea, in 2023. She is a member with
the Data-Intensive Computing and Systems Lab-
oratory, Department of Computer Science and
Engineering, Sogang University. Her research
interests include I/O performance optimization,
parallel and distributed systems, and systems for
artificial intelligence (AI).

VOLUME 13, 2025

S. Lee et al.: Leveraging Pre-Built Catalogs and Object-Level Scheduling to Eliminate 1/0 Bottlenecks

IEEE Access

JUNGHWAN PARK received the B.S. degree in
computer science from Sogang University, Seoul,
South Korea, in 2023. He is currently a member
with the Data-Intensive Computing and Systems
Laboratory, Department of Computer Science
and Engineering, Sogang University. His research
interests include parallel and distributed systems
and systems for artificial intelligence (Al).

YOOCHAN KIM received the B.S. degree in
computer science and mathematics from Sogang
University, Seoul, South Korea, in 2023, where
he is currently pursuing the M.S. degree with the
Department of Computer Science and Engineer-
ing. His research interests include I/O optimization
for Al cloud computing solutions, mathematical
modeling, and distributed deep learning.

SAFDAR JAMIL received the B.E. degree in com-
puter systems engineering from the Mehran Uni-
versity of Engineering and Technology (MUET),
Jamshoro, Pakistan, in 2017. He is currently
pursuing the M.S. leading to Ph.D. integrated
program degree with the Department of Com-
puter Science and Engineering, Sogang University,
Seoul, South Korea. He is a member with the
Data-Intensive Computing and Systems Labo-
ratory, Department of Computer Science and
Engineering, Sogang University. His research interests include scalable
indexing data structures and algorithms, key-value stores, zoned namespace
storage, and storage optimization techniques.

AWAIS KHAN received the B.S degree in bioin-
formatics from Mohammad Ali Jinnah University,
Islamabad, Pakistan, and the Ph.D. degree in
computer science and engineering from Sogang
University, Seoul, South Korea, in 2021. He was
with the Digital Research Laboratories as a
Software Engineer, from 2012 to 2015. Currently,
he is an HPC Systems Scientist with Oak Ridge
National Laboratory, Oak Ridge, TN, USA. Prior

/ to his role at ORNL, he was a Senior Systems
Performance Engineer with Micron Tech. His research interests include ser-
vice optimizations for AI/ML applications, large-scale data checkpointing,
network topology and cost modeling, memory-centric computing and HPC,
data management services in HPC, object storage systems, cluster-scale
deduplication, and parallel and distributed file systems.

VOLUME 13, 2025

SEUNG WOO SON (Member, IEEE) received
. the Ph.D. degree in computer science and engi-
neering from The Pennsylvania State University,
USA, in 2008. Since 2014, he has been with
the University of Massachusetts Lowell. He is
currently an Associate Professor. Before UMass
Lowell, he was a Postdoctoral Researcher with
the Electrical Engineering and Computer Science
Department, Northwestern University, and the
Math and Computer Science Division, Argonne
Natlonal Laboratory. His research interests include high-performance
computing with an emphasis on parallel I/O and storage systems, computer
architecture, compilers, embedded systems, most recently, and data compres-
sion for various datasets, including HPC and IoT datasets, and systems and
machine learning. He was a recipient of the National Science Foundation
CAREER Award, in 2018, and the Amazon Research Award, in 2020.

JAE-KOOK LEE received the B.S., M.S., and

Ph.D. degrees in computer science and engi-

- neering from Chungnam National University,

- South Korea, in 2002, 2004, and 2012, respec-

! tively. He has been a Senior Researcher with

the Supercomputing Infrastructure Center, Korea

Institute of Science and Technology Information

(KISTI), South Korea, since 2013. His research

interests include HPC systems and network
security.

DO-SIK AN received the B.S., M.S., and Ph.D.
degrees in computer science and engineering
from Jeonbuk National University, South Korea,
in 2007, 2010, and 2017, respectively. He has
been a Senior Researcher with the Supercom-
puting Infrastructure Center, Korea Institute of
Science and Technology Information (KISTI),
South Korea, since 2017. His research interests
include HPC systems and interconnect networks.

TAEYOUNG HONG received the B.S. and M.S.
degrees in physics from Sungkyunkwan Univer-
sity, South Korea, in 1999 and 2002, respectively.
He has been the Director of the Supercom-
puting Infrastructure Center, Korea Institute of
Science and Technology Information (KISTI),
South Korea, since 2003. His research interests
include HPC system operation and parallel file
systems.

YOUNGIJAE KIM (Member, IEEE) received the
B.S. degree in computer science from Sogang
University, Seoul, South Korea, in 2001, the M.S.
degree in computer science from KAIST, in 2003,
and the Ph.D. degree in computer science and engi-
neering from The Pennsylvania State University,
University Park, PA, USA, in 2009. He is currently
a Professor with the Department of Computer Sci-
ence and Engineering, Sogang University. Before
joining Sogang University, he was a Research and

g

Development Staff Scientist with U.S. Department of Energy’s, Oak Ridge
National Laboratory, from 2009 to 2015, and an Assistant Professor with
Ajou University, Suwon, South Korea, from 2015 to 2016. His research
interests include operating systems, file and storage systems, parallel and
distributed systems, computer systems security, and performance evaluation.

55995

