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Abstract

Ceph is a widely used distributed object store, but its messenger
layer imposes substantial CPU overhead on the host. To address
this limitation, we propose DoCEPH, a DPU-offloaded storage ar-
chitecture for Ceph that disaggregates the system by offloading the
communication-intensive messaging component to the DPU while
retaining the storage backend on the host. The DPU efficiently
manages communication, using lightweight RPC for metadata op-
erations and DMA for data transfer. Moreover, DoCEPH introduces
a pipelining technique that overlaps data transmission with buffer
preparation, mitigating hardware-imposed transfer size limitations.
We implemented DoCEPH on a Ceph cluster with NVIDIA BlueField-
3 DPUs. Evaluation results indicate that DoCEPH cuts host CPU
usage by up to 92% while sustaining stable throughput and provid-
ing larger performance benefits for object writes over 1 MB.
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1 Introduction

Ceph [22] is a widely adopted open-source distributed storage
system that provides an object-based design, strong scalability, and
self-healing capabilities. It supports block, file, and object interfaces,
making it suitable for diverse applications. The core component of
Ceph, the Object Storage Daemon (OSD), is responsible for data
storage, replication, and consistency. In large-scale clusters, OSDs
frequently exchange messages to coordinate replication, recovery,
and rebalancing.

These communications are managed by Ceph’s messenger layer,
which asynchronously handles heartbeats, replication traffic, and
control messages at regular intervals. While this mechanism en-
sures consistency and balance across the cluster, it imposes heavy
computational overhead. Network stack traversal, data serialization,
TCP/IP transmission, compression, checksumming, and encryption
are all executed by the host CPU [20].

To mitigate such overhead, Data Processing Units (DPUs) have
emerged as a promising solution for data-intensive systems [1,
2,5, 8, 14, 16, 18]. A DPU integrates ARM-based CPU cores, an
independent operating system, a network interface controller (NIC),
and hardware accelerators into a single system-on-chip (SoC). This
architecture enables in-path data processing without host CPU
involvement, making DPUs an attractive platform for offloading
communication-intensive operations in storage systems.

Recent research has demonstrated the versatility of DPUs by ex-
ploring in-path read processing in storage systems [25], GPU-direct
object storage [9], hardware-accelerated compression and erasure
coding [12, 19], and flush offloading in key-value stores [6]. These
efforts highlight the potential of DPUs for accelerating specific
data-path operations. Nonetheless, the fundamental challenge of
reducing host CPU overhead in distributed storage systems like
Ceph remains largely unaddressed. A key difficulty lies in the fact
that core networking and storage functions are tightly coupled
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with cluster consistency mechanisms, and fully offloading them to
external devices risks compromising reliability and fault tolerance.

In this paper, we propose DoCEPH, a DPU-offloaded Ceph archi-
tecture that physically decouples OSD logic from the object store.
DoCEPH executes core OSD functionalities—including client re-
quest handling and message processing—on the DPU’s ARM cores,
while the host is dedicated to managing the backend object store
(BlueStore). This separation relieves the host CPU from Ceph’s net-
work operations, which typically involve frequent memory copies
and context switches through the TCP/IP kernel stack. By offload-
ing these tasks to the DPU’s TCP/IP stack, the host CPU is freed to
focus exclusively on backend storage operations with substantially
reduced load.

To connect the DPU-resident OSD with the host-resident Blue-
Store, we introduce ProxyObjectStore, a transparent intermediate
layer. ProxyObjectStore routes small control-path requests (e.g.,
metadata lookups) through a lightweight RPC channel, while large
data transfers are handled via high-performance DOCA DMA chan-
nels. This design bypasses the host kernel’s network stack during
bulk data transfers, thereby eliminating redundant CPU interven-
tion and memory copy overhead.

In addition, DoCEPH employs pipelined DMA execution and
memory region caching to maximize throughput and minimize
overhead by overlapping buffer preparation with data transmis-
sion, even under hardware-imposed DMA size limits (e.g., 2 MB).
To enhance robustness, we further incorporate adaptive fallback
and cooldown mechanisms that sustain reliable operation in the
presence of transmission errors.

We implemented DoCEPH on a Ceph cluster equipped with
NVIDIA BlueField-3 DPUs and evaluated its performance against a
conventional host-based Ceph deployment. Experimental results
show that DoCepH reduces host CPU utilization by over 90% across
diverse write workloads, while maintaining stable throughput and
latency as I/O sizes increase.

2 Background and Motivation

2.1 Ceph Storage System

Ceph is a highly scalable distributed storage system that has been
widely adopted in cloud infrastructure, telecom networks, and data-
intensive research environments due to its flexible architecture
and unified interface. It supports block storage (RBD), a POSIX-
compatible file system (CephFS), and object storage (RGW) within
a single cluster, allowing diverse applications to share a common
storage backend.

Internally, Ceph relies on RADOS (Reliable Autonomic Distributed
Object Store) [24] to manage object-based data distribution across
the cluster. Each object is assigned to a logical unit called a Place-
ment Group (PG), and the CRUSH (Controlled Replication Under
Scalable Hashing) algorithm [23] deterministically maps each PG
to a set of Object Storage Daemons (OSDs) for replication and
placement.

Ceph consists of multiple daemon processes, each responsible
for a specific cluster-level role. Among them, the OSD daemon in-
tegrates tightly coupled subsystems—including the network stack,
object store engine, and replication logic—to handle data operations
efficiently. Monitors (MONs) maintain cluster state and manage
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core metadata such as the OSDMap and MONMap. The Manager
(MGR) daemon collects runtime statistics and provides modular
extensions including dashboards and load tracking. When CephFS
is used, Metadata Servers (MDSs) handle namespace operations
and directory metadata. To enable coordination among these com-
ponents, all communication in Ceph is managed by the messenger
layer. It handles essential functions such as serving clients I/O, data
replication between OSDs, coordinating recovery, and exchanging
heartbeat messages for health monitoring. Ceph enables dynamic
scaling without service interruption and ensures fault tolerance
through automatic recovery and data rebalancing, making it suit-
able for mission-critical deployments.

2.2 Data Processing Unit

The Data Processing Unit (DPU) is a rapidly emerging class of
processor designed to offload data-centric workloads such as net-
working and storage, thereby alleviating CPU bottlenecks in mod-
ern data centers. By independently handling system-level services,
the DPU enhances both performance and resource efficiency. Its
energy-efficient architecture and programmable design allow it to
execute tasks such as packet processing, storage control, and secu-
rity functions without CPU involvement. As a result, major chip ven-
dors—including NVIDIA (BlueField) [16], Intel (IPU) [8], AMD (Pen-
sando) [1], Marvell (Octeon) [14], and Broadcom (Stingray) [2]—have
introduced various DPU products, while hyperscalers such as AWS
(Nitro) [18], Alibaba (CIPU) [5], and Microsoft operate their own
DPU-based infrastructure at scale [15].
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Figure 1: An architectural overview of DPU [16].
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Modern DPUs are built as tightly integrated SoCs, optimized to
process data-intensive operations efficiently. Figure 1 illustrates the
typical architectural components of a DPU. The compute subsystem
consists of multiple low-power CPU cores based on ARM or RISC-V
architectures, running a standalone Linux-based operating system.
These cores manage data flow, coordinate offloaded operations, and
support control-plane functionality. In addition, DPUs are equipped
with hardware accelerator engines that efficiently handle tasks such
as erasure coding, encryption, compression, and decompression.

Each DPU includes onboard DDR memory used for buffering
active datasets, as well as embedded flash storage for hosting the OS
root filesystem. A PCle interface enables the DPU to communicate
with the host system and other peer devices on the PCle fabric via
DMA or peer-to-peer communication.

DPUs uniquely combine general-purpose cores, a standalone
operating system, and a high-throughput NIC within a single SoC
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Figure 2: Internal messaging flow in Ceph OSD.

package. This integration allows them to perform in-path data pro-
cessing independently of the host CPU. By integrating control logic,
I/O optimization, and hardware acceleration, DPUs are emerging
as a key building block for re-architecting modern data center in-
frastructure.

2.3 Motivation for Offloading Ceph Messenger

In Ceph, each OSD runs its own messenger instance with a pool
of worker threads, where each thread handles socket connections
asynchronously through a single-threaded epoll-based event loop.

Figure 2 illustrates the typical processing flow within an OSD
— from receiving a client request to sending a response after com-
pleting replication. When a client read or write request arrives via
a TCP socket (D), a worker thread blocked on epoll is triggered to
read and decode the message (2). The decoded operation is then
dispatched to the operation work queue (3), where an OSD thread
picks it up (@ and performs the actual I/O through the ObjectStore
(e.g., BlueStore) 5. The OSD thread generates a replication mes-
sage, which is passed back to the messenger (6). The messenger
encodes the message (7) and transmits it to secondary OSDs (8).
Once all acknowledgments from the replicas are received, a final
response is sent back to the client (9).

The intensive communication handled by the messenger layer
imposes significant CPU overhead. The messenger repeatedly in-
vokes system calls for TCP communication, triggering frequent
context switches and buffer copies for each I/O request, while also
performing message encoding and decoding operations. Our mea-
surements in Section 5.2 show that the messenger consistently
accounts for over 80% of total Ceph CPU usage across different net-
work configurations (1 Gbps and 100 Gbps), and generates nearly
an order of magnitude more context switches than ObjectStore
operations.

This concentration of CPU usage in the messenger not only
wastes costly host CPU cycles but also undermines energy effi-
ciency. To address this, we leverage ARM-based DPUs with an

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

integrated TCP/IP stack to offload network-intensive processing
from the messenger layer, significantly reducing host CPU usage.
This offloading frees host resources for backend I/O tasks, enabling
a more energy-efficient and cost-effective disaggregated storage
system.

3 Design of DoCEPH
3.1 Overall Architecture

The architecture of DoCEPH consists of two main components:

e (1) the DPU, which executes the full Ceph OSD stack—including
replication, data placement, and client request handling

o (2) the host, which runs only a BlueStore server responsible for
physical storage management.

To enable data transfer between the two components, we in-
troduce a transparent layer on the DPU called ProxyObjectStore.
This layer mediates all interactions between the DPU and the host
through a Proxy Interface, which runs on both sides. Ceph’s
architecture defines the ObjectStore as a pluggable backend inter-
face, allowing different storage technologies (e.g., BlueStore [21],
FileStore [3]) to serve as the OSD’s backend. DoCEPH leverages
this modularity by overriding the ObjectStore interface on the
DPU with a custom proxy (ProxyObjectStore) that forwards back-
end calls to the BlueStore instance running on the host. Figure 3
illustrates the overall architecture of DOCEPH.

3.2 Communication Management

Backend requests issued by DPU-resident OSD threads first enter
ProxyObjectStore, which selects the transport based on operation
type. Control-plane operations (e.g., stat, exists) are served via
lightweight RPCs, whereas data-plane operations that move bulk
I/O (e.g., queue_transactions) are staged in memory and then
transferred using high-throughput DMA.

For write requests, all data-plane operations are staged in DPU
memory before being sent to the host. This design enables pipelin-
ing of network reception, DMA transfer, and host BlueStore commit,
thereby overlapping these phases to maximize throughput. Client
acknowledgments are issued only after the host-side BlueStore com-
pletes the commit, preserving Ceph’s write-through consistency
semantics and crash resilience. For each request, the proxy interface
in ProxyObjectStore serializes the message and forwards it to a
lightweight host-side server, which deserializes the payload and
executes the corresponding BlueStore operation.

The ProxyObjectStore is responsible for selecting the communi-
cation channel based on the operation type. This selection follows
a clear binary classification: all client I/O operations are directed to
the data plane for maximum throughput, while metadata manage-
ment and cluster coordination operations use the control plane.

Read requests follow a similar architectural pattern: when clients
issue read requests, the DPU uses ProxyObjectStore to send the
necessary metadata to the host via DMA, and after the host per-
forms the read operation, the requested data is transferred back
to the DPU via DMA before being sent to the client. This bidirec-
tional approach maintains consistent proxy interface semantics and
performance characteristics for both read and write operations.
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Figure 3: An architectural view of DoCEPH.

Control-Plane Operations: Lightweight tasks such as metadata
management or status monitoring have minimal impact on overall
performance. They primarily serve to coordinate and manage clus-
ter state rather than handle bulk data movement. A standard TCP/IP
socket connection is used for the requests that are not performance-
critical. The serialized RPC message is sent over a persistent TCP or
UNIX domain socket. This provides a reliable and straightforward
communication channel for exchanging small, infrequent messages.
This channel is initialized once when the OSD starts.

Data-Plane Operations: For read and write operations that in-
volve frequent and large-scale data transfers, we leverage NVIDIA’s
DOCA API to perform efficient, DMA-based direct memory trans-
fers. The DOCA Communication Channel (CommChannel) [17]
provides an API to establish and manage high-speed DMA transfer
channels between the DPU and the host, exposing memory regions
in advance and handling the necessary negotiation to coordinate
access. The data plane operations proceed as follows.

e Upon receiving a write request from the client, the OSD uses
the ProxyObjectStore to initiate a negotiation with the host via
the DOCA CommChannel and allocates the memory region for
DMA.

o The actual data is then directly copied from the DPU to the
pre-exposed memory region on the host using the DOCA DMA
engine. This process bypasses the host kernel’s network stack
entirely, minimizing overhead through zero-copy transfer.

e Once the DMA transfer is complete, BlueStore writes the data to
the physical storage device.

A naive separation of the OSD and BlueStore components can
potentially degrade performance due to additional communication
overhead and synchronization delays. To mitigate this, DoCEPH
employs a pipelined transfer mechanism that maximizes data trans-
fer efficiency across the end-to-end path, starting from the client,
through the DPU, to the host-side DMA engine, and finally to the
BlueStore storage backend.
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Figure 4: DMA pipelining mechanism for Host-DPU data
transfer.

In DoCEPH, both the DMA transmission and the preparation
of incoming data buffers are managed by a dedicated background
thread running in polling mode. This thread continuously moni-
tors the DMA completion status and proactively prepares the next
set of data in memory. As soon as the current DMA transfer is
initiated, the system begins staging the next client request into a
DMA-accessible buffer, ensuring that data preparation and data
transmission can proceed concurrently.

3.3 DMA Pipelining in DoCEPH

As illustrated in Figure 4, DoCEPH utilizes staging buffers before
DMA transmission and write buffers after transmission to pipeline
the entire process. Although hardware constraints require DMA
requests to be transmitted in 2MB segments, DOCEPH minimizes
transmission delays by reusing pre-established memory regions
instead of performing CommChannel negotiation for each transfer.
On the receiving end, BlueStore write operations are performed on
buffered data once the complete request arrives.

This pipelining mechanism functions identically for read opera-
tions. During reads, staging buffers are positioned on the host side
to facilitate the same efficient overlapped execution for DMA trans-
fers from the host to the DPU. This architecture ensures symmetric
performance optimization for bidirectional data flow between the
DPU and host. Through these optimizations, DOCEPH maintains
a queue of pending write requests that are preloaded into avail-
able DMA-capable buffers, rather than enforcing strict sequential
processing. This allows the system to overlap communication and
computation phases, reducing per-request latency and minimizing
idle cycles on the DPU. The resulting pipelined execution improves
both throughput and responsiveness by ensuring continuous uti-
lization of the DMA engine and memory buffers.

4 Implementation

For the Ceph OSD, running on the DPU, the ProxyObjectStore
implements the standard ObjectStore interface. When a function
such as queue_transactions or stat is called, the arguments are
serialized (e.g., collection ID, object handles, transaction data) into
a bufferlist. This bufferlist forms the payload of an RPC message.
Each RPC call is encapsulated in a header containing the operation
type, a unique request ID for tracking, and the payload length.
This serialized message is then transmitted over the appropriate
communication channel.
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For control-plane messages (metadata, coordination), the Proxy-
ObjectStore relies on a persistent socket channel. The control-plane
RPC server on the host runs a persistent socket listener that moni-
tors incoming messages. Upon receiving a message, it parses the
operation type and dispatches the corresponding BlueStore handler,
effectively acting as an event-driven loop. In contrast, data-plane
operations such as DMA writes are handled via polling. A back-
ground thread on the host continuously polls the DOCA DMA
engine. Once a DMA transfer completes, the thread immediately
triggers the corresponding write handler in BlueStore, enabling
zero-copy data persistence without traversing the kernel network
stack.

Due to hardware limitations, a single DMA transfer is restricted
to approximately 2MB [10]. To accommodate larger data transfers,
DoCEpPH adopts a segmentation strategy that divides the request
into multiple segments. When a client issues a write request ex-
ceeding the maximum DMA transfer size, the total request of size
N is divided into k = N/2MB segments, where each segment size
is determined as the minimum of the maximum transferable size
and the remaining bytes.

While this design improves throughput for typical data flows,
it also has to remain resilient under failure conditions. To handle
exceptional cases such as DMA transfer failures, DOCEPH provides
a fallback mechanism. If an error occurs during the transfer of
a segment or an entire batch, the system immediately falls back
to a socket-based RPC path. Previously completed segments are
preserved to avoid redundant transmission. On the DPU side, an
atomic cool down flag and expiration timestamp are maintained.
When a failure occurs, DMA transfers are temporarily disabled
for a fixed cool down period during which all requests are routed
through the RPC path. After the cooldown expires, the system
attempts a small test DMA transfer to determine whether the DMA
path can be safely reactivated. This mechanism ensures progress
in the presence of failures and enhances system robustness.

The current implementation evaluated in this paper focuses
exclusively on write operations (write path), and support for read
operations will be incorporated in future work. Thus, the evaluation
presents preliminary results based solely on write workloads.

5 Evaluation

5.1 Experimental Setup

Our evaluation is carried out on a three-node testbed. One machine,
built with a conventional CPU-only configuration, serves as the
client node that issues benchmark traffic. The other two machines
serves as cluster nodes running the Ceph daemons. The detailed
hardware specification of each cluster node is summarized in Ta-
ble 1.

Performance is compared under two configurations, Baseline
and DoCEePH, both connected through a 100Gbps Ethernet link.
In Baseline, the BlueField-3 SmartNIC operates in NIC mode, and
the full Ceph cluster(MON, MGR, and OSD) runs entirely on host
servers. In DoCepPH, the SmartNIC is switched to DPU mode, and
the Ceph cluster is instantiated on the DPU. As shown in Figure 3,
OSDs execute on the DPU while the host retains only the BlueStore.

The workload is generated with RADOS bench [4] tool using
write-only pattern. For each configuration, 16 concurrent clients
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issue requests with sizes varied across 1 MB, 4 MB, 8 MB, and 16
MB to observe how performance scales with I/O granularity.

Host-side CPU utilization is measured using htop and iostat util-
ities, sampling every second throughout the benchmark duration.
Throughput and latency metrics are captured using RADOS bench’s
built-in instrumentation. Latency represents the average per-second
end-to-end response time for write operations, calculated from all
client thread requests during each second of the benchmark. IOPS
reflects the average number of write requests completed per second.
Each experimental configuration is repeated 5 times, and results
are averaged to ensure statistical reliability.

In the following sections, we present experimental results that
address these central questions:

e How much host CPU overhead does Ceph’s messenger layer
impose during normal operation?

e Can DPU offloading significantly reduce host CPU utilization?

e How does DoCEpH’s performance (latency and throughput) com-
pare to Baseline across different I/O request sizes?

5.2 Analysis of Host Resource Overhead

Time breakdown analysis of CPU usage. We analyze the mes-
saging overhead in Ceph while serving I/O requests. For evaluation,
we build the Ceph cluster to use two storage nodes and one client,
and each storage node runs a single OSD instance. We use RADOS
bench as the workload generator, issuing 4MB write operations for
60 seconds. The 1Gbps and 100Gbps configurations used in this sec-
tion employ different network interfaces. The 1Gbps configuration
utilizes a standard Gigabit Ethernet interface, while the 100Gbps
configuration uses the BlueField-3 integrated ConnectX-7 network
controller. Both configurations run the complete Ceph stack on
the host CPU without DPU offloading. Details of the experimental
setup are described in Section 5.1.

Figure 5 shows the relative share of total Ceph CPU usage (left
axis) attributed to Messenger, ObjectStore, and OSD threads, as
well as the corresponding Ceph CPU usage normalized to a single
core (right axis) under different network settings. The network
environments evaluated are 1Gbps Ethernet and 100Gbps using a
DPU in NIC mode. The CPU usage breakdown shown in Figure 5 is
obtained using Linux perf profiling tools combined with Ceph’s in-
ternal thread naming conventions. Messenger threads are identified
by the "msgr-worker-" pattern (e.g., msgr-worker-0, msgr-worker-1,
msgr-worker-2), ObjectStore operations run in "bstore_" threads,
and OSD thread pool operations execute in "tp_osd_tp" threads.
These represent mutually exclusive thread categories within Ceph’s
architecture, eliminating temporal overlap in measurements. Profil-
ing data is collected using perf record during the entire 60-second

Table 1: Testbed specification.

CPU AMD EPYC 9474F 48-Core Processor
DPU BlueField-3 integrated ConnectX-7
Memory DDR5, 256 GB
Storage Samsung SSD PM893
Network (Baseline) || BlueField-3 integrated ConnectX-7

(NIC Mode, Ethernet 100Gbps)
BlueField-3 integrated ConnectX-7
(DPU Mode, Ethernet 100Gbps)

Network (DoCEpH)
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Figure 6: Throughput under 1Gbps and 100Gbps network
configurations.

benchmark and analyzed with perf report to extract per-thread
CPU usage statistics.

In Figure 5, under the 1Gbps configuration, Messenger, the net-
work layer in Ceph, accounts for approximately 81.05% of total
CPU usage, while ObjectStore and OSD threads exhibit significantly
lower usage. In Ceph, Messenger handles network transmission
and reception through its dedicated worker threads, concentrating
CPU-intensive tasks such as TCP send/receive operations in this
layer. ObjectStore (e.g., BlueStore) is responsible for actual data per-
sistence, while OSD threads act as an intermediary that coordinates
request dispatching and state management.

We then increased the network bandwidth to 100Gbps to verify
whether link speed itself was the bottleneck. However, even at
100Gbps, the Messenger component still accounted for 82.48% of
total CPU usage, a negligible difference compared to the 1Gbps case.
While overall CPU utilization increased from 24% to 70.08% because
of higher throughput (Figure 6), Messenger’s CPU utilization re-
mains nearly constant at around 80% across both configurations.
It indicates that the bottleneck does not lie in the link capacity
itself, but in the CPU-bound network processing path, particularly
in Messenger’s TCP/IP stack handling and packet-processing over-
head.

Context Switch Overhead Analysis. These results show that
CPU cycles are heavily concentrated in the network layer (Messen-
ger). The frequent context switches caused by TCP/IP stack calls act
as one of the main factors exacerbating the bottleneck. To quantify
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this effect, we measured the average number of context switches in
Messenger and ObjectStore under the same workload.

Table 2: Comparison of the number of context switches be-
tween Messenger and ObjectStore components.

Messenger | ObjectStore
Context Switches 7475 751

Table 2 shows that the number of context switches in Messenger
is 9.95x higher than in ObjectStore. This is because Messenger re-
peatedly invokes TCP/IP stack calls that involve user—kernel mode
transitions, kernel buffer copies, and socket event processing, all
of which result in far more frequent context switches than Ob-
jectStore. These overheads increase network processing latency
and waste CPU resources, further amplifying the bottleneck. In
other words, the CPU cycles are disproportionately concentrated in
Messenger, whereas BlueStore and OSD threads consume relatively
fewer resources. Therefore, it is necessary to decouple and offload
Messenger-related execution paths from the host CPU. Such an
approach could significantly reduce CPU overhead and allow the
host to dedicate more cycles to storage back-end operations, which
is critical for improving overall throughput and scalability.

5.3 CPU Utilization under Write Workloads

We first investigated the effectiveness of DoCEPH in reducing the
CPUs consumed to perform write benchmark. Figure 7 shows the
average CPU utilization by write request size. The experimental re-
sults reveal that Baseline exhibited relatively high CPU utilization
of 94.2%, 70.1%, 68.9%, and 67.2% for each request size, while Do-
CEpH recorded significantly lower CPU utilization of 5.5%, 5.75%,
5.53%, and 5.39%, respectively. Consequently, DoCEPH achieved
host CPU savings of 94.2%, 91.8%, 91.9%, and 92% compared to
Baseline for each request size. While Baseline’s CPU utilization
decreases slightly as request size increases, it still maintains a high
level, whereas DoCEPH consistently maintains a low level of 5-6%
across all request sizes.

DoCEepH’s CPU reduction stems from offloading the most CPU-
intensive OSD path in Ceph to the DPU. OSD consumes significant
CPU resources by performing tasks such as messenger handling,
message decoding and dispatching, and executing worker threads
for replication and recovery within the Ceph cluster. However, in
DoCEpH, only the BlueStore I/O path remains on the host to handle
disk operations and metadata processing. It structurally eliminates
CPU consumption from OSD thread scheduling and networking.
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Figure 8: Average latency comparison between Baseline and
DoCEPH across different request sizes (1MB to 16MB).

Furthermore, by separating communication between the DPU and
host into RPC (control plane) and DOCA DMA (data plane), host
CPU intervention during data movement is minimized, alleviating
kernel network stack and memory copy overheads. Through this ap-
proach, DoCEPH maintains low and flat CPU utilization, effectively
reducing the high CPU consumption observed in Baseline.

5.4 Throughput and Latency

To evaluate both the CPU savings and the performance benefits
of DoCEpH, we measured average latency and throughput under
varying write request sizes. Latency is defined as the average time
elapsed from the start of a client’s single write request until the
receipt of a completion response. As shown in Figure 8, DoCEPH
exhibits higher latency than Baseline across all block sizes. For
1MB requests, DoCepH shows a latency of 0.05 seconds compared
to Baseline’s 0.03 seconds, a difference of approximately 67%. At
16MB, this difference decreases to about 6%, with DoCeprH at 0.57
seconds and Baseline at 0.54 seconds. To better understand these
latency differences, Table 3 provides a detailed time analysis of
DoCepPH’s performance.

Table 3: Average latency time breakdown(sec) of DoCEPH.

[ Request Block Size | IMB | 4MB | 8MB | 16MB |

Host write 0.0008 | 0.0024 | 0.0046 | 0.0084
DMA 0.0028 | 0.0042 | 0.00523 | 0.00846
DMA-wait 0.0224 | 0.0336 | 0.0418 | 0.0676
Others 0.024 | 0.0998 | 0.24837 | 0.48554
Total Avg.Latency | 0.05 0.14 0.3 0.57

DMA represents the actual data transfer time, Host-write indi-
cates the time taken to write data to BlueStore on the host, DMA-
wait shows the waiting time that occurs due to serial DMA transfers.
Others encompass various processing times including DPU-resident
OSD thread operations, messenger layer activities (message encod-
ing/decoding, connection management, heartbeat processing, etc.),
replication coordination, and communication overhead (message
serialization, ACK waiting, etc.).

DoCEepH uses DOCA DMA for direct memory transfers with-
out CPU intervention, but hardware constraints limit single DMA
transfers to 2MB, requiring large requests to be split into multi-
ple segments for serial transmission. To overcome this limitation,
DoCeprH implements memory region reuse and the pipelining mech-
anism shown in Figure 4, allowing data preparation and transfer to
overlap. Analysis shows that the main latency differences between
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Figure 9: Normalization of average latency time breakdown.
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Figure 10: Average throughput comparison between Baseline
and DoCEPH across different request sizes (1IMB to 16MB).

Baseline and DoCEpH stem from DMA-wait time and performance
differences between the DPU and host CPU. Figure 9 shows the
normalized time breakdown for Table 3.

For small block sizes like 1IMB, DMA-wait accounts for approx-
imately 44.8% of the total latency, representing significant over-
head. However, as block size increases, the relative proportion of
DMA-wait decreases to about 11.9% at 16MB. Notably, as block size
increases, the pipelining effect is maximized, reducing the propor-
tion of DMA-wait. While absolute DMA-wait time increases from
0.0224 to 0.0676 seconds as request size grows 16-fold, its relative
contribution decreases dramatically from 44.8% to 11.9% of total
latency. Larger requests are divided into multiple segments, and the
transmission of the next segment can begin before the processing
of the previous segment is complete, enabling efficient overlap. Due
to this pipelining effect, the performance gap between DoCEPH
and Baseline narrows significantly as block size increases, with
latency overhead reducing from 67% at 1MB to just 6% at 16 MB.

Figure 10 shows the average throughput (IOPS) for each write
request size. For 1IMB writes, DoCEPH achieves 304 IOPS while
Baseline reaches 435 IOPS, indicating that DoCePH’s throughput
is approximately 30% lower. However, as block size increases, the
throughput gap between the two systems narrows significantly.
At 4MB, the IOPS values for DoCEPH and Baseline are 112 and
119 respectively, with DoCEPH performing about 6% lower. For
8MB requests, DoCEPH delivers 52 IOPS compared to Baseline’s
60 IOPS, demonstrating approximately 13% lower throughput. At
16MB, DoCepH’s 27 IOPS is slightly lower than Baseline’s 28 IOPS
by about 4%.

Although the 2MB size limitation of DMA transfers requires large
blocks to be divided into multiple segments for serial transmission,
DoCepH largely overcomes these constraints through optimizations
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including memory region reuse, segment pipelining, and stream-
ing write mechanisms. For small objects like 1MB, performance is
degraded due to significant DMA-wait time overhead and limited
pipelining effects. In contrast, for objects larger than 1MB, pipelin-
ing reduces DMA-wait overhead, and CPU-intensive messenger
operations are offloaded to the DPU, allowing the host CPU to focus
exclusively on BlueStore operations. Consequently, DOCEPH pro-
vides throughput comparable to Baseline for large objects while
significantly reducing host CPU utilization.

In summary, DoCEPH leverages the DPU’s ARM cores to offload
Ceph OSD tasks and significantly reduce host CPU usage. Although
latency is higher due to offload-induced coordination, DoCEPH
delivers substantial throughput gains for large-block workloads
and demonstrates decreasing latency as block size increases.

5.5 Read Path Performance Discussion

While this paper focuses on write operations, the read path follows a
symmetric design where client read requests are processed through
the same proxy architecture. When clients issue read requests, the
DPU uses ProxyObjectStore to send the necessary request metadata
to the host via DMA, and after the host-side BlueStore performs
the read operation, the requested data is transferred back to the
DPU via DMA before being transmitted to clients.

Based on write performance patterns, DoCEPH is expected to
show similar convergence behavior at large block sizes for read
operations, potentially with even better relative performance since
reads avoid replication coordination overhead. The bidirectional
DMA architecture should provide consistent throughput benefits
while maintaining the CPU offloading advantages demonstrated in
write operations.

6 Related Works

Recent research has explored the use of Data Processing Units
(DPUs) to offload storage tasks from host CPUs and improve data
center efficiency. In disaggregated architectures, DDS [25] utilizes
DPUs to process read operations directly along the data path, reduc-
ing latency and host involvement. HiDPU [26] proposes a hybrid
indexing structure tailored for DPUs to minimize communication
overhead and manage memory constraints by segmenting index
metadata across the host and the DPU. Other systems explore DPU-
based key-value stores. LEED [7] addresses resource imbalance in
SmartNIC-based JBOF arrays by re-architecting the I/O and mem-
ory interface to optimize KV operations. OS2G [9] offloads the
object storage client onto the DPU and enables direct data transfer
to GPUs using GPUDirect, reducing data movement overhead in
deep learning workloads.

Hardware acceleration within DPUs has also been studied. PEDAL
[12] leverages compression/decompression engines in BlueField
DPUs for real-time HPC data streaming, while INEC [19] integrates
erasure coding with RDMA operations for efficient NIC-level exe-
cution. Fuyao[13] decouples control and data flows in serverless
computing and leverages DPUs to enable sub-millisecond direct
data transfer between functions, significantly reducing latency and
CPU usage. DFlush [6] focuses on offloading flush operations from
LSM-based key-value stores to DPUs, proposing a 3D-parallel data
plane and adaptive control plane to manage pipeline and resource
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contention efficiently. In distributed training workloads, FSDP accel-
eration has been achieved by offloading collective communication
logic to SmartNICs [11], utilizing hardware multicast and datapath
accelerators to reduce CPU load and enable scalable bandwidth-
aware operations.

While prior work has largely focused on offloading specific stor-
age functions or client-side components, our work takes a step
further by offloading the entire storage server logic (e.g., Ceph
OSD) to the DPU. By doing so, we aim to minimize host CPU in-
volvement across the full data path, enabling true in-path storage
offloading with centralized data placement logic retained on the
host.

7 Conclusion

In this work, we presented DoCEPH, a novel DPU-offloaded Ceph
architecture that decouples the OSD from the host’s object store and
transparently mediates all backend interactions between DPU and
host. DoCEPH executes all core OSD logic—including request han-
dling, replication, and recovery—on the DPU, and retains only the
BlueStore backend on the host. As a result, DoCEPH significantly re-
duces host CPU utilization and eliminates the dominant bottleneck
caused by Ceph’s messenger layer. Our evaluation demonstrates
that DoCerH reduces host CPU usage by up to 92% compared to
baseline Ceph, while maintaining stable throughput and latency,
especially for large-block write workloads.
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