Check for
Updates

SlimlO: Lightweight 1/0 Path Design for Write Isolation in
FDP-backed In-Memory Databases

Sangyun Lee Sungjin Byeon Soon Hwang
Sogang University Sogang University Sogang University
Seoul, Republic of Korea Seoul, Republic of Korea Seoul, Republic of Korea
tkddbs9801@sogang.ac.kr sjbyeon@sogang.ac.kr soonhw@sogang.ac.kr

Jaewan Park
Sogang University
Seoul, Republic of Korea
brian7567@sogang.ac.kr

Javier Gonzalez
Samsung Electronics Co.
Copenhagen, Denmark
javier.gonz@samsung.com

Abstract

In-Memory Databases (IMDBs) are widely used with HPC appli-
cations to manage transient data, often using snapshot-based per-
sistence for backups. Redis, a representative IMDB, employs both
snapshot and Write-Ahead Log (WAL) mechanisms, storing data on
persistent devices via the traditional kernel I/O path. This method
incurs syscall overhead, I/O contention between processes, and
SSD garbage collection (GC) delays. To address these issues, we
propose SLIMIO, which adopts I/O passthru to minimize syscall
overhead and inter-process I/O interference. Additionally, it lever-
ages Flexible Data Placement (FDP) SSDs as backup storage to avoid
performance degradation from SSD GC. Experimental results show
that SL1MIO reduces snapshot time by up to 25%, increases query
throughput by up to 30% during non-snapshot periods, and lowers
99.9%-ile latency by up to 50%. Furthermore, it achieves a write
amplification factor (WAF) of 1.00, indicating no redundant internal
writes, thus extending SSD lifespan.

CCS Concepts

« Information systems — Database recovery; Flash memory.

Keywords
In-memory database, Snapshot, FDP SSDs

ACM Reference Format:

Sangyun Lee, Sungjin Byeon, Soon Hwang, Jaewan Park, Joo-Young Hwang,
Junyoung Han, Javier Gonzalez, Awais Khan, and Youngjae Kim. 2025.
SlimIO: Lightweight I/O Path Design for Write Isolation in FDP-backed
In-Memory Databases. In Workshops of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC Workshops

“Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC Workshops °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1871-7/25/11

https://doi.org/10.1145/3731599.3767511

1375

Joo-Young Hwang
Samsung Electronics Co.
Hwaseong, Republic of Korea
jooyoung.hwang@samsung.com

Awais Khan
Oak Ridge National Laboratory
Oak Ridge, TN, USA
khana@ornl.gov

Junyoung Han
Samsung Electronics Co.
Hwaseong, Republic of Korea
jy0.han@samsung.com

Youngjae Kim"
Sogang University
Seoul, Republic of Korea
youkim@sogang.ac.kr

’25), November 16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3731599.3767511

1 Introduction

In high-performance computing (HPC) environments, data-intensive
applications increasingly rely on fast and efficient access to tran-
sient data. Such data is often short-lived, intermediate data gener-
ated during processing but not retained long-term. To effectively
manage these transient data without incurring expensive disk I/O,
IMDBs provide a high-speed alternative for storage and retrieval
during runtime [17, 22, 26]. In-memory databases such as Redis [5],
a high-throughput, low-latency IMDB, have emerged as a critical
component for such workloads [15]. Its ability to serve as a fast
data store, cache, or message broker makes it particularly valuable
in HPC workflows [10, 15, 22]. These workflows often prioritize
minimizing I/O overhead and enabling rapid data sharing between
distributed processes. For example, in computational fluid dynam-
ics (CFD) simulations such as, those used in climate modeling or
aerospace design where each simulation timestep can generate large
volumes of intermediate data (e.g., pressure and velocity fields). This
data must be rapidly exchanged across nodes to advance to the next
computation phase. Therefore, storing such transient data in Redis
allows for faster inter-process communication compared to tra-
ditional file-based I/0, significantly improving overall simulation
performance.

As HPC systems evolve, leveraging Redis for real-time metadata
access, workflow orchestration, and analytics continues to grow in
importance [9, 16, 31]. Moreover, Redis serves as a supporting com-
ponent across diverse HPC applications, enabling workflow orches-
tration, state management, real-time log streaming, and metadata
indexing [10, 15]. Its role has evolved beyond traditional message
brokering and queue management to supporting consistency and
persistence in parallel workflows by coordinating task dependencies
and maintaining runtime state [22]. In machine learning-driven
HPC workflows, Redis reduces processing latency by facilitating
real-time data exchange [17]. It also enables state sharing between

https://orcid.org/0009-0008-3789-8703
https://orcid.org/0009-0007-0326-0165
https://orcid.org/0000-0003-0091-3507
https://orcid.org/0009-0003-6707-7598
https://orcid.org/0009-0004-1770-9478
https://orcid.org/0009-0004-0285-1738
https://orcid.org/0009-0005-5378-9791
https://orcid.org/0000-0003-2603-3516
https://orcid.org/0000-0002-8370-1755
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731599.3767511
https://doi.org/10.1145/3731599.3767511
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731599.3767511&domain=pdf&date_stamp=2025-11-15

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

different workflow stages, such as scientific simulations, data pre-
processing, and distributed training [17]. These examples show
Redis’s growing role as a middleware layer for workflow orchestra-
tion and state management. However, its in-memory nature means
all data is lost on failure, and reloading large datasets after a restart
can be slow [26].

To mitigate the limitation of losing all in-memory data after a
failure, Redis uses two persistence mechanisms together: Write-
Ahead-Log (WAL) and Snapshot. The WAL sequentially logs all
write commands to a storage device, while the snapshot mecha-
nism compresses and saves all in-memory objects to the storage
device. To prevent unbounded growth of the WAL, Redis creates a
new WAL after completing a snapshot. In particular, Redis creates
separate processes for query handling (which performs WAL) and
snapshotting, enabling true parallel execution and effectively pre-
venting query processing from being blocked during a snapshot.
When performing a snapshot, the query-handling process (parent)
spawns a snapshot process (child).

However, Redis still suffers from degraded query throughput
during snapshot generation due to frequent memory copies and
locking issues [24, 29, 30]. Among these issues, the most critical
cause is that both processes share the same kernel I/O path. This de-
sign causes substantial system call overhead, such as user-space to
kernel-space data copying in write() and context switching, which
account for approximately 20% of the snapshot time. It also creates
I/O contention between the processes. As a result, the snapshot
duration becomes longer. Furthermore, SSD garbage collection (GC)
exacerbates the snapshot delay, a problem that the kernel I/O path
cannot effectively address.

Several prior works have addressed snapshot optimization in
IMDBs, including memory dump-based schemes [30], and page
table copying optimizations [29]. Relying on the traditional kernel
I/O stack, these approaches are inherently limited in their ability
to reduce system call overhead and I/O contention between the
processes. Furthermore, they do not effectively address SSD GC or
enhance performance during non-snapshot periods.

In this paper, we propose SLmIO, a design that mitigates fun-
damental I/O bottlenecks in the persistence process by reducing
system call overhead, eliminating I/O contention between pro-
cesses, addressing SSD garbage collection issues, and improving
performance even during non-snapshot periods. SLIMIO leverages
I/O passthru [19], a state-of-the-art kernel I/O path based on the
io_uring API introduced in Linux kernel 5.1, to reduce system call
overhead and establish separate I/O paths for Snapshot and WAL op-
erations. We also adopt Flexible Data Placement (FDP) SSDs, which
are supported by NVMe 2.0. The use of FDP enables precise control
over the physical placement of the data based on its lifetime, thereby
eliminating GC-induced performance degradation. To validate the
effectiveness of this design, we implemented SLimIO in Redis v7.4.2,
a representative IMDB, while preserving its existing persistence
mechanisms. Various evaluations demonstrate that SL1mIO reduced
snapshot duration by up to 25% compared to the existing design and
increased query throughput by 30% during non-snapshot periods.
Furthermore, SLIMIO reduced the 99.9th percentile latency by half,
providing more stable and predictable performance.

1376

S. Lee et al.

(1) write query

: (I) fork()
---------- Snapshot Process

(II) compress
(2) append T

(1) write() y
WAL Buffer i Objects

l(}) write()

| Storage Device |

in-memory data objects

(== = =

Figure 1: Concurrent Processing of Snapshot and WAL
2 Background
2.1 Persistence Mechanisms of Redis

Redis employs two persistence mechanisms in combination to pro-

tect against the volatility of DRAM [2]:

e Write-Ahead-Log (WAL): Sequentially logs all write queries
processed by Redis and stores them on storage device.

e Snapshot: Stores a compressed copy of the entire in-memory
dataset to storage device.

The WAL is a sequential log that records all write queries pro-
cessed by the Redis server to a storage device. To write data to the
WAL, Redis employs a Periodical-Log policy: each WAL entry is first
placed in a user-level write buffer and is flushed to storage when
the system becomes idle. If the system does not become idle within
a predefined time threshold, the flush is forcibly triggered.

Snapshots can be generated in two ways. First, to prevent un-
bounded WAL growth, Redis automatically creates a snapshot when
the WAL reaches a certain size, which we refer to as a WAL-Snapshot.
When a new WAL-Snapshot is generated, the previous WAL and
WAL-Snapshot are deleted [2]. Second, Redis administrators can
manually create a snapshot for purposes such as master-slave data
transfer or point-in-time backups. We refer to this as an On-Demand-
Snapshot. On-Demand-Snapshots can be scheduled to occur peri-
odically—e.g., daily or weekly—or created manually to preserve
the dataset at a specific moment, such as before a server release or
testing. A WAL-Snapshot and an On-Demand-Snapshot cannot be
created concurrently, and at most one of each type may exist at any
given time [7].

2.2 Snapshot Process and Query Performance

When creating a snapshot, Redis spawns a child process using fork(),
which is responsible for performing the snapshot generation. This
approach delegates the high-overhead I/O operations involved in
snapshot to the child process (snapshot process), allowing the main
process to continuously handle query requests, thereby enabling
parallel processing [25, 29].

Figure 1 illustrates a scenario where WAL operations and snap-
shot generation are executed in parallel. The Redis main process
handles client requests and, for write query, temporarily stores the
data in a user-level write buffer (WAL buffer). The buffered data is
then flushed to disk using write() when the system becomes idle or a
time threshold is reached. Meanwhile, as illustrated in the Figure 1,
the snapshot process iterates over the Redis objects in memory. For
each object, it performs compression and subsequently writes the
compressed object to disk via write().

During snapshot generation, Redis experiences memory pressure
and degraded query throughput. When a write query arrives during
snapshot generation, a lock must be acquired on the memory region,

SlimlO: Lightweight 1/O Path Design for Write Isolation in FDP-backed In-Memory Databases

and the existing memory must be copied to support the snapshot
process [25, 29]. During this time, both the main process and the
snapshot process are stalled until the memory copy is completed
and the lock is released, resulting in increased in-memory storage
pressure and reduced query throughput [30].

Table 1: Performance Degradation and Increased Memory
Usage During Snapshot Generation

‘ ‘ Requests per Second ‘ Peak Memory Usage (GB) ‘

WAL Only 59512.38 26

EXT4 Snapshot&WAL 42885.10 51
F2FS WAL Only 61327.40 26
Snapshot&WAL 43111.97 52

Table 1 shows the query throughput and memory usage dur-
ing periods without snapshots (WAL Only) and during periods
when snapshots occur (Snapshot&WAL). The experiments were
conducted by mounting EXT4 and F2FS file systems to evaluate
the impact of writing WAL and snapshot data to storage device.
Detailed descriptions of the experimental setup and workloads are
provided in Section 5. During snapshot generation, memory usage
increases regardless of the file system, and query throughput de-
creases by 28% and 31% under the EXT4 and F2FS environments,
respectively. If the snapshot duration increases, both the period
during which in-memory storage is under pressure due to memory
copy and the period of query throughput degradation caused by
memory copy and locks are prolonged. Therefore, shortening the
snapshot duration is crucial for mitigating these issues.

2.3 Flexible Data Placement SSD

In conventional NVMe SSD, data with different lifetimes are mixed
within a single physical block. When lifetimes are mixed, a process
calls GC occurs [20, 35]. During GC, valid data within the physical
block must be copied before the block can be erased, resulting in ad-
ditional internal write operations within the SSD due to these copy
processes. As a result, WAF, an indicator of additional internal write
operations within the SSD, increases. An increase in WAF causes
latency in all write operations from the host application, negatively
impacting not only WAL operations but also snapshot generation.
As a solution to this problem, FDP SSD [34] have been introduced.
FDP SSDs allow the host to control the physical placement of data
by specifying a placement hint called the PID (Placement Identifier)
in NVMe write request [8, 12, 33]. When NVMe write command
attached with 32bit PID comes to FDP SSD, firmware groups data
with the same PID within the same physical region at the Reclaim
Unit(RU) granularity. By assigning the same PID to data with the
same lifetime, the host enables data within the same RU to be erased
without additional copying during GC, thereby reducing the WAF.

3 Motivation
3.1 I/O Path Bottleneck in Snapshots

We analyzed cases where Redis snapshot duration increases. There-

fore, we measured and compared snapshot duration, snapshot

throughput, and WAL throughput. These metrics were evaluated

under three different scenarios. The experimental details are pro-

vided in the Section 5.

e Snapshot Only: On-Demand-Snapshot generation occurs with-
out WAL operations.

1377

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

300
[1/O time(SSD) [Snapshot —-®- Average
2001 0 1/O time(kernel) 250 [0 WAL ++wee Ideal
mn [In-Memory Processing time > *ee,
2 o | T heneeeeeaanee *
\; 150 = 200 —
g = Rt S
= é. 150
% 100)
o S 100
] =
@A 50 =
50
0
dnot anot
aP° o0, 2y s
ST % Nl\\‘ %““) (o oy S \N S“QSNA“ o)
3
(\ct k\“\éc(

(a) Snapshot Time Distrlbutlon (b) Throughput Analysis

Figure 2: Analysis of Snapshot Duration and Throughput

o Snapshot & WAL: Snapshot and WAL operations occur concur-
rently.

e Snapshot & WAL (under GC): Snapshot and WAL operations
occur concurrently while the SSD experiences GC pressure.
Figure 2 illustrates the results. An increase in snapshot duration

was observed in both the Snapshot & WAL and Snapshot & WAL

(under GC) scenarios. We identified that this increase is caused by

four factors occurring within the kernel I/O path.

3.1.1 Traditional Kernel I/O path has high syscall overhead. When
using the POSIX I/O interface, significant overhead arises from data
copying between user-space and kernel-space as well as context
switches during system call invocations [3, 36]. As a result, snapshot
processing fails to achieve the ideal scenario in which in-memory
processing tasks such as index search, compression, and memory
copying are fully overlapped with kernel and SSD I/O times. As
shown in Figure 2a (Snapshot Only), approximately 15% of the
snapshot duration is spent within the kernel I/O path. Consequently,
as depicted in Figure 2b (Snapshot Only), the throughput is about
15% lower than the ideal throughput.

3.1.2 Traditional Kernel I/O path has a scalability problem. Existing
Linux file systems exhibit scalability problems, even when parallel
processes write to different files, due to contention over the same
lock [27]. For example, the widely used journaling file system EXT4
experiences contention when acquiring the journaling lock [18,
21]. Although F2FS offers relatively better scalability compared
to other file systems [27], it still suffers from scalability problems.
These scalability issues can be observed when snapshot and WAL
operations occur concurrently.

Table 2: CPU Usage of File System Write Path in Snapshots

[[CPU Usage of F2FS in the Snapshot Process]

Snapshot Only 11.53%
Snapshot& WAL 13.61%

Table 2 shows the CPU cycle utilization by the snapshot process
within the file system. Considering that this CPU consumption
occurs in the control path rather than during actual data write
operations, it represents a non-negligible overhead. Furthermore,
as shown in Figure 2b (Snapshot Only), the average throughput is
about 15% lower than the ideal throughput, whereas in Figure 2b
(Snapshot & WAL), the average throughput is approximately 20%
lower than ideal.

3.1.3 Traditional Kernel I/O path ignores per-process write patterns.
As described in Section 2.2, the WAL operation writes large amounts

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

of buffered data to disk via a single write() call when the time thresh-
old is reached. Meanwhile, the snapshot process iterates over Redis
objects in memory, compresses each object, and frequently writes
the compressed objects to disk using multiple write() calls. The
kernel I/O path does not recognize these per-process write pat-
terns, causing the snapshot process—with its more frequent write()
calls—to be blocked more often. As shown in Figure 2b, because the
snapshot process is blocked more frequently, the snapshot through-
put is approximately 30% to 45% lower than the WAL through-
put. Moreover, while the WAL throughput remains stable even
under SSD GC, the snapshot throughput degrades. Consequently,
as shown in Figure 2a, when snapshot and WAL operations occur
simultaneously, frequent blocking of the snapshot process leads to
increased time consumption in the kernel I/O path.

3.1.4 Traditional Kernel I/O path lacks sufficient mechanisms to
eliminate SSD GC. Figure 2 (Snapshot & WAL (under GC)) illus-
trates that when SSD GC occurs during snapshot operations, the
previously observed issues are exacerbated, leading to increased
time consumption on the SSD. As discussed in Section 2.3, SSD GC
occurs because data with different lifetimes reside within the same
physical region of the SSD [11, 28]. On-Demand Snapshots gener-
ally have long lifetimes, as they are generated either automatically
at long intervals (e.g., once per day) or manually to preserve data at
specific points in time. In contrast, WAL-Snapshots and WAL data
have much shorter lifetimes, especially in write-intensive work-
loads, because the creation of a new WAL-Snapshot invalidates all
previous WAL-Snapshots and WAL data. While the latest NVMe
protocols enable FDP SSDs to place data with different lifetimes into
separate physical regions at the user-level, the traditional kernel
I/O path lacks sufficient mechanisms to support these advanced
NVMe features. Even though some of the latest file system updates
have introduced support for such features, they still fail to resolve
the aforementioned issues.

3.2 I/0 Passthru for Efficient Write Isolation

io_uring is an asynchronous I/O API introduced in Linux kernel
5.1 [3]. It utilizes a pair of ring data structures called the Submission
Queue (SQ) and Completion Queue (CQ). The SQ holds I/O requests
submitted by the application, while the CQ contains the completion
results of those requests. Applications submit commands to the
SQ and poll the CQ to retrieve completion notifications. Both SQ
and CQ are shared between user space and kernel space, reducing
system call overhead by minimizing buffer copy operations between
these spaces [3, 14]. Notably, when io_uring is created in SQPOLL
mode, system calls are not required for I/O submission. In this
mode, an additional kernel thread continuously polls the SQ to
check for new requests. Thus, io_uring enables I/O requests to
asynchronously reach the file system with minimal system call
overhead.

I/O passthru [19] is a state-of-the-art kernel I/O path that has
been upstreamed into the Linux kernel. It operates based on the
io_uring API and internally bypasses kernel I/O layers such as the
page cache and file system. Notably, I/O passthru supports advanced
NVMe commands that are not available in the traditional kernel
I/O path, enabling it to address issues related to SSD GC.

1378

S. Lee et al.

[& MainProcess 4 | [& Snapshot Process 4

| Metadata Region |

Snapshot Region | WAL Region |
|Snapshol| WAL | Snapshot Snapshot Snapshot WAL
|Metadata| Metad: Slot #1 Slot #2 Slot #3
LBA Space

On-Demand-Snapshot |

PID to RU RU« [|
Mapping Table
RUp | WAL-Snapshot [war]
LPN to PPN
Mapping Table || | RUy Metadata [|
Firmware NAND
FDP SSD

Figure 3: The overview of the SLIMIO architecture

This study aims to address the issue of increased Redis snapshot
duration caused by the limitations of the traditional kernel I/O
path and GC overhead in conventional NVMe SSDs. To this end,
we introduce a lightweight I/O path based on the I/O passthru
mechanism utilizing the io_uring API in Redis, and simultaneously
adopt state-of-the-art NVMe FDP SSDs.

4 Design of SLiMIO

SLimIO adopts I/O passthru for the following three reasons.

e 1/O passthru is built on io_uring, which significantly reduces
system call overhead compared to traditional blocking APIs and
libaio [14, 19]. This design leads to faster snapshot generation
and higher query throughput during non-snapshot periods. Ad-
ditionally, io_uring provides tunable configurations depending
on the workload, allowing for further performance optimization.

e Second, although SPDK [36] could serve as an alternative, it
requires the use of a user-space library that maps the entire PCI
bar to a single application, which poses challenges in multi-tenant
environments [19]. In contrast, I/O passthru does not require
such mapping and is already upstreamed into the mainline Linux
kernel.

e Third, many I/O schedulers operate based on priority, favoring
synchronous writes such as WAL operations, which may cause
snapshot writes to be deprioritized [1, 18]. I/O passthru bypasses
the I/O scheduler [4, 19], avoiding such prioritization issues.

4.1 Snapshot-WAL Separation via I/O Passthru

As presented in Section 3.1, we observe that using the traditional
kernel I/O path by two processes can cause scalability problems
and unawareness of per-process write patterns. We attribute these
issues fundamentally to the fact that the two processes share the
same kernel I/O path, resulting in contention due to locking and
scheduling. Therefore, we separate the I/O path for WAL and Snap-
shot via I/O passthru. Figure 3 presents an overview of the SL1MIO
architecture. As shown in Figure 3, the main process and the snap-
shot process use separate I/O paths to write to the Logical Block
Address (LBA) space.

When the Redis engine starts, it initializes a SQ and CQ for WAL
operations using the I/O passthru. We refer to this as the WAL-
Path. A dedicated CQ handling thread is also spawned to process
completions. SLIMIO preserves the original Redis WAL logging
policy without modification.

When a snapshot process is spawned, another pair of SQ and
CQ is initialized within the process using I/O passthru. We refer to

SlimlO: Lightweight 1/O Path Design for Write Isolation in FDP-backed In-Memory Databases

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Table 3: Performance evaluation using Redis-benchmark

WAL Only WAL&Snapshot .
A RPS | S hot t SET p999 SSD WAF
RPS [Mem Usage (GB) RPS [Mem Usage (GB) verage napshot time (sec) po99 (ms)
Lo Baseline | 57481.86 25.99 42300.51 52.27 47993.20 148 5.103 1.14
Periodical-Log
SLimIO 25.99 42516.72 51.99
Baseline | 21415.85 25.99 16418.87 51.98 19043.80 139 7.822 1.24
Always-Log SO

Table 4: Overall Evaluation with YCSB-A Workload

this path as the Snapshot-Path. A dedicated CQ handling thread is
also created to process completions. Therefore, Snapshot-Path is
configured in SQPOLL mode, where a kernel thread continuously
polls the SQ, eliminating system call overhead. All snapshot data,
including compression algorithms and compression ratios, remain
fully compatible with Redis’s original I/O module and are preserved
without modification.

4.2 LBA Space Management and Recovery

A key challenge of I/O passthru is that, by bypassing the file system
and writing directly to the LBA space, it necessitates an explicit
mechanism for managing the LBA space, which poses a significant
challenge for its adoption. Fortunately, the persistence mechanisms
of most IMDBs, including Redis, rely on sequential rather than
random writes, making LBA space management straightforward.

To prepare for potential failures during snapshot generation,
Redis’s existing persistence mechanism deletes old data only after
a new snapshot has been successfully completed. To maintain this
same mechanism in an I/O Passthru environment, we manage the
LBA space by partitioning it into three regions: a WAL Region, a
Snapshot Region, and a Metadata Region.

In the WAL Region, WAL entries are written sequentially. The
previous WAL is only deallocated after a new WAL-Snapshot gener-
ation is successful. The Snapshot region is dynamically composed
of two slots for WAL-Snapshots and On-Demand-Snapshots, along
with a separate Reserve Slot to handle failures. As mentioned in
Section 2.1, since snapshot generations cannot occur concurrently,
a single Reserve Slot is sufficient. Using three slots, a new snapshot
is always safely written to the Reserve Slot first. Once snapshot gen-
eration succeeds, the reserve slot is promoted to a valid snapshot
slot, and the previous snapshot slot is deallocated and converted
back into the Reserve Slot. All state information for these pro-
cesses—such as the current WAL position and the roles of each
snapshot slot—is recorded in the Metadata Region, ensuring the
consistency and reliability of the entire LBA space.

Recovery Procedure. The recovery procedure is as follows:
First, when the Redis engine starts, the entire metadata is read to
determine the boundaries of the Snapshot Region and the WAL
Region. Second, based on the metadata, either the WAL-Snapshot
or On-Demand-Snapshot is loaded into memory to restore data, as
requested. Third, if the recovery was based on a WAL-Snapshot,
Redis then reads the WAL to restore any subsequent data changes

1379

WAL Only WAL&Snapshot .
As RPS | S hot t SET p999 GET p999
RPS [Mem Usage (GB) RPS [Mem Usage (GB) verage napshot time (sec) P99 (ms) p999 (ms)
s Baseline | 65120.76 27.13 53774.30 61695.78 253 0.711 0.673
Periodical-Log
SLimIO 27.13 56239.39
Baseline 6234.89 27.13 4987.45 6191.70 239 2.105 2.091
Always-Log
Nisivi(e}

to memory. This mechanism is identical to the existing Redis per-
sistence recovery mechanism.

4.3 Snapshot-WAL Separation on FDP SSD

SSD GC increases the duration of snapshots. To mitigate this GC
overhead in Redis, we propose using FDP SSDs, which are capa-
ble of data placement, as backup storage for SLimIO. Using I/O
passthru, the PID field can be passed along with the NVMe write
commands [19]. We leverage this to assign different PIDs to data
with different lifetimes (e.g., WAL = 1, On-Demand-Snapshot = 2).
Figure 3 illustrates the internal state of the FDP SSD, where data
with different lifetimes are separated into different RUs. Since the
FDP SSD performs GC at the RU granularity, the valid data copy
during GC is eliminated, significantly reducing GC overhead.

5 Evaluation

5.1 Experimental Setup

We implement SLIMIO in Redis v7.4.2 and evaluate it on Linux v6.7.9
using the following FDP device and workloads.

FDP Emulator. For FDP SSD, we use the FDP emulator based
on FEMU [23] v9.0. We emulated a 180GB FDP SSD with 12 cores
and 55GB of DRAM. Our host environment is equipped with dual
Intel Xeon Gold 5218R CPUs and 377GB of DRAM. The emulated
FDP SSD features 8 channels with 8 dies per channel, a NAND page
size of 4KB, and an RU size of 1GB; the NAND page read latency,
write latency, and block erase latency are set to 40ps, 200ps, and
2ms respectively, all based on FEMU’s default settings. The FDP
SSD supports 8 PIDs.

Workloads. We use two workloads: one from the official Redis
benchmark [6] and another from the YCSB-A workload of the YCSB
benchmark [13].

For the Redis benchmark workload, we use the default settings
with 50 concurrent clients. The key range is set to 5.3 million, with
8-byte keys and 4096-byte values. Each experiment consists of 28
million SET operations and is repeated five times. An On-Demand-
Snapshot is generated once at the end of each repetition. The WAL
size for triggering a WAL-Snapshot is configured to approximately
50-55 GB, allowing two WAL-Snapshots per repetition. In total, 15
Snapshots (each 20 GB) are generated across five repetitions, and the
final results are reported based on all repetitions. The experiments
in Sections 2.2 and 3.1 also use the Redis benchmark workload. In

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

—— F2FS —— I/O Passthru

g g
Bl

40000

Requests per Second
s >
g

0 500 1600 1500 2000 2300 3000
Time (Sec)

Figure 4: Baseline vs SLIMIO without FDP
Section 2.2, however, the experiment runs once without generating
an On-Demand-Snapshot.

For the YCSB benchmark, we use the YCSB-A workload with 8
threads, 8-byte keys, and 2048-byte values, comprising 9 million
records and 115 million operations with a 0.5:0.5 GET-to-SET ratio.
Each experiment runs once without generating an On-Demand-
Snapshot. The WAL-Snapshot trigger size is set to 50-55 GB, The
WAL size for triggering a WAL-Snapshot is configured to approx-
imately 50-55 GB, allowing two WAL-Snapshots per repetition,
producing two 20 GB WAL-Snapshots per run.

For comparison with SLimIO, we used a conventional NVMe
SSD-based F2FS without FDP support as the baseline I/O stack,
applying the same NAND-related configurations as those for the
FDP SSD. The I/O scheduler of baseline was set to ‘none’ [32].

By default, Redis employs the Periodical-Log policy, but it also
offers an Always-Log policy. Unlike the Periodical-Log policy, the
Always-Log policy writes data to disk immediately upon write
queries without buffering. Performance metrics were measured
separately for each logging policy.

5.2 Overall Evaluation

We evaluate the overall performance of SLIMIO, measuring Requests
per Second (RPS), memory usage, snapshot time, and 99.9%-ile SET
latency for both workloads. For the Redis benchmark, we addi-
tionally measure SSD WAF, as On-Demand-Snapshots can trigger
SSD GC. For the YCSB-A workload, we also report 99.9%-ile GET
latency. Tables 3 and 4 present the results for the Redis benchmark
and YCSB-A workloads, respectively.

RPS Results. Under the Periodical-Log policy, SLIMIO demon-
strated improved RPS compared to the baseline across both work-
loads. For the Redis benchmark workload (Table 3), in the WAL
Only phase, SLMIO achieved an RPS of 75,675, which is approxi-
mately 32% higher than the baseline’s 57,481. The average RPS also
improved by about 15%, with SL1mIO achieving 55,042 compared
to the baseline’s 47,993. Even in the YCSB-A workload, which has
a relatively low write ratio, smaller value sizes, and no SSD GC,
SrimIO maintained performance advantages. As shown in Table 4,
its RPS was 74,911 in the WAL Only phase, about 15% higher than
the baseline’s 65,120, and the average RPS of 68,244 was a roughly
10% improvement over the baseline’s 61,695. However, during the
WAL & Snapshot phase, there was a negligible performance differ-
ence between SLIMIO and the baseline for both workloads. This is
because the drop in RPS during a snapshot is primarily caused by
memory copying and lock acquisition overhead resulting from the
fork()’s Copy-on-Write policy [25, 29].

Under the Always-Log policy, the performance benefits of SLIMIO
become even more pronounced. For the Redis benchmark workload
(Table 3), the RPS in the WAL Only phase for SLimIO was 33,127,
an impressive 54% increase over the baseline’s 21,415. The average

1380

S. Lee et al.

—— F2FS —— 1/O Passthru + FDP

80000

8
3

7 40000

20000

Requests per Second

[500 1000 1500 2000 2300 3000
Time (Sec)

Figure 5: Baseline vs SL1MIO

RPS also increases by approximately 60%, from 19,043 (baseline)
to 31,407 (SL1MIO). A similar trend was observed with the YCSB-A
workload (Table 3). Here, the baseline’s average RPS was a mere
6,191, whereas SLIMIO achieved 12,028—a remarkable improvement
of about 95%.

Snapshot Time Results. For the Redis benchmark workload,
StiMIO completed snapshot generation in 110 seconds, which is
approximately 25% faster than the baseline. While the Redis bench-
mark involves larger value sizes, the YCSB-A workload includes
a larger number of smaller values, leading to increased compres-
sion time and overall longer snapshot durations. For the YCSB-A
workload, SLIMIO completed snapshot generation in 225 seconds,
achieving a 10% improvement over the baseline.

Latency Results. Under the Periodical-Log policy, SLIMIO re-
duced tail latency in both workloads compared to baseline. For the
Redis benchmark workload, SLIMIO achieved a SET tail latency of
2.351ms, which is approximately 50% lower. This workload involves
50 concurrent clients, triggers SSD GC, and uses large value sizes.
In contrast, the YCSB-A workload involves only 8 threads, does
not induce SSD GC, and uses smaller values, resulting in generally
lower latency. For YCSB-A, SLiMIO reduced the SET tail latency
from 0.711ms to 0.635ms, and the improved write performance and
reduced snapshot time also led to a decrease in the GET tail latency
from 0.673ms to 0.577ms.

Under the Always-Log policy, the reduction in tail latency with
SLimIO is even more pronounced. As observed, SLIMIO reduces the
tail latency by more than 50% compared to the baseline in both
workloads.

Memory Usage Results. We use the memory footprint as the
metric for memory usage, which reflects the amount of physical
memory occupied in the user space. As shown in Table 3 and Ta-
ble 4, in all workloads, SLIMIO exhibits memory usage comparable
to baseline. Although SLimIO introduces additional threads, the
memory overhead is negligible and does not significantly impact
the overall memory footprint.

SSD WAF Results. As shown in Table 3, the baseline shows
WAF values of 1.14 and 1.24 under the Periodical-Log and Always-
Log policies, respectively. In contrast, SLIMIO achieves an ideal WAF
of 1.00, indicating that its write operations do not incur additional
internal writes within the SSD due to GC. This result suggests that
SLimIO not only improves performance, but also contributes to
extending SSD lifespan.

5.3 Recovery Test

We evaluate the performance of data recovery from a snapshot of
approximately 20GB. We measure two key metrics: Recovery time
and recovery throughput.

Table 5 shows that the baseline required a recovery time of 55.38
seconds with a corresponding recovery throughput of 374.77 MB/s.

SlimlO: Lightweight 1/O Path Design for Write Isolation in FDP-backed In-Memory Databases

Table 5: Recovery Evaluation on Snapshot

[Baseline | 55.38 [374.77
[SumIO | 44.12 | 471.13

[[Recovery Time (sec) [Recovery I/O Throughput (MB/s)]
l
|

In contrast, SLIMIO demonstrated a significantly improved recovery
time of 44.12 seconds and a recovery throughput of 471.13 MB/s.
The baseline utilizes the page cache to enable fast read caching, but
still suffers from high system call overhead. Since the Redis recovery
process involves only sequential reads, SLIMIO can easily imple-
ment an efficient read caching mechanism. The read-ahead buffer
mechanism optimized for sequential I/O will eliminate system call
overhead, resulting in faster recovery.

5.4 Microscopic Analysis

We evaluate whether SLimIO without FDP can provide stable run-
time performance. Figure 4 and 5 show the runtime RPS of Redis
benchmark workloads under the Periodical-Log policy. Figure 4
compares the runtime RPS of the baseline and SLiMIO without
FDP. We observe several extended periods of RPS instability in
both setups, such as around 1000s, 1500s, and beyond, which corre-
spond to the timing of SSD garbage collection (GC) events. During
these periods, the baseline maintains relatively stable RPS, whereas
StimIO, which writes directly to the SSD, suffers from sharp drops
in RPS—occasionally nosedive to zero—due to the direct impact
of GC. In contrast, Figure 5 shows that when SLimMIO is backed
by an FDP SSD, runtime RPS remains stable between 70000 and
80,000, except during snapshot duration. This shows that while
direct SSD writes in SL1MIO make it vulnerable to GC-induced per-
formance degradation, adopting FDP SSD as the underlying storage
effectively mitigates this issue and enables stable performance.

6 Related Work

Several studies have been conducted on snapshots in IMDBs. Li
et al. [24] evaluated and compared existing snapshot algorithms.
They showed that for write-intensive workloads, even a simple
fork-based method can outperform more advanced snapshot algo-
rithms. Park et al. [30] proposed a memory dump-based snapshot
scheme that reduces the overhead caused by memory copying, thus
lowering peak memory usage during snapshot generation. Pang et
al. [29] optimized copying of page tables from the parent process to
the child process, which helped reduce tail latency during snapshot
generation. However, these snapshot optimization studies operate
on the traditional kernel I/O stack and thus do not address the
issues of the kernel I/O path or storage device limitations.

Recently, Samsung and Meta integrated I/O passthru and FDP
SSD into the hybrid caching library, Cachelib, demonstrating that
such integration can effectively reduce WAF and extend SSD life-
time [8]. While this study shares a similar approach by leveraging
I/O passthru and FDP SSD, our focus and target application differ.
It targets hybrid caching systems that use SSDs as cache, where
the complexity of the LBA structure leads them to prioritize re-
ducing WAF and extending SSD lifetime over query throughput.
On the contrary, SLIMIO focuses mainly on persistence in IMDB,
centered not only on reducing WAF but also on resolving inter-
ference between snapshot and WAL operations to improve query
throughput.

1381

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

7 Conclusion

This paper investigates the causes of prolonged snapshot times in
Redis, a representative IMDB, leading to performance degradation:
high syscall overhead, I/O interference between snapshot and WAL
processes, and SSD garbage collection. The traditional kernel I/O
path cannot address these issues. To overcome, we propose SLIMIO,
which employs an io_uring-based I/O passthru to mitigate syscall
overhead and inter-process I/O interference, and leverages an FDP
SSD to eliminate GC-induced performance loss. Experiments show
that SLimMIO substantially shortens snapshot duration and improves
overall performance during non-snapshot periods.

Acknowledgments

This work was partially supported by Samsung Electronics Co., Ltd.
(I0221014-02908-01) and the National Research Foundation of Korea
(NRF), funded by the Korean government (MSIT), under Grant No.
RS-2025-00564249. This research also used resources of the Oak
Ridge Leadership Computing Facility, located at the National Center
for Computational Sciences at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the DOE under
Contract DE-AC05-000R22725.

References

[1] 2015. Budget Fair Queueing. https://docs.kernel.org/block/bfq-iosched.html.

[2] 2022. Redis-Multipart. https://github.com/redis/redis/pull/9788.

[3] 2025. io_uring Linux manual page. https://man7.org/linux/man-pages/man7/io_
uring.7.html.

[4] 2025. Linux blk-mgq.c. https://github.com/torvalds/linux/blob/master/block/blk-
mq.c#L2610.

[5] 2025. Redis. https://github.com/redis/redis.

[6] 2025. Redis Benchmark. https://redis.io/docs/latest/operate/oss_and_stack/
management/optimization/benchmarks/.

[7] 2025. Redis-Persistence. https://redis.io/docs/latest/operate/oss_and_stack/
management/persistence/.

[8] Michael Allison, Arun George, Javier Gonzalez, Dan Helmick, Vikash Kumar,
Roshan Nair, and Vivek Shah. 2025. Towards Efficient Flash Caches with Emerging
NVMe Flexible Data Placement SSDs. arXiv preprint arXiv:2503.11665 (2025).

[9] Wes Brewer, Ana Gainaru, Frédéric Suter, Feiyi Wang, Murali Emani, and
Shantenu Jha. 2024. Al-coupled HPC workflow applications, middleware and
performance. arXiv preprint arXiv:2406.14315 (2024).

[10] Michael J Brim, Anjus George, Amir Shehata, Corwin Lester, David Rogers,
Patrick Widener, Ross Miller, Gustav Jansen, Rafael Ferreira Da Silva, and Sarp
Oral. 2024. A high-level design for bidirectional data streaming to high-performance
computing systems from external science facilities. Technical Report. Oak Ridge
National Laboratory (ORNL), Oak Ridge, TN (United States).

[11] Sungjin Byeon, Joseph Ro, Jun Young Han, Jeong-Uk Kang, and Youngjae Kim.

2024. Ensuring Compaction and Zone Cleaning Efficiency through Same-Zone

Compaction in ZNS Key-Value Store. In Proceedings of the 38th International

Conference on Massive Storage Systems and Technology (MSST).

Ping-Xiang Chen, Dongjoo Seo, and Nikil Dutt. 2024. FDPFS: Leveraging File

System Abstraction for FDP SSD Data Placement. IEEE Embedded Systems Letters

16, 4 (2024), 349-352.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of

the 1st ACM symposium on Cloud computing.

Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh

Trivedi. 2022. Understanding modern storage APIs: a systematic study of libaio,

SPDK, and io_uring. In Proceedings of the 15th ACM International Conference on

Systems and Storage (Haifa, Israel) (SYSTOR °22). Association for Computing Ma-

chinery, New York, NY, USA, 120-127. https://doi.org/10.1145/3534056.3534945

Mathieu Doucet, Tanner C. Hobson, and Ricardo Miguel Ferraz Leal. 2017. Django

Remote Submission. Journal of Open Source Software 2, 16 (08 2017). https:

//doi.org/10.21105/j0ss.00366

Silvia Gioiosa, Beatrice Chiavarini, Mattia D’ Antonio, Giuseppe Trotta, Balasub-

ramanian Chandramouli, Juan Mata Naranjo, Giuseppa Muscianisi, Mirko Cestari,

and Elisa Rossi. 2025. A GDPR-compliant solution for analysis of large-scale

genomics datasets on HPC cloud infrastructure. Journal of Big Data 12, 1 (2025),

31.

[12

(13

[14

=
i)

[16

https://docs.kernel.org/block/bfq-iosched.html
https://github.com/redis/redis/pull/9788
https://man7.org/linux/man-pages/man7/io_uring.7.html
https://man7.org/linux/man-pages/man7/io_uring.7.html
https://github.com/torvalds/linux/blob/master/block/blk-mq.c#L2610
https://github.com/torvalds/linux/blob/master/block/blk-mq.c#L2610
https://github.com/redis/redis
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/
https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/
https://doi.org/10.1145/3534056.3534945
https://doi.org/10.21105/joss.00366
https://doi.org/10.21105/joss.00366

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

[17]

(18

[19

[20

[21]

[22]

[23

[24

[25

[26]

[27]

[28

[29

[30

[31

[32]

[33]

[34

[35]

[36]

Muhammed Tawfiqul Islam, Renata Borovica-Gajic, and Shanika Karunasekera.
2022. A multi-level caching architecture for stateful stream computation. In
Proceedings of the 16th ACM International Conference on Distributed and Event-
Based Systems. 67-78.

Daceho Jeong, Youngjae Lee, and Jin-Soo Kim. 2015. Boosting Quasi-Asynchronous
1/0 for Better Responsiveness in Mobile Devices. In 13th USENIX Conference on
File and Storage Technologies (FAST 15). USENIX Association, Santa Clara, CA, 191
202. https://www.usenix.org/conference/fast15/technical-sessions/presentation/
jeong

Kanchan Joshi, Anuj Gupta, Javier Gonzalez, Ankit Kumar, Krishna Kanth Reddy,
Arun George, Simon Lund, and Jens Axboe. 2024. {I/O} Passthru: Upstreaming
a flexible and efficient {I/O} Path in Linux. In 22nd USENIX Conference on File
and Storage Technologies (FAST 24). 107-121.

Yunji Kang and Dongkun Shin. 2021. mStream: stream management for mobile
file system using android file contexts. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing. 1203-1208.

Kyoungho Koo, Yongjun Park, and Youjip Won. 2020. LOCKED-Free Journaling:
Improving the Coalescing Degree in EXT4 Journaling. In 2020 9th Non-Volatile
Memory Systems and Applications Symposium (NVMSA). 1-6. https://doi.org/10.
1109/NVMSA51238.2020.9188082

Feng Li, Dali Wang, Feng Yan, and Fengguang Song. 2020. ElasticBroker: Com-
bining HPC with Cloud to Provide Realtime Insights into Simulations. arXiv
preprint arXiv:2010.04828 (2020).

Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,
Matias Bjerling, and Haryadi S Gunawi. 2018. The Case of FEMU: Cheap, accu-
rate, scalable and extensible flash emulator. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies.

Liang Li, Guoren Wang, Gang Wu, and Ye Yuan. 2018. Consistent Snapshot
Algorithms for In-Memory Database Systems: Experiments and Analysis. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). 1284-1287.
https://doi.org/10.1109/ICDE.2018.00131

Liang Li, Guoren Wang, Gang Wu, and Ye Yuan. 2018. Consistent Snapshot
Algorithms for In-Memory Database Systems: Experiments and Analysis. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). 1284-1287.
https://doi.org/10.1109/ICDE.2018.00131

Liang Liang, Heting Zhang, Guang Yang, Thomas Heinis, and Rosa Filgueira. 2023.
Optimization towards Efficiency and Stateful of dispel4py. In Proceedings of the
SC’23 Workshops of the International Conference on High Performance Computing,
Network, Storage, and Analysis. 2021-2032.

Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. 2021. Max: A Multicore-
Accelerated File System for Flash Storage. In 2021 USENIX Annual Technical
Conference (ATC). 877-891.

Gaoji Liu, Chongzhuo Yang, Qiaolin Yu, Chang Guo, Wen Xia, and Zhichao Cao.
2024. Prophet: Optimizing LSM-Based Key-Value Store on ZNS SSDs with File
Lifetime Prediction and Compaction Compensation. In Proceedings of the 38th
International Conference on Massive Storage Systems and Technology (MSST).

Pu Pang, Gang Deng, Kaihao Bai, Quan Chen, Shixuan Sun, Bo Liu, Yu Xu,
Hongbo Yao, Zhengheng Wang, Xiyu Wang, Zheng Liu, Zhuo Song, Yong Yang,
Tao Ma, and Minyi Guo. 2023. Async-Fork: Mitigating Query Latency Spikes
Incurred by the Fork-based Snapshot Mechanism from the OS Level. Proc. VLDB
Endow. 16, 5 (Jan. 2023), 1033-1045. https://doi.org/10.14778/3579075.3579079
Jiwoong Park, Yunjae Lee, Heon Young Yeom, and Yongseok Son. 2020. Memory
efficient fork-based checkpointing mechanism for in-memory database systems
(SAC °20). Association for Computing Machinery, New York, NY, USA, 420-427.
https://doi.org/10.1145/3341105.3375782

J Luc Peterson, K Athey, PT Bremer, V Castillo, F Di Natale, JE Field, D Fox, J
Gaffney, D Hysom, SA Jacobs, et al. 2019. Merlin: enabling machine learning-ready
HPC ensembles. Technical Report. Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States).

Zebin Ren and Animesh Trivedi. 2023. Performance characterization of modern
storage stacks: Posix i/o, libaio, spdk, and io_uring. In Proceedings of the 3rd
Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems. 35-45.

Samsung. 2023. Host Workloads Achieving WAF==1 in an FDP SSD.
https://www.sniadeveloper.org/sites/default/files/SDC/2023/presentations/
SNIA-SDC23-Helmick-Host-Workloads- Achieving-WAF_0.pdf.

Samsung. 2024. Getting Started with Flexible Data Placement (FDP).
https://download.semiconductor.samsung.com/resources/white-paper/getting-
started-with-fdp-v4.pdf.

Jingpei Yang, Rajinikanth Pandurangan, Changho Choi, and Vijay Balakrishnan.
2017. AutoStream: Automatic stream management for multi-streamed SSDs. In
Proceedings of the 10th ACM International Systems and Storage Conference. 1-11.
Ziye Yang, James R Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu,
Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and Luse E Paul. 2017.
SPDK: A development kit to build high performance storage applications. In
2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 154-161.

1382

S. Lee et al.

https://www.usenix.org/conference/fast15/technical-sessions/presentation/jeong
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jeong
https://doi.org/10.1109/NVMSA51238.2020.9188082
https://doi.org/10.1109/NVMSA51238.2020.9188082
https://doi.org/10.1109/ICDE.2018.00131
https://doi.org/10.1109/ICDE.2018.00131
https://doi.org/10.14778/3579075.3579079
https://doi.org/10.1145/3341105.3375782
https://www.sniadeveloper.org/sites/default/files/SDC/2023/presentations/SNIA-SDC23-Helmick-Host-Workloads-Achieving-WAF_0.pdf
https://www.sniadeveloper.org/sites/default/files/SDC/2023/presentations/SNIA-SDC23-Helmick-Host-Workloads-Achieving-WAF_0.pdf
https://download.semiconductor.samsung.com/resources/white-paper/getting-started-with-fdp-v4.pdf
https://download.semiconductor.samsung.com/resources/white-paper/getting-started-with-fdp-v4.pdf

SlimlO: Lightweight 1/O Path Design for Write Isolation in FDP-backed In-Memory Databases

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Appendix: Artifact Description

Artifact Description (AD)

A Overview of Contributions and Artifacts

A.1 Paper’s Main Contributions

C1 We conducted an in-depth analysis of the snapshot and non-
snapshot periods of Redis, a representative in-memory data-
base (IMDB). Our findings show that using the traditional
kernel I/O path causes significant performance degradation
due to issues such as syscall overhead, I/O contention be-
tween processes, and delays from SSD garbage collection
(GQ).

C, We designed SLimIO to (i) eliminate syscall overhead and
inter-process I/O interference through I/O passthru, and (ii)
utilize Flexible Data Placement (FDP) SSDs as backup storage
to avoid performance degradation caused by SSD GC.

C3 We implemented SLiMIO on Redis v7.4.2 and demonstrated
its effectiveness through various experiments. Experimental
results show that SL1MIO reduces snapshot time by up to
25%, increases query throughput by up to 30% during non-
snapshot periods, and lowers 99.9%-ile latency by up to 50%.

A.2 Computational Artifacts
A https://doi.org/10.5281/zenodo.16789521

Artifact ID Contributions Related
Supported Paper Elements

A1 C1,00,C3

Table 3-5, Figure 3-5

B Artifact Identification
B.1 Computational Artifact A;
Relation To Contributions

The SuimIO artifact provides the source code necessary to reproduce
the experiments for our proposed system, supporting contributions
C2 and C3. These experiments aim to evaluate the impact of inte-
grating I/O passthru and FDP SSDs on the persistence performance
of Redis, a representative IMDB. By analyzing the results, we can
gain valuable insights into SL1mIO’s effectiveness in reducing snap-
shot time, increasing query throughput, lowering tail latency, and
improving the write amplification factor (WAF), thereby demon-
strating its ability to minimize I/O overhead and extend SSD lifes-
pan.

Expected Results

This artifact aims to reproduce the following key experimental
results, demonstrating improvements over the baseline that relies
on the traditional kernel I/O path.

¢ Shortened Snapshot Duration: SLIMIO reduces snapshot
duration—which constitutes the primary period of Redis
performance degradation—by up to 25%.

e Improved Query Throughput: SLimIO achieves up to 30%
higher Requests per Second (RPS) than the baseline in the
non-snapshot periods.

1383

e Stable Reduction in Tail Latency: SLiMIO reduces the
99.9%-ile latency by up to 50%, providing much more stable
and predictable performance.

e SSD WAF Optimization: By leveraging FDP SSDs, SLIMIO
achieves an ideal WAF of 1.00, indicating no redundant in-
ternal writes within the SSD.

o Fast Data Recovery: SLIMIO’s recovery mechanism delivers
approximately 20% faster recovery time and improved I/O
throughput compared to the baseline.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the artifact is as follows:

o Artifact Setup: Approximately 30 minutes, including instal-
lation of Redis, the FEMU-based FDP emulator, required
dependencies, and configuration of the experimental envi-
ronment.

o Artifact Execution: 50-150 minutes, depending on the Redis
logging policy and workload configuration.

o Artifact Analysis: Approximately 30 minutes, focusing on
extracting performance metrics (RPS, latency, snapshot time,
and WAF) from generated results and comparing them with
the tables and figures in the paper.

Artifact Setup (incl. Inputs)

Hardware. The FDP SSD is emulated using FEMU v9.0, configured
with 12 cores, 55 GB DRAM, and a total capacity of 180 GB. The
emulated FDP SSD features 8 channels with 8 dies per channel, a
NAND page size of 4KB, and an RU size of 1GB; the NAND page
read latency, write latency, and block erase latency are set to 40ps,
200ps, and 2ms respectively, all based on FEMU’s default settings.
Our host environment is equipped with dual Intel Xeon Gold 5218R
CPUs and 377GB of DRAM.

Software. The implementation of SLIMIO is done in C on top of
Redis and includes the following dependencies:

e liburing (version 2.5)

e GCC (version 13.3.0)

o Linux Kernel (version 6.7.9)
e FEMU (version 9.0.0)

e Redis (version 7.4.2)

Datasets / Inputs. Two standard benchmark workloads are used. No
separate download is required; the benchmark tools generate the
workloads.

¢ Redis-benchmark: We configure 50 concurrent clients, a
key range of 5.3 million, 8-byte keys, and 4096-byte values.
Each experiment issues 28 million SET operations and is
repeated five times. Final results are aggregated over all
repetitions.

¢ YCSB benchmark: We use the YCSB-A workload with 8
threads, 8-byte keys, and 2048-byte values, comprising 9
million records and 115 million operations with a 0.5:0.5
GET-to-SET ratio.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Installation and Deployment. First, set up the emulated environment
using the FEMU FDP SSD from the repository at https://github.com/
lass-lab/ConfFDP/tree/solesie. Detailed download instructions are
provided in the README file. To run the emulator, execute the
script . /femu-scripts/run-fdp.sh.

Second, within the emulated environment, install the liburing
dependency and then install SL1MIO. The installation procedure
for SL1mIO follows the standard Redis installation instructions as
described in the README.

Third, for baseline experiments, run the script redis/origin_
redis/redis/fs_x.sh. These scripts use the original Redis setup,
and the results are saved in the directory redis/origin_redis/
redis/bench-results. For SLIMIO experiments, run the scripts
redis/slimio_.sh. The results for these experiments are stored
in redis/bench-results.

Artifact Execution

The experimental workflow consists of Tj (environment setup), T
(benchmark execution), and T3 (result analysis).

e Task Ti: Install the mentioned dependencies, and for the
baseline configuration, set the I/O scheduler to 'none” and
mount the baseline file system.

o Task Tp: Redis is configured with two logging policies: the
Periodical-Log policy, which accumulates write queries in
a user-level Write-Ahead-Log buffer for several seconds be-
fore flushing them to the storage device and serves as the
default logging policy; and the Always-Log policy, which
immediately reflects every write query to the storage device.
For each workload, results are measured separately for these
two policies. The Redis-benchmark workload parameters are
configured to emulate a large-data, write-intensive scenario,
while the YCSB-A workload parameters are set to emulate a
small-data, less write-intensive scenario.

e Task T3: For both logging policies and each workload, we
measure RPS, 99.9%-ile latency, snapshot duration, SSD WAF,
and data recovery performance. To evaluate the efficiency
of FDP SSDs, runtime RPS is continuously tracked during
execution.

Artifact Analysis (incl. Outputs)

For the overall performance comparison, refer to Tables 3-5 in the
paper, which present results against the baseline. Figures 4-5 show
the runtime RPS measured through a microscopic analysis, which
evaluates the efficiency of FDP SSDs.

1384

S. Lee et al.

https://github.com/lass-lab/ConfFDP/tree/solesie
https://github.com/lass-lab/ConfFDP/tree/solesie

	Abstract
	1 Introduction
	2 Background
	2.1 Persistence Mechanisms of Redis
	2.2 Snapshot Process and Query Performance
	2.3 Flexible Data Placement SSD

	3 Motivation
	3.1 I/O Path Bottleneck in Snapshots
	3.2 I/O Passthru for Efficient Write Isolation

	4 Design of SlimIO
	4.1 Snapshot–WAL Separation via I/O Passthru
	4.2 LBA Space Management and Recovery
	4.3 Snapshot–WAL Separation on FDP SSD

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Evaluation
	5.3 Recovery Test
	5.4 Microscopic Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Overview of Contributions and Artifacts
	A.1 Paper's Main Contributions
	A.2 Computational Artifacts

	B Artifact Identification
	B.1 Computational Artifact A1

