FLEXLLM: Flexible and Cost-Efficient LLM
Serving with Heterogeneous GPUs

Kihyun Kim!, Jinwoo Kim?, James J. Kim2, Dong Li3, Youngjae Kimb T
1Sogang University, Seoul, Republic of Korea, 2Soteria Inc., 3University of California, Merced, CA, USA
{kion777, jinwookim, youkim} @sogang.ac.kr, jkim@soteria-sys.com, dli35@ucmerced.edu

Abstract—The autoregressive nature of LLMs causes memory
bottlenecks, requiring multi-GPU parallelization. Prior work
has mainly optimized strategies for homogeneous setups, over-
looking heterogeneous configurations and service-level objectives
(SLOs) despite growing GPU cost-performance gaps. This paper
introduces FLEXLLM, a framework that predicts execution
times and selects cost-efficient strategies in heterogeneous GPU
environments while satisfying latency-per-token (LPT) SLO con-
straints. The proposed system (i) bridges theoretical predictions
and actual performance through a Linear Correction Function
(LCF) and (ii) performs SLO-aware cost-efficiency optimiza-
tion based on human reading speeds (<150 ms per token).
QOur evaluation demonstrates that FLEXLLM identifies cost-
efficient configurations meeting SLO requirements, achieving
significant cost reductions compared to performance-oriented
approaches. Heterogeneous GPU analysis reveals that SL.O-aware
parallelization strategy selection yields up to 2.28x cost-efficiency
differences, demonstrating that architecture selection under SLO
constraints is as critical as hardware investment.

Index Terms—Heterogeneous GPU Computing, Large Lan-
guage Model Serving, Performance Prediction, Cost-Efficiency
Optimization, Parallelization Strategies

I. INTRODUCTION

Large language models (LLMs) based on the Transformer
architecture have revolutionized natural language processing,
delivering remarkable performance across a wide range of ap-
plications, including machine translation, text summarization,
and conversational Al [1]. Despite their impressive capabili-
ties, deploying these models in real-world production environ-
ments poses substantial economic and technical challenges.
In particular, the autoregressive nature of LLMs results in
growing memory demands that scale with both input sequence
length and batch size. These memory requirements frequently
exceed the capacity of a single GPU, making it necessary to
adopt multi-GPU parallelization strategies to enable efficient
inference and maintain acceptable response times ($II-A).

Various parallelization strategies have been proposed to
accelerate LLM inference, including Model Parallelism (MP),
Attention Offloading (AO), and Data Parallelism (DP) [2]-
[4] (SII-B). Each of these strategies provides unique ad-
vantages depending on the model structure and hardware
capabilities. However, most prior research has concentrated
on optimizing each parallelization method in isolation, often
under the assumption of homogeneous GPU environments.
These studies primarily aim to maximize raw performance
without considering the broader trade-offs among cost, hard-
ware heterogeneity, and practical deployment constraints faced
in real-world scenarios. Therefore, existing studies overlook

T Y. Kim is the corresponding author.

a critical challenge in selecting the optimal parallelization
strategy for given workloads and hardware configurations.

This problem has become increasingly complex due to
two converging trends. First, the GPU market is experienc-
ing growing cost-performance disparities—although upgrading
from an NVIDIA A100 to an HI00 can yield 2-3x perfor-
mance gains, the associated cost increase often surpasses this
improvement by a significant margin [5]. Second, many LLM-
based applications operate under relatively low throughput
requirements that do not fully utilize the available GPU
resources, rendering the use of high-end GPUs economically
inefficient in such contexts [6].

These factors have driven interest in heterogeneous GPU
configurations that strategically combine high-performance
GPUs (H-GPUs) and cost-effective GPUs (L-GPUs). Under
the token-based pricing models prevalent in the industry (e.g.,
cost per million tokens) [7], [8], optimizing hardware costs
directly impacts service competitiveness. However, no exist-
ing framework systematically predicts execution times across
different parallelization strategies in heterogeneous environ-
ments or provides practical guidelines for optimal architecture
selection.

In this paper, we present FLEXLLM, a mathematical model-
based solver that systematically identifies the optimal paral-
lelization strategy among MP, AO, and DP for heterogeneous
GPU environments, minimizing deployment costs while satis-
fying latency-per-token (LPT) service-level objective (SLO).
The solver employs performance modeling that accurately
estimates execution times for the three major parallelization
strategies through a Linear Correction Function (LCF) that
adjusts theoretical FLOPS-based predictions using empirical
measurements, achieving high accuracy with minimal profiling
overhead. Furthermore, through comprehensive model-driven
simulation analysis, FLEXLLM offers practical guidelines
for selecting economically optimal architectures tailored to
specific hardware configurations and user requirements.

Based on evaluations with the OPT-1.3B and OPT-2.7B
models on real heterogeneous GPU setups, the practical de-
ployment guidelines suggested by FLEXLLM demonstrate up
to 2x improvements in tokens-per-dollar efficiency. It also
demonstrates the ability to select the most cost-efficient GPU
configuration and parallelization strategy while satisfying the
SLO constraint.

II. BACKGROUND
A. Large Language Model Inference and Memory Bottleneck

Transformer-based large language models (LLMs) follow an
autoregressive inference approach, generating one token at a

time conditioned on all previously generated tokens [9]. Each
Transformer layer is composed of a self-attention mechanism
and a feed-forward network (FFN). While the self-attention
component captures inter-token dependencies, the FFN applies
nonlinear transformations. This sequential generation process
can be divided into two computationally distinct phases: the
prefill phase and the decode phase.

The prefill phase processes the entire input sequence in
parallel to produce the first output token and builds the Key-
Value (KV) cache. This phase exhibits high parallelism and
arithmetic intensity, characterizing it as compute-bound [10].

In contrast, the decode phase generates tokens autoregres-
sively using cached Key and Value vectors. As sequence length
increases, KV cache access grows linearly while computation
per step remains small, making it memory-bound [10].

The memory requirement for the KV cache, denoted as
Myky, increases linearly with the sequence length S, batch size
B, number of layers L, model dimension D, and numerical
precision in bytes:

Mgy =2B-S-L-D -precision(bytes) (D

In practical serving scenarios, this linear growth quickly
exceeds the memory capacity of a single GPU. For example,
serving the OPT-30B model with a batch size of 64 and
sequence length of 8192 requires approximately 700 GB of
memory for the KV cache alone [11]. Using the formula
with OPT-30B parameters (L = 48, D = 7168), this yields
Mgy = 2 x 64 x 8192 x 48 x 7168 x 2 ~ 672 GB in
FP16 precision. Therefore, large-scale inference necessitates
multi-GPU configurations and well-designed parallelization
strategies [12].

B. Farallelization Strategies for Heterogeneous Setup

To address memory constraints while leveraging heteroge-
neous GPU configurations, three major parallelization strate-
gies have been proposed. Each exhibits distinct characteristics
in terms of memory efficiency, implementation complexity,
and communication overhead.

Model Parallelism (MP): Model parallelism alleviates
memory pressure on a single GPU by distributing the com-
putational workload of LLMs across multiple GPUs. Tensor
Parallelism [13] partitions attention heads or feed-forward
layers along tensor dimensions, while Pipeline Parallelism [2]
divides the model into sequential layers and assigns them to
different GPUs. However, these strategies often require that
the number of GPUs align with the model architecture, which
can limit scalability and flexibility [14]. In heterogeneous
environments, MP can leverage different GPU capabilities
by distributing computational loads according to hardware
capacity, potentially improving resource utilization. However,
MP incurs communication overhead due to activation tensor
exchanges between GPUs at each layer boundary.

Attention Offloading (AO): Attention offloading is
specifically designed for heterogeneous GPU environments,
unlike traditional MP and DP strategies that assume homo-
geneous hardware configurations. AO emerged to exploit the
distinct characteristics of different GPU types by delegating
attention computations and KV cache storage to low-end GPUs
(L-GPUs), while high-end GPUs (H-GPUs) handle compute-
intensive operations such as feed-forward layers [3].

This architecture leverages heterogeneous hardware by cre-
ating specialized role separation that improves cost-efficiency
over homogeneous configurations. However, AO can incur
higher communication overhead compared to MP, as it requires
transferring entire KV cache data between GPUs at each de-
coding step, whereas MP only needs to exchange intermediate
tensor computation results across layer boundaries.

Data Parallelism (DP): Data parallelism splits the input
batch across multiple GPUs, where each GPU independently
executes inference using the full model. In heterogeneous en-
vironments, the batch is divided proportionally to each GPU’s
compute capability, with H-GPUs handling larger segments
and L-GPUs handling smaller ones [13]. This strategy operates
fully in parallel without requiring synchronization or interme-
diate data transfer between GPUs during inference. It offers
low implementation complexity and minimal communication
overhead, making it highly practical. However, since the entire
model must be loaded on each GPU, memory usage increases
across all participating GPUs. Additionally, if batch workload
distribution is not properly balanced according to each GPU’s
processing capability, the slower device becomes a straggler
that bounds the overall throughput, creating performance bot-
tlenecks in heterogeneous configurations.

C. Related Work on Heterogeneous LLM Serving

A variety of research efforts [15]-[18] have focused on
improving the efficiency of LLM serving in heterogeneous
GPU environments.

System-Level Optimization Approaches: Jiang et al. [15]
optimized cost-efficient serving plans for heterogeneous GPUs
under budget constraints. Helix [16] modeled serving in
heterogeneous clusters as a maximum-flow problem, while
HexGen [17] supported inference in distributed heterogeneous
systems via asymmetric parallelism and advanced schedul-
ing strategies. SageServe [18] introduced an adaptive control
mechanism for SLA-aware workloads.

Performance Prediction and Modeling: FNOPerf [19]
proposed a machine learning—based model to predict LLM
training time, while Imai et al. [20] introduced a sophisticated
inference latency prediction model that combines the Roofline
model with learning-based techniques, achieving high accu-
racy in single-GPU environments.

Limitations of Existing Approaches: While system-level
optimization approaches have addressed heterogeneous re-
source allocation and scheduling, they typically focus on spe-
cific parallelization strategies without systematic comparison
across Model Parallelism, Attention Offloading, and Data Par-
allelism under unified SLO-aware cost criterion. Performance
prediction approaches are primarily limited to homogeneous
settings and single-GPU environments. However, in real-world
LLM applications where required throughput is often below
maximum capacity, optimizing for cost-efficiency becomes
more critical than fully utilizing high-end GPUs [6]. This
fundamental shift in optimization objectives reveals several
key limitations in current approaches:

(1) Lack of systematic performance models for predicting
execution time across different parallelization architectures
without extensive profiling; (2) Absence of quantitative frame-
works for architecture-aware cost-efficiency evaluation that
consider both performance and cost trade-offs; (3) Limited

practical guidelines for parallelization strategy selection based
on hardware configurations and cost constraints.

III. PROBLEM DEFINITION
A. Architecture Selection Optimization

In multi-GPU LLM serving systems constrained by memory
capacity, the core objective is to select the parallelization
architecture (DP, AO, or MP) that satisfies the service-
level objective (SLO) while minimizing cost. Unlike prior
work that optimizes within a single strategy, our FLEXLLM
framework evaluates architectures across strategies using an
SLO-constrained cost-efficiency metric, defined as the total
number of output tokens served per unit cost under acceptable
latency per token. This enables us to identify the architecture
with the lowest cost that satisfies a given latency constraint.

B. SLO Evaluation Metric: Latency per Token (LPT)

To quantitatively evaluate inference performance across di-
verse scenarios, we adopt the Latency per Token (LPT) as the
primary service-level objective (SLO) metric. LPT represents
the average time (in milliseconds) required to generate a single
output token, and is defined as follows:

1000 - Tgog
So
Here, Ty denotes the end-to-end batch inference time

in seconds, and Sp is the number of output tokens. An
architecture satisfies the SLO if it ensures LPT < LPTqrges.

LPT = [ms/token] (2)

C. Limitation: Naive Cost-Efficiency Metric

The conventional cost-efficiency metric is defined as:
3600 - B - So
Tiog(s) - cs

where B is the batch size, So is the number of output tokens
per request, Tgog(s) denotes the end-to-end inference latency
(in seconds) under architecture s, and c, represents the hourly
cost (in $/h) of that configuration.

While this ratio aims to optimize cost per output token, it
neither enforces a latency SLO nor penalizes absolute cost.
Specifically, when SLO requirements are already satisfied,
CEqaive continues to favor more expensive configurations that
provide only marginal latency improvements at dispropor-
tionately higher costs. As a result, it presents the following
limitations:

CEnaive(8) = [tokens/$] 3)

o Absolute-cost insensitivity. Because CEp,. optimizes a
ratio, it may favor over-provisioned configurations that
are much more expensive but provide only marginal im-
provements in tokens-per-dollar, even when SLO targets
are already satisfied.

To address these limitations, we adopt an SLO-aware se-
lection policy that prioritizes minimum absolute cost among
configurations satisfying SLO requirements.

D. SLO-Aware Cost-Efficient Architecture Selection

We propose a two-stage selection strategy to identify the
most cost-efficient architecture from a set of candidates S =
{DP, AO, MP}, under the constraint that the latency service-
level objective (SLO) is satisfied.

a) Primary Criterion: Minimize Cost under Latency
SLO:

s* = arg rnig cs subject to LPT(s) < LPTieer (4)
sE

b) Secondary Criterion: Maximize Cost-Efficiency as
Tiebreaker: If multiple architectures satisfy the primary crite-
rion with identical costs, we select the one with the highest
token throughput per dollar, thereby maximizing overall cost-
efficiency. This strategy ensures the selection of an architecture
that not only meets the latency requirement (LPTige) but
also minimizes the actual deployment cost (cs). In the case
of cost-equivalent candidates, the policy favors configurations
that deliver better utilization of budgeted resources.

This SLO-aware approach addresses the limitations of naive
cost-efficiency metrics and enables cost-driven architecture
selection for practical deployment scenarios.

IV. FLEXLLM SYSTEM DESIGN

In this section, we detail the overall system architecture
and key design decisions of FLEXLLM, which automatically
selects the optimal parallelization strategy based on the pre-
viously defined SLO-aware cost-efficiency policy. FLEXLLM
is designed as a decision-support tool for cost-efficient LLM
serving in heterogeneous GPU environments, centered around
mathematical performance modeling and automated architec-
ture selection.

A. System Overview and Architecture

The FLEXLLM framework comprises three main compo-
nents: the Input Processing Module, Performance Modeling
Engine, Architecture Selection Optimizer. This modular
design enables independent development and extensibility of
each component, allowing the system to flexibly adapt to
various GPU configurations and workload specifications.

The system follows a hierarchical architecture, with each
module serving a distinct role as outlined below:

Input Processing Module: This module receives the user-
defined workload specifications and hardware configurations,
and converts them into a normalized internal format.

Performance Modeling Engine: This component contains
the core mathematical kernels for predicting the performance
of each parallelization strategy. It includes a FLOPs Estimator,
a Memory Bandwidth Analyzer, and a Linear Calibration
Model, which together translate theoretical resource demands
into realistic performance estimates.

Architecture Selection Optimizer: Based on the SLO-
aware selection policy, this optimizer determines the most
suitable architecture. It evaluates the performance of Model
Parallelism, Attention Offloading, and Data Parallelism inde-
pendently through dedicated evaluators, and generates detailed
recommendations along with configuration guidelines.

The overall system workflow proceeds as follows: (1) Nor-
malize and validate user inputs; (2) Predict performance for
each architecture using the modeling engine; (3) Select the
optimal architecture based on the SLO-aware cost-efficiency
criterion; (4) Generate comprehensive recommendations and
deployment configurations.

TABLE I
DEFINITION OF VARIABLES IN THE SYSTEM MODEL

TABLE II
TRANSFORMER LAYER FLOPs

Category Variable Description Component Prefill (S7) Decode (S¢)
B: Batch size Self-Attention
By, Br: Sub-batch sizes for H-/L-GPU (DP only; QKYV Proj. 6BS;D? 6BD?

Workload Bu+Br=B) Attention 4BS?[2) 435012)
St: Input sequence length Output Proj. 2BS;D 2BD
So: Number of output tokens per request
Sc: Average context length (= St + So/2) FFN (_fon =4D) 5 5
S: Total sequence length (= S; + So) Up-Proj. 8BS D 8BD

Down-Proj. 8BS D? 8BD?

L: Number of Transformer layers 3 3 —
Lp: Number of layers placed on the H-GPU (MP Total BS1(24D" + 451 D) B(24D" +4Sc D)
only; 0 < Ly < L)

Model Ly,: Number of layers placed on the L-GPU (MP

only; 0 S LL S L, LH—‘,-LL:L)

D: Model hidden dimension size

Dy fy,: Feed-forward network dimension

be: Bytes per element (typically 2 bytes for FP16)
Myy: Total model parameter size in bytes,
My = Number of Params X be

Myy: Total KV cache size (2BSLDb.)

Shact, prefill: Activation tensor size during prefill
phase (BS7Dbe)

Sact, decode: Activation tensor size during decode
phase (BDb.)

Scomm: Communication volume during attention
offloading (Q, K, V, and output Z) (= 4BDb.)
Cofs: Offloading ratio for AO strategy (0 < Cogr <
1)

CﬁfLak: Theoretical peak FLOPS of H/L-GPU

Hardware Cﬁfif : Effective FLOPS of H/L-GPU (= Cpeak 1)
n"WL: Efficiency factor of H/L-GPU, € [0.1,0.9]
BWinter: Inter-GPU bandwidth (e.g., PCle,
NVLink)

B. Input Processing Module

1) Workload Specification Interface: The input process-
ing module of FLEXLLM systematically collects workload
characteristics and service-level requirements from the user.
The system accepts user-specified parameters including the
target LLM model (e.g., OPT-1.3B, OPT-2.7B), batch size B,
input sequence length Sy, and output sequence length So that
define the inference scenario. Based on the selected model, the
system automatically extracts architectural parameters such as
number of layers L, hidden dimension D, and feed-forward
network dimension Dy, from standard model configuration
files. These core parameters are summarized along with their
mathematical definitions in Table I. All collected inputs are
normalized into a unified internal representation and passed
to the performance modeling engine.

2) Hardware Configuration Collection: The system auto-
matically detects the underlying heterogeneous GPU configu-
ration consisting of a high-end GPU (H-GPU) and a low-end
GPU (L-GPU) or accepts user-provided hardware specifica-
tions. For each GPU type, the system gathers key character-
istics required for LLM inference time prediction, including
manufacturer-rated peak FLOPS (CPe2%) and effective FLOPS
(C*") measured via a short GEMM microbenchmark over a
small sweep of matrix sizes representative of our workload
and data types, memory capacity (M), and memory bandwidth
(BW), as summarized in Table I. Inter-GPU communication
parameters such as communication bandwidth (BWjye,) and
base latency (L¢omm) are also collected to support accurate

latency estimation.

The hardware information collection module relies on
system APIs (e.g., nvidia-smi) and vendor specification
databases to retrieve these values. By preprocessing and vali-
dating all relevant hardware parameters upfront, the inference
time prediction model can produce reliable estimates across
diverse GPU environments.

C. Performance Modeling Engine

1) Theoretical Performance Calculator: The performance
modeling engine implements mathematical performance mod-
els for the three heterogeneous architectures: Model Paral-
lelism, Attention Offloading, and Data Parallelism. For each
architecture, the engine decomposes the runtime of both the
prefill and decode stages into fine-grained components and
predicts the total inference latency accordingly. In addition,
a measurement-driven linear correction model is applied to
correct estimation errors in both stages (details are discussed
in the following subsection).

2) Workload and Layer-wise FLOPs Modeling: The com-
putational cost of a Transformer layer differs between the
prefill and decode stages. Based on prior studies [21] and the
model specifications listed in Table I, we analytically define
the number of floating point operations (FLOPs) required for
each stage as a function of the input sequence length (Sy),
output sequence length (Sp), hidden dimension (D), and batch
size (B). The detailed breakdown is provided in Table II.
Using this decomposition, the per-layer FLOPs are defined
as:

FPel — BS (24D? + 45, D) (5)

layer

Flecode — B(24D? + 454 D) (6)

ayer

Here, So represents the average context length, i.e., the
number of previously generated tokens referenced during each
decode step.

3) Architecture-specific Performance Models: Based on the
FLOPs models above, we construct architecture-specific per-
formance models to predict the total inference time under each
of the three heterogeneous strategies.

Model Parallelism Performance Model: Each layer of the
model is partitioned across H-GPUs and L-GPUs according
to their memory capacity, and computations are executed se-
quentially. For both the prefill and decode stages, the compute
time is calculated based on the effective FLOPS of each GPU
(quf s sz f). Additionally, communication overhead due to
activation transfers across the interconnect is considered.

The prefill time is defined as:

prefill prefill
refill " Hlayer " Hlayer act, pre
el _ Ly - F Ly - F S g
MP -
csF o BWi
The decode time is calculated as:
decode decode
decode _ Ly - Fiayer Ly - aner Sact, decode (8)
MP -
o5 O BWine

After applying the Linear Correction Function (LCF) to both
stages, the total inference latency is given by:

T = LOF (TH™) + (So — 1) - LCF (T*<) ©9)

Attention Offloading Performance Model: In the Atten-
tion Offloading architecture, the H-GPU is responsible for
executing the entire inference pipeline, while the L-GPU
partially offloads KV cache storage and a portion of the
attention computations based on the offloading ratio Cy.

a) Prefill Stage: The H-GPU performs all layer-wise
computations, and concurrently transfers a Cyg fraction of
the total KV cache to the L-GPU. Since computation and
transmission can be overlapped, the total prefill latency is
determined by the longer of the two operations:

] L. Fpreﬁll M
T};ghll — max < Coff KV (10)

layer
Cgf " B VVimer

b) Decode Stage: The H-GPU transmits a Cyg fraction of
the newly generated token’s query (Q), key (K), and value (V)
to the L-GPU during each decode step. The L-GPU performs
the attention computation on the received @, K, and V, and
returns the result to the H-GPU. The remaining attention
computation and the subsequent feed-forward operations are
executed entirely on the H-GPU.

Fli‘jlezlc\l()de + F;;ireoﬁ()de + (1 _ Coff) Fdecode

decode __ attn
TAO =L Ceff
H

Y

Fdecode S
Choe attn_ comm
+ ott(Ciﬂ + BWinr
Fdeqode

where F 0% denotes the per-layer FLOPs for QKV and
output projections, Fa°d denotes the per-layer FFN FLOPs,
and Fdecode denotes the per-layer attention FLOPs (excluding
projections).

c) Total Inference Time: The total inference latency
under Attention Offloading is computed by applying the Linear
Correction Function (LCF) to both the prefill and decode stage
latencies:

T = LCF (TR™) + (So = 1)- LCF (TS™) (12)

Data Parallelism Performance Model: The input batch is
split into two sub-batches, By and By, assigned to the H-GPU
and L-GPU, respectively. Each GPU independently executes
the full model, including both the prefill and decode stages. In
the following equations, FP"" and Fde0d are evaluated using
the respective GPU’s batch size. Since both GPUs operate in
parallel, the execution time for each stage is determined by

the slower of the two.

The prefill time on each GPU is calculated as:

fill fill
Tpreﬁll o L- Eg;efzr Tpreﬁll _ L- F‘lggleer (13)
DP,H — e DP,L — c
C I;f CLff
Similarly, decode time is defined as:
decode . Fdecode
decode __ layer decode __ layer (14)
DP,.H — C%t,‘f DP,L C’Eff
After applying the LCF correction to both stages:
TH™ = max (LCF (TS, LCF(TS) ()
T = max (LOF(T5), LOF(T359) (16)
Therefore, the total inference time is given by:
TH =T + (So — 1) - T (17

Here, By + By = B, and by default, the batch is divided in
proportion to GPU performance, though manual adjustment is
possible depending on specific deployment scenarios.

4) Linear Correction Model: To bridge the gap between
theoretical predictions and real-world latency measurements,
we introduce a linear correction model for both the prefill
and decode stages. Latency for each phase tends to increase
linearly with the computational workload, and our model cap-
tures this trend to improve estimation accuracy. This linearity
is justified by the following observations: (1) GPU matrix
operations, when fully parallelized, scale linearly with FLOPs;
(2) Transformer layers consist predominantly of large-scale
matrix multiplications (attention and FFN); (3) Beyond the
throughput saturation point, latency scales linearly with batch
size.

LCF = ’yphase . (Tphase) + ﬂphase

arch arch arch

(18)

where 7P is the scaling factor specific to each phase-
architecture combination and 87" represents the correspond-
ing fixed overhead term, both empirically estimated from
measurements.

Fig. 1 illustrates that for various input lengths and batch
sizes, latency for both prefill and decode stages increases
linearly with batch size across all architectures. This con-
sistent trend supports the general applicability of the LCF-
based correction model. Empirical cross-validation shows that
the mean absolute percentage error (MAPE) remains below
5-20% across all ranges, demonstrating the practicality and
accuracy of our linear correction model (see Section VI-B for
details).

D. Architecture Selection Optimizer

The architecture selection process is based on the SLO
and cost-efficiency criteria defined in Section III-B and Sec-
tion III-D.

Given a user-specified workload, this module utilizes the
precomputed inference time estimates for each architecture
and performs the following two-step evaluation:

Step 1: SLO Satisfaction Check: For a fixed batch size,
the module calculates the Latency per Token (LPT) for each
candidate architecture and determines whether it satisfies the
SLO constraint.

—- Attention Offloading (AO) -#% Model Parallelism (MP)
3 T T T T T T 3

—¥% Data Parallelism (DP)

251 25+
)
8 2f 2
N
o I5f 15
-E 1+ 1
0.5 05t
0 R T A)
Batch Size Batch Size
(a) opt 2.7b Prefill Stage (b) opt 2.7b Decode Stage
Fig. 1. In the OPT-2.7B model, we observe the runtime behavior of both

the prefill and decode stages under varying batch sizes. As the batch size
increases, the runtime exhibits a clear linear growth pattern in both stages. Due
to GPU Out-of-Memory (OOM) errors beyond batch size 32, Data Parallelism
measurements were limited to batch sizes up to 16.

Step 2: Minimum Cost Selection: Among the architec-
tures that meet the SLO requirement, the module first identifies
those with the minimum absolute cost. If multiple architectures
have identical minimum costs, it selects the one with the
highest cost-efficiency.

Finally, the optimizer recommends the architecture that min-
imizes deployment cost while satisfying the given workload
requirements and SLO constraints.

V. IMPLEMENTATION

We developed FLEXLLM using Python (3.10.14) as a
decision-support solver that systematically identifies the most
cost-efficient parallelization strategy based on user-specified
workload and hardware parameters. For the mathematical
performance modeling and linear correction functions, we con-
ducted numerical analysis using the NumPy library (1.24.3)
and SciPy library (1.10.1).

For validating the parallelization strategies in FLEXLLM,
we developed implementations supporting the three major
approaches using PyTorch (2.7) and the FlexGen frame-
work [21]. These implementations serve as ground-truth sys-
tems for evaluating the accuracy of FLEXLLM’s mathemat-
ical models and architecture recommendations. Model Par-
allelism divides Transformer layers across two GPUs using
PyTorch’s DistributedDataParallel and performs computation
by exchanging activation tensors through the NCCL backend.
Attention Offloading transfers Query and KV cache using
cudaMemcpyAsync () to perform attention operations on
the L-GPU. Data Parallelism is implemented using PyTorch
Distributed to split input batches and enable each GPU to
perform inference independently.

VI. EVALUATION
A. Experimental setup

To validate the performance of FLEXLLM and analyze
its cost-efficiency across diverse heterogeneous configurations,
this study employed two distinct approaches: empirical vali-
dation experiments and model-based simulation experiments.
The empirical experiments were conducted on actual worksta-
tions to quantitatively verify the model’s prediction accuracy.
The simulation experiments analyzed throughput and cost-
efficiency trends based on controlled FLOPS performance
ratios to simulate heterogeneous GPU characteristics.

TABLE III
EXPERIMENTAL HARDWARE SPECIFICATIONS AND SYSTEM
CONFIGURATION

Component Specification
CPU AMD Ryzen 9 3900XT, 12 cores, 24 threads
GPU 2x NVIDIA GeForce RTX 2080 Series

2115 MHz boost clock, 7751 MHz memory
8GB GDDR6 memory per GPU

2100 MHz (fixed for both GPUs)

64GB DDR4-3200

PCle 1.0 x8 per GPU, ~2.0 GB/s

GPU Clock Setting
System Memory
GPU Interconnect

oS Ubuntu 22.04 LTS
CUDA Version 12.6
Framework FlexGen (PyTorch 2.7.0)

Validation Setup: The validation experiment was conducted
to evaluate the accuracy of the Linear Correction Function
(LCF) calibration and the inference time prediction model in
a homogeneous GPU environment. All experiments were per-
formed on a workstation equipped with two NVIDIA GeForce
RTX 2080 SUPER GPUs connected via a PCle 1.0x8 interface
(~ 2.0 GB/s). Both GPUs were locked to a fixed clock
frequency of 2100 MHz to maintain a 1:1 FLOPS performance
ratio. The detailed hardware configuration is summarized in
Table III.

Correction and Validation Procedure: In the correction
phase, latency measurements were collected on the OPT-1.3B
and OPT-2.7B models under a small workload (S; = 128,
So = 32) by increasing the batch size from 2 up to the
memory limit in powers of two. These measurements were
used to derive the parameters (y, 3) of the Linear Correction
Function (LCF). In the validation phase, the derived correction
function was applied to Medium (S; = 512, Sp = 64)
and Large (S; = 1024, Sp = 128) workloads to predict
latency, and the predicted values were compared against actual
measurements.

The parallelization strategies were implemented as follows:
Model Parallelism (MP) splits Transformer layers evenly
across two GPUs and exchanges activation tensors between
them. Attention Offloading (AO) offloads the entire attention
computation and KV cache to one GPU while the other GPU
performs the FFN operations. Data Parallelism (DP) divides
the input batch equally (1:1) across two GPUs, with each
executing independently.

For each architecture and batch size, prefill and decode la-
tency were measured five times, and the average was reported.
CUDA cache clearing and GPU warm-up steps were applied
prior to measurement. Prediction accuracy was evaluated using
Mean Absolute Percentage Error (MAPE).

Simulation Setup: This simulation study applies the val-
idated FLOPS-based latency prediction model to analyze
throughput and cost-efficiency across heterogeneous GPU
configurations. We normalized the FLOPS of the reference
GPU (RTX 2080) to 1.0 and defined three virtual GPU
pairings—H-H (1:1.0), H-L (1:0.5), and H-L (1:0.1)—to rep-
resent high-end and low-end ratios in today’s GPU market. All
GPUs are assumed to have 8 GB of memory, with hourly costs
set to $6.00 for H-GPU, $3.00 for L-GPU (0.5x FLOPS),
and $0.60 for L-GPU (0.1x FLOPS). For each GPU pairing,
model, and batch size combination, we calculate the predicted
latency using these normalized FLOPS ratios, derive through-
put, and compute tokens per dollar (cost efficiency). Human
reading comprehension speeds are typically 4-6 tokens/s [22].

TABLE IV
AVERAGE PREDICTION ERROR AND CORRECTION PARAMETERS PER
WORKLOAD AND ARCHITECTURE

Model | Type | Metric | Prefill Decode
Med. MAPE (%) 6.23 9.47
DP Lg. MAPE (%) 18.62 10.40
0.336 0.00905
OPT-1.3B 0.00045 0.01457
Med. MAPE (%) 5.17 3.84
MP Lg. MAPE (%) 11.69 6.42
0.6437 0.4389
0.00287 0.01546
Med. MAPE (%) 2.73 5.76
AO Lg. MAPE (%) 4.32 10.82
0.9326 0.95533
g 0.45114 0.01787
Med. MAPE (%) 6.58 3.16
DP Lg. MAPE (%) 14.55 17.20
g 0.29039 0.00460
OPT-27B 0.01391 0.02208
Med. MAPE (%) 3.69 7.55
MP Lg. MAPE (%) 7.66 20.08
0.48493 0.61392
g 0.00069 0.02208
Med. MAPE (%) 341 8.92
AO Lg. MAPE (%) 0.87 11.61
1.06984 1.11116
g 0.38430 0.02641

Med./Lg.: Medium/Large workloads, v and (3 are the phase-specific
and architecture-specific correction parameters for the Linear Correction
Function (LCF).

Accordingly, we set the target Latency Per Token (LPT) to 150
ms to ensure real-time interactive performance.

The results are visualized as a heatmap in Fig. 2, providing
practical guidance for selecting an inference architecture and
configuring GPU clusters.

B. Model Prediction Accuracy Validation

Table IV presents the validation results, showing MAPE
values and corresponding correction parameters for Medium
and Large workloads across different model sizes and par-
allelization strategies. For performance evaluation, we clas-
sified accuracy levels as excellent (below 5%), good (5-
15%), acceptable (15-20%), and concerning (above 20%).
Overall, the results demonstrate varying prediction accuracy
depending on specific combinations of model architectures and
parallelization strategies, with most configurations achieving
performance within the acceptable range.

Analysis reveals distinct prediction performance character-
istics across different parallelization architectures. Attention
Offloading (AO) exhibited the most stable prediction perfor-
mance overall. For Medium workloads, prefill stages achieve
excellent accuracy (2.7-3.4% MAPE) while decode stages
show good performance (5.8-8.9% MAPE). This superior
performance stems from AO’s inherent characteristics where
communication dominates over computation, resulting in rela-
tively predictable patterns. Model Parallelism (MP) showed
moderate prediction accuracy but exhibited relatively high
error rates, reaching the concerning threshold (20.08%) for
decode steps in OPT-2.7B Large workloads. Data Parallelism
(DP) demonstrated variable performance depending on con-
figuration, with notably high MAPE values recorded in some
Large workload prefill stages.

These variations can be attributed to architectural com-
plexities: for MP, the intricate communication patterns and
synchronization overhead resulting from model parameter par-
titioning across GPUs are not adequately captured by simple
FLOPS-based prediction models. For DP, uneven memory

Cost Efficiency Heatmap (Tokens/$)

OPT-1.3B
Medium

OPT-1.3B
Large

Tokens / $

300000

H-H
Hll 175K 138K
EEIE

OPT-2.7B
Large

250000

200000

OPT-2.7B

Medium
150000

GPU Configuration

S
B3

100000

50000

© g optimal per configuration

S8
Inference Strategy

Fig. 2. Cost—efficiency across GPU configurations (rows) and inference strate-
gies (columns) for four model-workload settings. Inner-Rectangles denote the
optimal strategy for each GPU configuration. Values are in tokens per dollar.

access patterns during batch distribution processing and syn-
chronization delays caused by throughput differences between
GPUs contribute to increased prediction errors.

Model size analysis reveals that OPT-2.7B exhibits rela-
tively higher prediction errors compared to OPT-1.3B. This
can be attributed to two factors: (1) memory constraints due to
increased model size, which limited available batch sizes and
reduced calibration data points, and (2) more complex memory
access patterns, which made the simplifying assumptions of
FLOPS-based prediction relatively less accurate. Despite some
high error rates, our approach provides practical advantages
by requiring only minimal calibration measurements (single
workload configuration) to predict performance across diverse
deployment scenarios, unlike traditional approaches [19], [20]
that require exhaustive profiling of each target configuration.

While one configuration exhibits prediction error at the
concerning threshold (20%), this did not impact our SLO
requirements as the prediction accuracy remained sufficient
for pre-deployment performance estimation and deployment
configuration decisions. The significant reduction in measure-
ment overhead—requiring only single-configuration calibra-
tion instead of exhaustive profiling across all deployment
scenarios—ijustifies the trade-off in prediction accuracy for
practical deployment planning.

C. Best Cost-Efficient Model & Architecture

Fig. 2 presents cost-efficiency heatmaps for the OPT-
1.3B and OPT-2.7B models across four workload scenarios
(Medium/Large workloads for each model), three GPU con-
figurations—homogeneous (H-H), heterogeneous (H-L, ratio
0.5), and heterogeneous (H-L, ratio 0.1)—and three inference
strategies: DP, AO, and MP. Each cell indicates the token-
per-dollar value for a given combination, and the blue border
highlights the most cost-efficient parallelization strategy for
each GPU configuration.

Cost-efficiency is defined as the number of tokens served
per dollar. Our analysis reveals that even within the same GPU
configuration, the choice of parallelization strategy can result
in significant differences in cost-efficiency.

TABLE V
OPTIMAL INFERENCE CONFIGURATION: BATCH SIZE AND LATENCY
ACROSS REPRESENTATIVE SCENARIOS (OPT-1.3B MEDIUM, OPT-2.7B

LARGE)
Scenario GPU Type BatchSize Latency (s) Cost efficiency (tokens/$)
DP 32 1.95 315K
HH(:) AO 64 754 163K
MP 32 2.15 285K
DP 32 3.99 274K
OPTISE wL(105) AO 64 774 212K
MP 32 337 243K
DP 2 10.64 105K
HL (1:0.1) AO 64 9.33 239K
MP 32 12.60 89K
DP 7 330 46K
HH () AO 8 6.60 46K
MP 8 4.04 76K
DP 7 3.80 54K
OPT278 WL (105) AO 8 6.77 60K
ge
MP 8 5.33 77K
DP 1 7.49 37K
HL (1:0.1) AO 8 7.67 73K
MP 8 15.06 37K

The SLO is set to 9.6 seconds for the Medium workload (150 ms/token
x 64 tokens) and 19.2 seconds for the Large workload (150 ms/token x
128 tokens).

For instance, in the H-H configuration with the OPT-1.3B
Medium workload, DP (315K tokens/$) achieves approxi-
mately 1.93x higher efficiency than AO (163K tokens/$).
In contrast, under the H-L (1:0.1) configuration, AO
(239K tokens/$) outperforms DP (105K tokens/$) by about
2.28%. A similar trend is observed for the OPT-2.7B model.
In the H-H configuration with a Medium workload, MP
(162K tokens/$) shows roughly 2.03x better efficiency
than AO (80K tokens/$). In the H-L (1:0.1) configura-
tion with a Large workload, AO (73K tokens/$) achieves
about 1.97x higher efficiency compared to both DP and MP
(37K tokens/$).

These findings suggest that, regardless of model size, se-
lecting an appropriate parallelization strategy based on GPU
performance ratios can significantly affect cost-efficiency.
However, this analysis overlooks the absolute cost. From the
perspective of SLO-aware cost-efficiency, it is essential to
select a GPU combination and model that are not only efficient
in terms of tokens per dollar but also cost-effective in absolute
terms.

SLO-Aware Cost-Efficiency Strategy Selection: Table V
shows FLEXLLM selecting the lowest-cost parallelization
strategy for each model-workload scenario under 150ms/token
SLO constraint (highlighted in yellow).

For the smaller model (OPT-1.3B), the AO strategy on
the H-L (1:0.1) configuration is identified as the most cost-
efficient option that satisfies the SLO constraint (latency = 9.33
seconds). Similarly, for the larger model (OPT-2.7B), the AO
strategy on the H-L (1:0.1) configuration is also shown to be
the cheapest strategy that meets the SLO requirement (latency
= 7.67 seconds).

VII. CONCLUSION

In this study, we propose FLEXLLM, a mathematical
model-based solver that identifies cost-optimal parallelization
strategies for heterogeneous GPU environments under SLO
constraints. Through LCF-enhanced performance modeling
with minimal profiling overhead, we demonstrate that strategic
architecture selection is as critical as hardware investment for
economical LLM deployment.

ACKNOWLEDGEMENT

This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea government

(MSIT)(RS-2025-00564249).

[1]

[2]

[3]1 S

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren,
Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of large
language models.” arXiv preprint arXiv:2303.18223, 2023. Availabﬁ::
https:/Eu‘xiV.or /abs/2303. 8283.

Y. Huang, Y. %heng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, and Y. Wu, “GPipe: Efficient training of giant neural
networks using pipeline parallelism,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 32, 2019.

. Chen, Y. Lin, M. Zhang, and Y. Wu, “Efficient and economic large
language model inference with attention offloading.” arXiv preprint
arX1v:2405.01814, 2024. Available: https://arxiv.org/abs/2405.0 814.
S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “PyTorch distributed:
Exlperiences on accelerating data Sarallel training,” Proc. VLDB Endow.,
vol. 13, pp. 3005-3018, Aug. 2020.

S. M. Khan and A. Mann, “Ai chips: What they are and why they
g&tgrﬁ’ tech. rep., Center for Security and Emerging Technology, Apr.
H. Li, Y. Liu, Y. Cheng, S. Ray, K. Du, and J. Jiang, “Eloquent: A
more robust transmission scheme for llm token streaming,” in Proc.
%gngl SIGCOMM Workshop on Networks for AI Computing, pp. 3440,

OpenAl, “Openai api pricing.” [Online]. Available: https://openai.com/
api/pricing, 2024. [Accessed: May 17, 2025].

Anthropic, “Message batches api: Run jobs up to 50% cheaper.” [On-
line]. Available: https://www.anthropic.com/news/message-batches-api,
2024. [Accessed: Dec. 30, 2024].

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.
A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. Gulavani,
A. Tumanov, and R. Ramjee, “Taming throughput-latency tradeoff in 1lm
inference with sarathi-serve,” in Proc. of the 18th USENIX Symposium
ggzaperating Systems Design and Implementation (OSDI), pp. 117-134,

Z. Cai, X. Zhang, Z. Tan, and Z. Wei, “NQKYV: A KV cache quantization
scheme based on normal distribution characteristics.” arXiv preprint
arXiv:2505.16210, 2025. Available: https://arxiv.org/abs/2505.16210.
R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” in Proc. of the 5th Conference on Machine Learning and
Systems (MLSys), pp. 606-624, 2023.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training multi-billion parameter language models
using model parallelism.” arXiv preprint arXiv:1909.08053, 2019. Avail-
able: https://arxiv.org/abs/l909. 8053.
DeepS(Peed Team, ‘Deepsyeed pipeline parallelism tutorial.” https://
www.deepspeed.ai/tutorials/pipeline/, 2025. Accessed: May 22, 2025.
Y. Jiang, F. Fu, X. Yao, G. He, X. Miao, A. Klimovic, B. Cui, B. Yuan,
and E. Yoneki, “Demystifying cost-efficiency in llm serving over het-
erogeneous gpus.” arXiv preprint arXiv:2502.00722, 2025. Available:
https://arxiv.org/abs/2502.00722.

Y. Mei, Y. Zhuang, X. Miao, J. Yang, Z. Jia, and R. Vinayak, “Helix:
Serving large language models over heterogeneous gpus and network
via max-flow,” in Proc. of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1 (ASPLOS), pp. 586-602, 2025.

Y. Jiang, R. Yan, X. Yao, Y. Zhou, B. Chen, and B. Yuan, “Hexgen:
Generative inference of large language model over heterogeneous en-
vironment.” arXiv preprint arXiv:2311.11514, 2023. Available: https:
/larxiv.org/abs/2311.11514.

S. Jaiswal, K. Jain, Y. Simmhan, A. Parayil, A. Mallick, R. Wang,
R. S. Amant, C. Bansal, V. Riihle, A. Kulkarni, S. Kofsky, and
S. Rajmohan, “Serving models, fast and slow: Optimizing heterogeneous
Ilm inferencing workloads at scale.” arXiv preprint arXiv:2502.14617,
2025. Available: https://arxiv.org/abs/2502.14617.

M. Sinha, L. Vincent, M. Sand, and S. Banerjee, “FNOPerf: A robust
empirical model for predicting llm performance,” in Proc. of the 31st
IEEE International Conference on High Performance Computing, Data
and Analytics Workshop (HiPCW), Ipp. 221-222, 2024.

S. Imai, R. Nakazawa, M. Amaral, S. Choochotkaew, and T. Chiba,
“Predicting 1lm inference latency: A roofline-driven ml method,” in Proc.
of the Annual Conference on Neural Information Processing Systems
(NeurIPS), 2024.

Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang,
C. Ré, 1. Stoica, and C. Zhang, “Flexgen: High-throughput generative
inference of large language models with a single gpu,” in Proc. of
the International Conference on Machine Learning (ICML), pp. 31094—
31116, 2023.

K. Rayner, E. R. Schotter, M. E. J. Masson, M. C. Potter, and
R. Treiman, “So much to read, so little time: how do we read, and
can slpeed reading helg)?,” Psychological Science in the Public Interest,
vol. 17, no. 1, pp. 4-34, 2016.

https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2405.01814
https://openai.com/api/pricing
https://openai.com/api/pricing
https://www.anthropic.com/news/message-batches-api
https://arxiv.org/abs/2505.16210
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://www.deepspeed.ai/tutorials/pipeline/
https://www.deepspeed.ai/tutorials/pipeline/
https://arxiv.org/abs/2502.00722
https://arxiv.org/abs/2311.11514
https://arxiv.org/abs/2311.11514
https://arxiv.org/abs/2502.14617

	Introduction
	Background
	Large Language Model Inference and Memory Bottleneck
	Parallelization Strategies for Heterogeneous Setup
	Related Work on Heterogeneous LLM Serving

	Problem Definition
	Architecture Selection Optimization
	SLO Evaluation Metric: Latency per Token (LPT)
	Limitation: Naive Cost-Efficiency Metric
	SLO-Aware Cost-Efficient Architecture Selection

	FlexLLM System Design
	System Overview and Architecture
	Input Processing Module
	Workload Specification Interface
	Hardware Configuration Collection

	Performance Modeling Engine
	Theoretical Performance Calculator
	Workload and Layer-wise FLOPs Modeling
	Architecture-specific Performance Models
	Linear Correction Model

	Architecture Selection Optimizer

	Implementation
	Evaluation
	Experimental setup
	Model Prediction Accuracy Validation
	Best Cost-Efficient Model & Architecture

	Conclusion
	References

