
OPENCXD: An Open Real-Device-Guided Hybrid
Evaluation Framework for CXL-SSDs

Hyunsun Chung1,∗, Junhyeok Park1,∗, Taewan Noh1, Seonghoon Ahn1

Kihwan Kim1, Ming Zhao2, Youngjae Kim1,†
1Sogang University, Seoul, Republic of Korea, 2Arizona State University, Tempe, AZ, USA

Abstract—The advent of Compute Express Link (CXL) enables
SSDs to participate in the memory hierarchy as large-capacity,
byte-addressable memory devices. These CXL-enabled SSDs
(CXL-SSDs) offer a promising new tier between DRAM and tra-
ditional storage, combining NAND flash density with memory-like
access semantics. However, evaluating the performance of CXL-
SSDs remains difficult due to the lack of hardware that natively
supports the CXL.mem protocol on SSDs. As a result, most prior
work relies on hybrid simulators combining CPU models aug-
mented with CXL.mem semantics and SSD simulators that ap-
proximate internal flash behaviors. While effective for early-stage
exploration, this approach cannot faithfully model firmware-level
interactions and low-level storage dynamics critical to CXL-
SSD performance. In this paper, we present OPENCXD, a real-
device-guided hybrid evaluation framework that bridges the gap
between simulation and hardware. OPENCXD integrates a cycle-
accurate CXL.mem simulator on the host side with a physical
OpenSSD platform running real firmware. This enables in-situ
firmware execution triggered by simulated memory requests.
Through these contributions, OPENCXD reflects device-level
phenomena unobservable in simulation-only setups, providing
critical insights for future firmware design tailored to CXL-SSDs.

Index Terms—Compute Express Link, Solid-State Drive

I. INTRODUCTION

The growing scale of modern deep learning models and data
analytics applications has led to memory footprints reaching
tens of terabytes [1]–[3], far beyond the limits of traditional
DRAM installations. This widening gap between demand and
capacity has resurrected the infamous memory wall [4], in
which memory bandwidth and size become critical bottlenecks
to system performance. To mitigate this issue, researchers have
begun exploring memory expansion techniques that repurpose
alternative technologies as additional memory [5]–[7], paving
the way for new architectural paradigms. Among these, Com-
pute Express Link (CXL) [8] has emerged as a promising
enabler of such memory expansion. CXL is a high-bandwidth,
cache-coherent interconnect built on top of the PCI Express
(PCIe) [9] infrastructure. By using CXL, large-capacity PCIe
devices like flash-based Solid-State Drives (SSDs) can be
attached directly to the host system memory space, creating a
memory pool that augments or disaggregates DRAM [10].

Notably, CXL’s memory semantics (CXL.mem) support
byte-addressable access to device memory, meaning a CPU
can read or write an SSD’s onboard DRAM buffer with
ordinary load and store instructions. This eliminates the need
for traditional I/O commands, significantly reducing software

∗They are first co-authors and have contributed equally.
†Y. Kim is the corresponding author.

overhead and access latency while enabling a unified, tiered
memory architecture that extends beyond DRAM’s capacity
limits [11]. Building on this capability, a new class of memory-
semantic devices, CXL-enabled SSDs (CXL-SSDs), has begun
to emerge (§II). These devices leverage mature NAND flash
technology to offer terabytes of byte-addressable capacity at a
fraction of DRAM’s cost per gigabyte [7], while maintaining
access latencies in the microsecond range. Although slower
than DRAM by several orders of magnitude, CXL-SSDs pro-
vide significantly lower latency than traditional SSDs accessed
via the block interface (e.g., NVMe [12]).

The key challenge for CXL-SSDs is how to architect and
evaluate these devices effectively, maximizing their perfor-
mance potential while addressing inherent latency trade-offs.
However, this evaluation remains difficult in practice, due to
the lack of hardware that natively supports the CXL.mem pro-
tocol on SSDs. To overcome this, recent research has adopted
software-based hybrid simulators, combining CPU simulators
(e.g., MacSim [13], Gem5 [14]) extended with CXL.mem
semantics and SSD simulators (e.g., SimpleSSD [15], Flash-
Sim [16]) that model internal flash behaviors such as address
translation and I/O scheduling. This methodology enables
early-stage design exploration and has been widely used in
prior work [17]–[19].

Notably, the CXL.mem interface overhead itself has been
characterized in prior studies [20], [21], and shown to be
relatively consistent and bounded [10]. As such, injecting
this CXL interface time overhead into x86 simulations as a
parameter is generally considered a reasonable approach for
modeling host-side access costs. However, the same cannot be
said for modeling device-side behavior. Replacing a real SSD
with a simulator introduces significant challenges in capturing
the full complexity of CXL-SSD-specific firmware logic and
storage interactions, which are limitations that fundamentally
hinder accurate evaluation of CXL-SSD designs (§III).

There are two key limitations of simulation-only evalu-
ation. First, since CXL-SSDs function as memory rather
than storage, they must handle fine-grained, cacheline-level
memory accesses, making them highly sensitive to device-side
performance fluctuations. However, simulators typically rely
on static latency models, overlooking dynamic behaviors such
as real-time NAND latency variability and firmware delays,
resulting in latency estimation errors as high as 36% [22].
Second, CXL-SSDs introduce new firmware-managed mech-
anisms, such as write logging and log compaction [11], that
do not exist in conventional SSDs. Simulating these new

https://orcid.org/0009-0008-9293-173X

behaviors solely from the host side, without executing them on
real hardware and capturing internal device interactions, fails
to reflect crucial contention and scheduling effects, yielding
an incomplete and often misleading performance picture [23].

In this paper, we present OPENCXD, a real-device-guided
hybrid evaluation framework for CXL-SSDs. OPENCXD com-
bines a cycle-accurate CPU and memory simulator augmented
with CXL.mem support and a hardware platform based on
OpenSSD [23], an open-source SSD prototype that runs actual
controller firmware. In essence, the host side of the system
(CPU, cache, and memory controllers) is simulated, allowing
full control over experimental scenarios and observability of
system-level events, while the storage side is handled by a
physical device that embodies a CXL-SSD (§IV).

We addresses two key challenges in developing OPENCXD:

• Enabling Cacheline-Level Access over NVMe. Unlike
DRAM or DRAM-based CXL memory modules [24], pub-
licly available SSD prototypes do not natively support
cacheline-sized CXL.mem transactions. Bridging this gap
is non-trivial because NVMe operates on fixed-sized (e.g.,
4 KB) blocks with DMA-based transfers, not on byte-
addressable memory [25], [26]. To address this, OPENCXD
defines custom NVMe commands that encode CXL.mem
semantics and emulate cacheline-granularity memory access
without modifying the physical hardware interface.

• Cycle-Level Timing Integration with Real Firmware.
While the cycle-accurate host simulator tracks timing at
the cycle level, the OpenSSD operates asynchronously with
real-time firmware execution. OPENCXD resolves this by
adopting a device-in-the-loop design: for each memory
access, the simulator pauses execution, delegates the op-
eration to OpenSSD running real firmware, and waits until
the firmware measures the end-to-end latency and reports
it to the host simulator. The simulator then resumes by
converting the measured latency to cycles using a calibrated
timing ratio and advances its internal clock accordingly.

We then implement key firmware components of a state-
of-the-art CXL-SSD [11] within the OpenSSD device. This
allows fine-grained memory requests from the host to trigger
CXL-SSD firmware execution. These design choices enable
OPENCXD to maintain the configurability and observability
of full-system simulation, while introducing hardware realism
through in-situ execution of the SSD’s software stack.

Our evaluation shows that OPENCXD captures performance
characteristics from real-life hardware unobservable in soft-
ware SSD simulations. These include 2.4× higher NAND
read latencies due to lower-level NAND controller and SSD
firmware overheads, as well as DRAM latency spikes over
2µs. Such evaluation highlight the need for real-device-guided
evaluation to uncover nuanced CXL-SSD dynamics such as
out-of-order persistence and timing variability.

This work makes the following contributions:

• Real-Device-Guided CXL-SSD Evaluation Framework:
We present OPENCXD, the first hybrid platform that com-
bines a full-system CXL.mem simulator with an open-
source SSD prototype running real firmware, enabling ac-
curate and practical evaluation of CXL-SSD architectures.

Ap
pl

ica
tio

n

CXL Memory RegionHost DRAM RegionSystem
Memory

Vi
rt

ua
l A

dd
re

ss
 S

pa
ce

DRAM

NAND Flash
Chips

FTLFIL

CXL-SSD

Cacheline
(64B)

CXL Driver

CXL Controller (HIL)

CXL.mem
RequestsPCIe

Page(16KB)

Fig. 1: System architecture of CXL-SSD.

• Device-in-the-Loop Architecture: We develop a tightly
coupled host-device interface that allows simulated memory
accesses to trigger firmware execution and measure and
integrate its latency into host-side simulation in situ.

• Implementation of CXL-SSD Internals on Hardware:
We implement key CXL-SSD components, including write
log and log index, on actual hardware, revealing behaviors
and bottlenecks that prior simulation-only setups miss.

II. BACKGROUND

A. Hardware Architecture of CXL-SSDs
The hardware architecture of CXL-SSDs is composed of

the same core components as conventional SSDs [7], [11],
[27], including NAND, DRAM, and a System-on-Chip (SoC)
controller. CXL-SSDs differ from traditional SSDs in how
the device is integrated into the system: they function as
CXL.mem endpoints, exposing their capacity as part of the
host’s memory address space. When the CPU accesses a CXL
memory region, cacheline-sized memory requests (typically
64 B) are issued via the CXL driver, and the Host Interface
Layer (HIL) of the SSD controller buffer them in the on-board
DRAM, and eventually flush them to NAND in page-sized
units (e.g., 16 KB) through the Flash Translation Layer (FTL)
and Flash Interface Layer (FIL), as illustrated in Fig. 1.

B. Software Architecture of CXL-SSDs
SkyByte [11] represents the state-of-the-art design of a

CXL-SSD and provides a detailed explanation of its inter-
nal software architecture, as illustrated in Fig. 2. The key
software components inside the CXL-SSD include a Write
Log, Data Cache, and Log Index, which bridge the granularity
mismatch between 64 B cacheline accesses and NAND page-
level operations. The Write Log buffers incoming CXL.mem
write requests at 64 B granularity. The Data Cache functions
similarly to a traditional SSD’s in-memory NAND page cache,
managing recently accessed NAND pages. Additionally, to
mitigate the latency penalty from NAND I/O, SkyByte incor-
porates context switching to perform other I/O requests while
said NAND I/O operation is ongoing.

Fig. 2(a) illustrates the write path. When a CXL.mem write
arrives, 1 the device first stores the cacheline-sized payload
into the Write Log. 2 If the corresponding NAND page is
resident in the Data Cache, the cacheline update is also applied
there to maintain consistency. 3 The system then updates the
Log Index to track the location of the buffered write.

Fig. 2(b) illustrates the read path. When a CXL.mem read
arrives, 1 the system checks whether the target cacheline is

Write Log Data Cache

Flash Translation Layer

...

Log Index

CXL.mem
WriteReq

...

Yes
Page Cached ?

Data Cache
Entry for LPN

Cacheline

< LPN, Cacheline Offset >

LPN =(MemAddr div PageSize)

MemAddr

Cacheline Offset =((MemAddr mod PageSize)
 div CachelineSize)

1 2

3

(a) Write operation

Write Log Data Cache

Flash Translation Layer

...

Log Index

CXL.mem
ReadReq

...

Yes

return cacheline

Page Cached ?

Yes

No
Logged ?

No

NAND Page Read

MemAddrLPN

LPN, Cacheline Offset

12

3

4
return cacheline

(b) Read operation
Fig. 2: Write/read flows of the state-of-the-art CXL-SSD [11],
comprising a Write Log, Data Cache, and Log Index.

present in the Data Cache; if so, it is returned directly to
the host. 2 If the Data Cache does not contain the cacheline
but the Write Log does, the system retrieves and returns the
buffered version. In cases where the cacheline is found in
neither buffer, 3 the corresponding NAND page is read into
the Data Cache, and 4 the cacheline is served from there.
During this page load, existing NAND pages in the Data
Cache may be evicted and flushed back to NAND.

To manage and track buffered writes, SkyByte employs a
two-level Log Index: the first level identifies modified NAND
pages, while the second level maps individual cacheline offsets
within those pages. To reclaim log space and persist updates,
the system periodically performs log compaction. During
compaction, the system first scans the first-level index to
identify NAND pages that contain valid log entries. If such
a page is already present in the Data Cache, it is flushed
directly to NAND. Otherwise, the NAND page is loaded into
memory. It then consults the second-level index to locate all
valid, buffered cachelines associated with the page and merges
them into the in-memory copy. Finally, the merged page is
written back to NAND, and the log entries are invalidated.

III. MOTIVATION

A. Limitations of Purely Software-Driven SSD Simulation

Limitation #1) Reliance on Parameter-Driven Calculation:
Accurate characterization of NAND I/O latency is critical for
optimizing CXL-SSDs, where all memory accesses operate
at cacheline granularity and DRAM cache misses directly
translate to NAND operations (§II-B). As CXL-SSDs function
as memory-semantic devices, they are highly sensitive to the
latency path between on-board DRAM and NAND. Therefore,
understanding and optimizing these paths require precise vis-
ibility into device-level behavior.

However, most SSD simulators, including SimpleSSD [15]
used in SkyByte, rely on parameter-driven, static latency

modeling to estimate NAND flash behavior [28]. These models
use predefined latency values of the NAND flash used in the
SSD as input parameters to derive NAND read and program
latency [29], ignoring dynamic factors such as flash controller
scheduling and internal firmware optimizations. While efforts
have been made to address this issue, for example, SimpleSSD
now models ARM cores and flash parallelism (channels, ways,
dies, planes) to simulate NAND I/O scheduling, these remain
abstractions built atop assumed hardware parameters. Indeed,
SimpleSSD reports deviations of up to 28% in throughput and
36% in latency compared to real hardware [22]. This limitation
is also evident in our experiments (§III-B), where static latency
modeling fails to reflect real-world NAND I/O behavior.

Limitation #2) Missing Hardware-Grounded Firmware
Validation: A side effect of using software-driven SSD simu-
lations is as no real SSD hardware is involved, all code related
to SSD firmware is run on a host system. This environment
can lead to inaccurate assumptions of what is possible in SSD
firmware for implementing CXL-SSD optimizations. SkyByte
works around this limitation by implementing their optimiza-
tions, such as the Write Log, Log Index, and Data Cache, in
prototype FPGA hardware, and use the averages of operation
measurements in the simulation [11]. While this approach
enables partial evaluation grounded in real hardware, it comes
short of a holistic assessment across the full CXL-SSD stack.
Specifically, it cannot capture the dynamic interaction among
DRAM, NAND flash, and ARM cores triggered by real-time
CXL.mem requests during workload execution (§V).

The approach also faces previously mentioned pitfalls of
simulations using statically declared parameters for opera-
tional overheads in CXL-SSD evaluation. Although certain
firmware components are executed on prototype hardware, the
measured latencies are averaged and reused as static inputs
in the simulator, making the evaluation effectively parameter-
driven. As a result, it cannot capture the dynamic, request-level
interactions that emerge from executing the full firmware stack
on real SSD hardware under live CXL.mem workloads.

500

550

600

650

700

750

0 2000 4000 6000 8000 10000 12000

150

200

of points

Tr
an

sf
er

tim
e

(µ
s)

tR (OpenSSD) tProg (OpenSSD) tR (SimpleSSD) tProg (SimpleSSD)

(a)

400

410

420

430

440

450

0 2000 4000 6000 8000 10000 12000190

200

210

of points

Tr
an

sf
er

tim
e

(µ
s)

(b)
Fig. 3: NAND read/program I/O times of two different types
of NAND (a) and (b) with iodepth=1.

6000 6200 6400 6600 6800 7000
of points

0

2000

4000

6000

8000
Tr

an
sf

er
tim

e
(µ

s)
tR (OpenSSD) tProg (OpenSSD) tR (SimpleSSD) tProg (SimpleSSD)

(a)

6000 6200 6400 6600 6800 7000
of points

0

2000

4000

6000

8000

Tr
an

sf
er

tim
e

(µ
s)

(b)
Fig. 4: NAND read/program I/O times of two different types
of NAND (a) and (b) with iodepth=8. The data is zoomed
in to show the 6000-7000 range for clarity.

B. Real-Life NAND I/O Characteristics in SSDs

To show the degree of deviation of real-life hardware from
a theoretical simulation, we measured NAND read/program
I/O request times of two different NAND modules from (a)
SK Hynix and (b) Toshiba using the OpenSSD platform [23].
The specification of said NAND modules can be seen in
Table I. The measurements were taken using the randread
and randwrite benchmarks of fio [30] with an I/O unit
of the NAND page size. The specifications of the OpenSSD
platform and host workstation are in Tables III and IV.

TABLE I: Specifications of NAND flash modules used.

Manufacturer Capacity Parallelism
Setup

NAND Flash
Page Size

(a) SK Hynix 1 TiB 4 Channel,
8 Way 16 KiB(b) Toshiba 256 GiB

Measurements of the time between when the NAND I/O
request is issued to the low-level NAND flash controller by the
SSD firmware, and when the firmware receives confirmation of
request completion by the NAND flash controller were taken.
For comparison with the SSD simulation platform, results
from SimpleSSD was measured using its built-in I/O request
generating benchmark, with simulation parameters taken from
NAND (a) specifications. As SimpleSSD experiments used
only NAND (a) parameters, the results are shown exclusively
in figures based on that setup.

Fig. 3 shows the results with one outstanding I/O request,
and reveals the differing performance characteristics of real
and simulated NAND. Comparing NAND (a)’s read and
program latency from OpenSSD and SimpleSSD shows that
the real life NAND latency measurements are higher than
the simulated results. Such results were observed as the
main contributor to NAND latency is the provided NAND
read/program latency parameters in the simulator.

With a workload with higher outstanding I/O requests, devi-
ation from the simulation results exacerbates, as seen in Fig. 4
which shows the results with eight outstanding I/O requests.

TABLE II: Standard deviation of NAND read (tR) and pro-
gram (tProg) times of NAND (a), (b), and SimpleSSD’s
simulation, with iodepth=1 and iodepth=8. Units are in
microseconds.

NAND
Type

iodepth=1 iodepth=8

tR tProg tR tProg

(a) 1.1 37.61 974.16 1110.91
(b) 0.89 3.19 1374.84 1107.97

SimpleSSD 0 0 11.1 0

Table II shows the disparity of real and simulated NAND
latency variance, with simulated NAND latency staying close
to the given latency parameters, while real NAND latency’s
standard deviation grows to the thousand of microseconds.
While SimpleSSD does show small amounts of deviation for
tR due to its timeline scheduling of NAND I/O, it is not able
to cover the extent of actual deviation.

Such a difference in latency between real and simulated
NAND I/O is due to the low-level NAND flash controller and
SSD firmware overhead not being taken into consideration in
the simulations. These additional factors that add additional
latency therefore act as blind spots in the simulation accuracy.

0 100 200 300 400 500

tProg
iodepth=8

tProg
iodepth=1

tR
iodepth=8

tR
iodepth=1

1100 1200 1300 3300 3400 3500
Transfer time (µs)

Flash controller
& NAND I/O
Firmware Overhead

Fig. 5: Breakdown of NAND (b)’s average tR and tProg.

Fig. 5 demonstrates the significance of these blind spots by
breaking down the average NAND I/O time of NAND (b). The
breakdown shows the presence of flash controller and firmware
overhead, as well as a positive correlation with outstanding I/O
requests and NAND I/O latency. This trend is further verified
by the latency values documented by OpenSSD paper [23]
showing the same trends as seen in our experimental results.

196 197 198 199 200 201
Transfer Time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

NAND (a)
NAND (b)

(a)

550 575 600 625 650 675 700 725
Transfer Time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

420 440
0.0

0.5

1.0

NAND (a)
NAND (b)

(b)

0 2000 4000 6000 8000 10000
Transfer Time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

NAND (a)
NAND (b)

(c)
Fig. 6: NAND I/O latency Cumulative Distribution Func-
tion (CDF) of two different types of NAND in different
workloads (a) randread, iodepth=1, (b) randwrite,
iodepth=1, (c) randread, iodepth=8.

A deeper analysis of the real NAND results reveals the
two NAND types also show different latency characteristics
between each other. To demonstrate, Fig. 6 shows NAND
I/O latency CDF graphs of the three previous fio bench-
marks. Even with benchmarks where both NAND types show

SSD Platform

Host

PCIe

NVMe Driver

x86 Simulator

IF ID

ALUALUALU L1/
L2 LLCCycle

CNT

Memory Trace

Reorder Buffer

DRAM I/F

Perf. Model

CXL I/F

NVMe Controller (HIL)

Reconfigurable CXL-SSD Components

 FTL & FIL

CXL.mem ReqNVMe CMD

CQE

<OpCode, MemAddr>

LPN

1

2

3

4

5

Latency

Fig. 7: Architecture of OPENCXD and its execution flow.

overlapping ranges of latency values, each NAND module
shows differing distributions of latency for all benchmarks.
Plus, returning to Fig. 3, the NAND (b) interestingly shows a
brief spike in latency of up to 440µs before returning to near-
median values, an effect that cannot be captured by simulators.
Bridging Simulation and Reality: Our findings suggest that
while NAND flash latency specifications are useful, they do not
fully capture the nuances of per-request performance in real-
world scenarios. In other words, although SSD simulators are
effective for estimating average performance and extracting
architectural insights, they often diverge from real behavior
when used to evaluate fine-grained, real-time performance at
the request level. This gap becomes especially critical in the
context of CXL-SSDs, where the device functions more like
memory than traditional block storage.

To address this issue, we explore the integration of the
OpenSSD hardware platform with a host-side x86 simulator to
construct a hybrid evaluation environment for CXL-SSDs. By
combining the cycle-level accuracy of x86 simulation with
the realism of actual SSD hardware execution, this approach
enables the development and evaluation of CXL-SSD inter-
nal software components with both practical feasibility and
performance characteristics that closely reflect real behavior.
Building on this foundation, we propose OPENCXD, the first
real-device-guided CXL-SSD simulation platform.

IV. OPENCXD: PROPOSED SYSTEM

A. Architectural Overview and Operation Flow

The overall architecture consists of two main components:
x86 simulator and SSD platform. The x86 simulator provides
cycle-accurate simulation of the entire memory hierarchy and
replays memory traces derived from the target workload to
reconstruct its instruction execution flow. It models detailed
behaviors of the multi-layered cache hierarchy and the memory
interface, allowing simulation of scenarios where Last-Level
Cache (LLC) misses trigger memory accesses to either the
main system memory or CXL memory. OPENCXD leverages
this capability by intercepting LLC misses and, when the
target address falls within a CXL-mapped range, redirecting

the memory request to the SSD platform. The SSD platform
is built on an OpenSSD platform [23], which replicates the
hardware architecture of a commercial SSD, incorporating a
SoC controller, DRAM, and NAND flash chips. The SoC runs
a SSD firmware, including the HIL, FTL, and FIL (§II-A).

As illustrated in Fig. 7, the execution flow of OPENCXD
proceeds as follows: 1 When an LLC miss occurs, the x86
simulator checks whether the missed address falls within the
memory-mapped region assigned to the CXL-SSD. 2 If it
does, the request is encapsulated into a custom NVMe com-
mand that explicitly encodes the CXL.mem access semantics
for OPENCXD, and issued to the SSD platform via NVMe
passthrough [31]. 3 On the SSD side, the NVMe controller
fetches the command and performs the corresponding CXL-
SSD operation (e.g., write logging) based on the embedded
request information. During this time, the x86 simulator pauses
its cycle count. 4 The total device latency is measured on the
SSD and returned to the host by embedding it in a reserved
field of the Completion Queue Entry (CQE) [12]. 5 The
NVMe driver extracts this latency from the CQE and reports
it to the x86 simulator, which adds the CXL.mem interface
overhead and integrates the total latency into its cycle count
with resuming its cylce count progression.

B. x86 Simulator with CXL-SSD Integration

dword
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

description
CID P Reserved

Namespace ID
Reserved

Metadata Pointer

Reserved
CXL Memory Address

Load or Store

Reserved

opcodeF

PRPentry#1 (not used)

PRPentry#2 (not used)

dword
0
1

description
R

Device Op Latency
Op OverheadR SCT

(a) NVMe Command (SQE) (b) NVMe CQE

※ Device Op Latency = NAND
I/O Latency + Op Overhead

NVMe Standard

OpenCXD Extension

2 SQ ID
3 CID

CQ ID
Status Field P

Fig. 8: NVMe command and CQE for OPENCXD.

CXL Memory Request over NVMe: We extend the memory
subsystem of the x86 simulator with a custom CXL.mem
path that integrates with the SSD platform. This integration
allows memory requests targeting the CXL-SSD region to be
redirected as NVMe commands to the device. Specifically, the
x86 simulator distinguishes memory requests by inspecting
the target address of each 64-byte cacheline access. If the
address falls within a CXL-SSD-mapped region, the simulator
constructs a custom NVMe command that embeds the memory
address and opcode of the memory request (see Figure 8(a)).
Note that NVMe’s data payload transfer is intentionally dis-
abled [25], as the x86 simulators, including MacSim [13],
typically do not model and process actual data payloads.
Device-in-the-Loop Timing Integration: Once the command
is constructed, the x86 simulator issues it to the SSD platform
via NVMe passthrough [31], then pauses its cycle progression
and waits. Upon receiving the command, the SSD controller
starts measuring the latency of the CXL-SSD operation. When
the operation completes, the controller stops the timer, embeds
the measured latency into a reserved field of the CQE, and
returns the CQE to the host. To support fine-grained per-
formance analysis and context switches used in CXL-SSD

optimizations, the controller also extracts and reports CXL
operation overhead separately from the total device latency
(see Figure 8(b)). Then, the simulator resumes execution
by adding the CXL.mem interface overhead to the device-
measured latency and converting the total delay into cycles
based on its internal clock frequency.

To model the CXL.mem interface delay, OPENCXD applies
a configurable overhead value. As prior work has shown [10],
the CXL.mem interface delay is generally stable; for instance,
SkyByte [11] assumes a fixed latency of 40 ns, which we also
adopt in our evaluation. This delay parameter in OPENCXD
can be adjusted to emulate different CXL interface designs.

Host SSD
LLC Miss

NVMe CMD(CXL.mem Req)

CXL-SSD
Operation

NVMe Interface

NVMe Inteface

start

end
CQE
(Latency)

Latency
Cycle Count

Paused

Tickcur

Tickcur += Latency / ClockFreq
Latency += CxlMemCost

pause

resume

Response

Background
Processing

...
...

ZigZag region indicates
valid time flow

Fig. 9: Timing flow of a CXL memory request in OPENCXD.

As shown in Fig. 9, OPENCXD enables accurate device-in-
the-loop integration by suspending the x86 simulator during
each CXL-SSD access and incorporating measured firmware-
level latencies. This approach faithfully models CXL-SSD tim-
ing behavior while excluding NVMe communication overhead,
which would not be present in real CXL-SSDs.

C. SSD Platform with CXL-SSD Firmware Support
To reproduce the behavior of CXL-SSDs, we implement

key software components described in Section II-B on the
SSD platform. These include a Write Log, a Data Cache, and
a Log Index with log compaction support. In a conventional
SSD, incoming NVMe commands are typically handled by
the HIL using a block I/O handler. In contrast, OPENCXD
defines a new handler tailored for CXL-SSD operations. This
custom handler first extracts the memory address and opcode
(e.g., Read, Write) from the given CXL.mem memory request.
It then performs the corresponding operation based on the
opcode. For example, in the case of a write, the handler
appends the data to the current index of the Write Log. If
the Data Cache already contains the NAND page that includes
the target cacheline, the handler updates the relevant cacheline
offset within that cached page. Then, the Log Index is updated
to record the cacheline’s location, as illustrated in Fig. 2.

D. Concurrent Access Modeling and Future Extensions
OPENCXD in its current form can simulate concurrent

CXL-SSD access on the x86 simulator level. By replay-
ing workload traces collected from 8 Skylake cores with
3 threads each—naturally containing interleaved CXL.mem
accesses—OPENCXD reflects much of the timing behavior
of concurrent requests from a host system. While the current
design effectively models host-level concurrency, it focuses on

sequential request processing within the SSD platform when
interfacing through NVMe passthrough via ioctl. This design
choice simplifies the integration between the x86 simulator
and the SSD platform, ensuring consistent timing control and
reproducibility during trace replay. However, it also means that
simultaneous in-device processing paths, such as overlapping
NAND I/O operations or internal command pipelining, are not
exercised. This limitation may lead to an underestimation of
performance in workloads with a high consecutive cache miss
ratio in the CXL-SSD. Enhancing this aspect is planned for
future work, which will enable OPENCXD to more extensively
reflect performance characteristics of highly parallel CXL-
SSD architectures.

V. EVALUATION

A. Evaluation Setup

Implementation: We implement OPENCXD1 by combin-
ing MacSim [13] with OpenSSD [23]. Parts from Sky-
Byte’s implementation of MacSim were modified and used in
OPENCXD as well. For the host-side simulation, we use the
latest master branch of MacSim extended with CXL.mem
support, modeling 8 Skylake CPU cores with latency parame-
ters. To evaluate context switching behavior, we configure up
to 3 threads per core. On the device side, we adopt the latest
OpenSSD platform, DaisyPlus [32], and extend its firmware
with state-of-the-art CXL-SSD components described in §II-B.
The specifications of both the DaisyPlus platform and the host
system are listed in Tables III and IV.

TABLE III: Specifications of the OpenSSD platform.
SoC Xilinx Zynq UltraScale+ ZU17EG,

with ARM Cortex-A53 Core
NAND Module 256GB, 4 Channel & 8 Way
Interconnect PCIe Gen3 × 16 End-Points
DRAM 2GB LPDDR4 @ 2400MHz

TABLE IV: Specifications of the host system.
CPU Intel(R) Core(TM) i7-14700K CPU

@ 5.60GHz (28 cores)
Memory 32GB DDR5
OS Ubuntu 24.04.2, Linux Kernel 6.11.0

Evaluation Methodology: We evaluate OPENCXD using
memory traces from SkyByte [11], a state-of-the-art CXL-SSD
study, which includes seven workloads: bc, bfs-dense,
dlrm, radix, srad, tpcc, and ycsb. Each workload
is executed for one million memory accesses, except for
bfs-dense, which completes its full trace before reaching
that threshold. Note that while SkyByte is also built on
MacSim, its SSD backend is implemented using the Simp-
leSSD [15] simulator (§III). For a fair comparison, we modify
SkyByte’s latency parameters to match the NAND and DRAM
characteristics of our OpenSSD setup (see Table III). Both
systems perform SSD data prefilling and host-side memory
warm-up before executing the benchmarks.

B. Re-Evaluation of State-of-the-Art CXL-SSD Optimizations

Fig. 10 shows the average latencies of the performed bench-
marks. A key difference between OPENCXD and SkyByte

1https://github.com/hschung1652/opencxd

https://github.com/hschung1652/opencxd

bc bfs-
dense

dlrm radix srad tpcc ycsb
0

500

1000

1500

2000

L
at

en
cy

(n
s)

Log Write
Cache Hit

Log Write
(Context Switch)
Cache Hit
(Context Switch)

(a)
bc bfs-

dense
dlrm radix srad tpcc ycsb

0

50

100

150

200

250

L
at

en
cy

(µ
s)

OpenCXD SkyByte

(b)
Fig. 10: Average latency of key CXL-SSD optimizations, with
write log inserts and DRAM cache hits as seen in OPENCXD
(a) and cache misses as seen in both platforms (b).

can be seen in the write log insert and SSD DRAM cache hit
values, as seen in Fig. 10(a). SkyByte uses static parameters
applied at compile-time to calculate these features, leading to
write log insert and cache hit times to always be 640ns and
712ns respectively. However, OPENCXD experiences differing
latencies for each workload performed, and some latencies of
both operations go beyond the 2µs context switch threshold,
which SkyByte uses to trigger context switches [11].

This shows that memory workloads with CXL-SSDs can
show latency peaks well above average DRAM access times.
As all I/O with CXL-SSDs involve DRAM load/store oper-
ations, they will be highly sensitive to DRAM performance
penalties like latency spikes, requiring optimization to alleviate
said penalties. Another difference seen is the SSD DRAM
miss latency values in Fig. 10(b). By accounting for NAND
controller and firmware overheads, OPENCXD shows 2.4×
higher average latency than SkyByte across all benchmarks.

196.0 196.5 197.0 197.5 198.0

Latency (µs)
0

100

200

300

400

Fr
eq

ue
nc

y

(a)

100 150 200 250 300 350 400

Latency (µs)
0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

(b)

196.0196.5197.0197.5198.0198.5199.0

Latency (µs)
0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

(c)

100 120 140 160 180 200 220 240 260

Latency (µs)
0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

(d)
Fig. 11: Histograms of NAND read I/O latency during hit
misses for srad ((a): OPENCXD, (b): SkyByte) and ycsb
((c): OPENCXD, (d): SkyByte).

A deeper analysis of the spread of latencies can be seen
in Fig. 11. The histograms show SkyByte’s disproportionately
high percentage of a single NAND read latency value being
used, with srad and ycsb using the same value of 99.72µs
87.2% and 94.3% of the time respectively. SkyByte’s SSD sim-

ulation does take into account NAND I/O timeline scheduling.
However, for the majority of cases, it is unable to replicate a
realistic spread of latencies as seen in OPENCXD. Excluding
finding an applicable timeslot for the NAND I/O to take place,
SkyByte only performs mathematical calculations to apply
the NAND latency [33]. Tracking these dynamic changes in
latency is critical in evaluating CXL-SSDs, where performance
is sensitive on a per memory request basis. Therefore, using a
platform that can reflect these features like OPENCXD can of-
fer valuable insights in the design of CXL-SSD optimizations.

bc bfs-
dense

dlrm radix srad tpcc ycsb

101

102

C
yc

le
/I

ns
tr

uc
tio

n
R

at
io

OpenCXD SkyByte

Fig. 12: Log-scale comparison
of CPU cycles per completed
instruction for both systems.

Fig 12 reveals the con-
sequences of the previously
made observations in overall
performance impact. In all
workloads, OPENCXD re-
quired more CPU cycles to
perform the amount of in-
structions required to per-
form one million memory
accesses. This is in rela-
tion to the usage of context
switching in an attempt to avoid the latency penalty of a
NAND read. As said latencies are much higher in OPENCXD,
context switching over 3 threads was not enough to completely
hide the read latency. These results show that more threads are
required to hide the high read latency via context switching,
or new optimizations are required to cover NAND I/O.

C. Time breakdown of CXL-SSD optimizations

TABLE V: Average and standard deviation of operation time
related to CXL-SSD optimization. Units are in nanoseconds.

Workloads Check DRAM
Cache

Insert DRAM
Cache entry

Check Write
Log

srad
Average 37.02 32.04 170.86
Stddev 29.44 29.93 54.57

ycsb
Average 36.31 34.93 183.2
Stddev 29.79 29.59 30.03

Table V shows a breakdown of operation overhead of state
of the art CXL-SSD optimizations run on the SSD controller.
While overhead for DRAM cache operation on average are
seen to be around 30ns, the standard deviation is also 30ns,
showing a variance in operation overhead. The overhead for
checking the write log index has notably higher operation
overhead, showing a clear divide of operation characteristics
within the CXL-SSD controller.

D. NAND Parallelism-Orientated Log Compaction

One of the key advantages of OPENCXD is its ability
to reconfigure the firmware logic on the OpenSSD plat-
form. This flexibility allows us to experiment with CXL-
SSD–specific optimizations, particularly those that exploit
NAND parallelism. As a case study, we redesigned the log
compaction mechanism to leverage parallel NAND channels.
Originally, log compaction processes NAND pages sequen-
tially: it checks the first-level index to locate modified pages,
loads them into memory if not cached, merges buffered

cachelines from the second-level index, and flushes the merged
result to NAND (§II-B). In our parallel version, OPENCXD
first scans and tracks all required NAND pages, batches the
corresponding I/O requests, and then issues them simultane-
ously, enabling channel-level parallelism during compaction.

16 32 64
Write Log size (MB)

0

20

40

60

80

100

E
la

ps
ed

Ti
m

e
(s

)

Parallelized Sequential

Fig. 13: Comparison of write
log compaction based on ex-
ploiting NAND parallelism
across different write log sizes.

The evaluation of this op-
timization can be seen in
Fig. 13, where improve-
ments of up to 8× is seen
across all write log sizes.
These results not only show
the performance uplift of
considering NAND paral-
lelism, but also OPENCXD’s
ability to demonstrate imple-
mented optimizations in real
hardware.

VI. CONCLUSION

We present OPENCXD, a hybrid evaluation framework that
combines cycle-accurate x86 system simulation with real SSD
firmware execution on an OpenSSD platform. By bridging
simulation and hardware, OPENCXD captures critical device-
level behaviors, such as DRAM latency spikes and low-level
NAND controller and SSD firmware overheads, that prior
simulation-only approaches overlook. Our results highlight the
necessity of real-device-guided evaluation for accurate analysis
and design of CXL-SSDs.

ACKNOWLEDGMENTS

This work was partially supported by the National Re-
search Foundation of Korea (NRF) grants funded by the
Korea government (MSIT) (RS-2025-00564249 and RS-2024-
00453929).

REFERENCES

[1] Y. Kwon and M. Rhu, “Beyond the memory wall: a case for memory-
centric hpc system for deep learning,” in Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018.

[2] K. Derbyshire, “Memory Wall Problem Grows With LLMs,” Semicon-
ductor Engineering, 2025. Last accessed: 2025-05-03.

[3] Q. Zheng, J. Lee, D. A. Manno, and G. Grider, “Toward Standardized,
Open Object-Based Computational Storage For Large-Scale Scientific
Data Analytics,” in Proceedings of the 8th International Parallel Data
Systems Workshop (PDSW), 2023.

[4] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and
K. Keutzer, “AI and Memory Wall,” IEEE Micro, vol. 44, no. 03, 2024.

[5] G. F. Oliveira, S. Ghose, J. Gómez-Luna, A. Boroumand, A. Savery,
S. Rao, S. Qazi, G. Grignou, R. Thakur, E. Shiu, and O. Mutlu,
“Extending Memory Capacity in Modern Consumer Systems With
Emerging Non-Volatile Memory: Experimental Analysis and Charac-
terization Using the Intel Optane SSD,” IEEE Access, vol. 11, 2023.

[6] A. Badam and V. S. Pai, “SSDAlloc: hybrid SSD/RAM memory
management made easy,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation (NSDI), 2011.

[7] M. Jung, “Hello bytes, bye blocks: PCIe storage meets compute express
link for memory expansion (CXL-SSD),” in Proceedings of the 14th
ACM Workshop on Hot Topics in Storage and File Systems (HotStorage),
2022.

[8] CXL Consortium, “Compute Express Link (CXL) Specification Re-
vision 3.1.” https://computeexpresslink.org/wp-content/uploads/2024/02/
CXL-3.1-Specification.pdf, 2023. Accessed: 2025-05-29.

[9] PCI-SIG, “PCI-SIG Specifications.” https://pcisig.com/specifications.
Accessed: 2025-05-29.

[10] D. Das Sharma, R. Blankenship, and D. Berger, “An Introduction to the
Compute Express Link (CXL) Interconnect,” ACM Computing Surveys,
vol. 56, no. 11, 2024.

[11] H. Zhang, Y. Xue, Y. E. Zhou, S. Li, and J. Huang, “SkyByte: Archi-
tecting an Efficient Memory-Semantic CXL-based SSD with OS and
Hardware Co-design,” in Proceedings of the 2025 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2025.

[12] NVM Express Inc., “NVM Express Specification.” https://nvmexpress.
org/developers/nvme-specification, 2011. Last Accessed: 2025-05-10.

[13] Georgia Institute of Technology, “MacSim: A Heterogeneous Archi-
tecture Timing Model Simulator.” https://github.com/gthparch/macsim,
2025. Accessed: 2025-05-29.

[14] The gem5 Community, “The gem5 Simulator System.” https://www.
gem5.org/, 2025. Accessed: 2025-05-29.

[15] CAMELab, “SimpleSSD 2.0.12 Documentation.” https://docs.simplessd.
org/en/v2.0.12/, 2020. Accessed: 2025-05-29.

[16] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A Simulator
for NAND Flash-Based Solid-State Drives,” in Proceedings of the
2009 First International Conference on Advances in System Simulation
(SIMUL), 2009.

[17] S. Li, Y. E. Zhou, H. Ren, and J. Huang, “ByteFS: System Support for
(CXL-based) Memory-Semantic Solid-State Drives,” in Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2025.

[18] Y. Zhan, H. Hu, X. Yang, S. Wang, Q. Cao, H. Jiang, and J. Yao,
“RomeFS: A CXL-SSD Aware File System Exploiting Synergy of
Memory-Block Dual Paths,” in Proceedings of the 2024 ACM Sympo-
sium on Cloud Computing (SoCC), 2024.

[19] Y. Wang, Z. Wang, F. Meng, Y. Wang, Y. Ou, L. Wu, W. Hong, X. Ge,
and J. Cao, “A Full-System Simulation Framework for CXL-Based SSD
Memory System,” arXiv preprint arXiv:2501.02524, 2025.

[20] D. D. Sharma, “Transforming the Data-Centric World,” in Flash Memory
Summit (FMS), Aug. 2022. Keynote presentation.

[21] Microchip Technology Inc., “XpressConnect™ PCIe® Gen 5 and
CXL™ Retimer Family.” https://iotdesignpro.com/sites/default/files/
component datasheet/XpressConnect-PCIe-Retimers-Datasheet.pdf,
Nov. 2020. Accessed: 2025-05-29.

[22] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kan-
demir, and M. Jung, “Amber: enabling precise full-system simulation
with detailed modeling of all ssd resources,” in Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[23] J. Kwak, S. Lee, K. Park, J. Jeong, and Y. H. Song, “Cosmos+ OpenSSD:
Rapid Prototype for Flash Storage Systems,” ACM Transactions on
Storage, vol. 16, no. 3, 2020.

[24] SK hynix Inc., “SK hynix Completes Customer Validation
of CXL 2.0-based DDR5.” https://news.skhynix.com/
sk-hynix-completes-customer-validation-of-cxl-based-ddr5/, 2025.
Accessed: 2025-05-29.

[25] J. Park, C.-G. Lee, S. Hwang, S. Yang, J. Noh, W. Chung, J. Lee,
and Y. Kim, “BandSlim: A Novel Bandwidth and Space-Efficient KV-
SSD with an Escape-from-Block Approach,” in Proceedings of the 53rd
International Conference on Parallel Processing (ICPP), 2024.

[26] J. Park, J. Lee, and Y. Kim, “ByteExpress: A High-Performance and
Traffic-Efficient Inline Transfer of Small Payloads over NVMe,” in
Proceedings of the 17th ACM Workshop on Hot Topics in Storage and
File Systems (HotStorage), 2025.

[27] M. Kwon, S. Lee, and M. Jung, “Cache in Hand: Expander-Driven CXL
Prefetcher for Next Generation CXL-SSD,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Storage and File Systems (HotStorage),
2023.

[28] SimpleSSD Project, “Platform Abstraction Layer (PAL) – SimpleSSD
v2.0.12 Documentation.” https://docs.simplessd.org/en/v2.0.12/v2.0/pal.
html, 2024. Accessed: 2025-06-02.

[29] SimpleSSD Project, “PAL2.cc Source Code.” https://github.com/
SimpleSSD/SimpleSSD/blob/2.0/pal/old/PAL2.cc, 2024. Accessed:
2025-06-02.

[30] J. Axboe, “Flexible I/O Tester (fio).” https://github.com/axboe/fio, 2022.
Accessed: 2025-05-29.

[31] linux nvme, “libnvme: C Library for NVM Express on Linux.” https://
github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.h, 2025. Ac-
cessed: 2025-05-29.

[32] CRZ.TECHNOLOGY, “Daisy+ OpenSSD.” https://www.mangoboard.
com/main/view.asp?idx=1056&cate1=9. Accessed: 2025-05-29.

[33] Zhang, Haoyang and Xue, Yuqi and Zhou, Yirui Eric and Li, Shaobo
and Huang, Jian, “ftl.cc Source Code.” https://github.com/platformxlab/
skybyte/blob/main/src/SkyByte-Sim/ftl.cc, 2025. Accessed: 2025-06-02.

https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://pcisig.com/specifications
https://nvmexpress.org/developers/nvme-specification
https://nvmexpress.org/developers/nvme-specification
https://github.com/gthparch/macsim
https://www.gem5.org/
https://www.gem5.org/
https://docs.simplessd.org/en/v2.0.12/
https://docs.simplessd.org/en/v2.0.12/
https://iotdesignpro.com/sites/default/files/component_datasheet/XpressConnect-PCIe-Retimers-Datasheet.pdf
https://iotdesignpro.com/sites/default/files/component_datasheet/XpressConnect-PCIe-Retimers-Datasheet.pdf
https://news.skhynix.com/sk-hynix-completes-customer-validation-of-cxl-based-ddr5/
https://news.skhynix.com/sk-hynix-completes-customer-validation-of-cxl-based-ddr5/
https://docs.simplessd.org/en/v2.0.12/v2.0/pal.html
https://docs.simplessd.org/en/v2.0.12/v2.0/pal.html
https://github.com/SimpleSSD/SimpleSSD/blob/2.0/pal/old/PAL2.cc
https://github.com/SimpleSSD/SimpleSSD/blob/2.0/pal/old/PAL2.cc
https://github.com/axboe/fio
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.h
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.h
https://www.mangoboard.com/main/view.asp?idx=1056&cate1=9
https://www.mangoboard.com/main/view.asp?idx=1056&cate1=9
https://github.com/platformxlab/skybyte/blob/main/src/SkyByte-Sim/ftl.cc
https://github.com/platformxlab/skybyte/blob/main/src/SkyByte-Sim/ftl.cc

	Introduction
	Background
	Hardware Architecture of CXL-SSDs
	Software Architecture of CXL-SSDs

	Motivation
	Limitations of Purely Software-Driven SSD Simulation
	Real-Life NAND I/O Characteristics in SSDs

	OpenCXD: Proposed System
	Architectural Overview and Operation Flow
	x86 Simulator with CXL-SSD Integration
	SSD Platform with CXL-SSD Firmware Support
	Concurrent Access Modeling and Future Extensions

	Evaluation
	Evaluation Setup
	Re-Evaluation of State-of-the-Art CXL-SSD Optimizations
	Time breakdown of CXL-SSD optimizations
	NAND Parallelism-Orientated Log Compaction

	Conclusion
	References

