
1

KVAccel: A Novel Write Accelerator for LSM-Tree-
Based KV Stores

with Host-SSD Collaboration

Kihwan Kim1, Hyunsun Chung1, Seonghoon Ahn1, Junhyeok Park1, Safdar Jamil1,

Hongsu Byun1, Myungcheol Lee2, Jinchun Choi2, Youngjae Kim1

The 39th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Milan, Italy, June 3-7, 2025

2

Contents

● Background

● Motivation

● Design

● Evaluation

● Conclusion

Background Motivation Design Evaluation Conclusion

3

Background

Background Motivation Design Evaluation Conclusion

4

LSM-tree based Key-Value Stores (LSM-KVS)

● Log-Structured Merge-Tree(LSM-tree)

○ Designed for write-intensive workloads

○ Optimized for large-scale data

○ Out-of-place updates

○ Sequential batch operations

Background Motivation Design Evaluation Conclusion

RocksDB

[1]: Facebook, “RocksDB” https://rocksdb.org, 2012

[2]: Google, “LevelDB” https://github.com/google/leveldb, 2017

[3]: Meta, “ZippyDB” https://engineering.fb.com/2021/08/06/core-infra/zippydb/, 2021

[1]

[2]

[3]

https://rocksdb.org/
https://rocksdb.org/
https://rocksdb.org/
https://rocksdb.org/
https://rocksdb.org/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/

5

LSM-tree based Key-Value Stores (LSM-KVS)

● LSM KVS(e.g. RocksDB) stores data in an append-only manner in the active

MemTable

● Data in MemTable is moved to and managed on disk through background

jobs(Flush, Compaction)

Background Motivation Design Evaluation Conclusion

6

Write Stall Problem

● Write Stall: write operation blocked, due to bottlenecks in Flush,

Compaction

● In RocksDB, Write stall occurs under these 3 scenarios[4][5]

○ Incoming Writes > Flush

○ Flush > Level 0 to Level 1 Compaction

○ Pending deep level compaction size becomes heavier

[4]: SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores, Oana Balmau et al., USENIX ATC’19
[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST’23)

Background Motivation Design Evaluation Conclusion

https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu

7

Existing Work: ADOC[5]

● In three types of overflow scenarios, ADOC alleviates write stalls by

adjusting two tuning knobs

● Two tuning knobs: # of Compaction threads, MemTable size

[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST’23)

Background Motivation Design Evaluation Conclusion

of Compaction Threads MemTable Size

Incoming Writes > Flush

Flush > Level 0 to Level 1

Compaction

Pending deep level

compaction size becomes
heavier

https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu

8

Existing Work: ADOC[5]

● In three types of overflow scenarios, ADOC alleviates write stalls by

adjusting two tuning knobs

● Two tuning knobs: # of Compaction threads, MemTable size

[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST’23)

Background Motivation Design Evaluation Conclusion

of Compaction Threads MemTable Size

Incoming Writes > Flush

Flush > Level 0 to Level 1

Compaction

Pending deep level

compaction size becomes
heavier

1. Not an immediate remedy → Write stalls still occur

2. Tuning knobs does not stop write slowdowns from occurring.

https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu

9

Motivation

Background Motivation Design Evaluation Conclusion

10

Observation 1.

Slowdowns[6]: The Inefficient Write Stall Solution

● RocksDB uses the slowdown[6] method to prevent user writes from

becoming completely blocked

● The state of the art solution ADOC[5] also uses slowdowns

Both RocksDB and ADOC[5] ultimately fall back to using

slowdown to avoid a write stall

[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST’23)
[6]: https://github.com/facebook/rocksdb/wiki/Write-Stalls

Background Motivation Design Evaluation Conclusion

https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://github.com/facebook/rocksdb/wiki/Write-Stalls
https://github.com/facebook/rocksdb/wiki/Write-Stalls
https://github.com/facebook/rocksdb/wiki/Write-Stalls

11

● Slowdowns, while preventing a complete write stall from occurring,

harms overall performance

Observation 1.

Slowdowns[6]: The Inefficient Write Stall Solution

Background Motivation Design Evaluation Conclusion

12

● Slowdowns, while preventing a complete write stall from occurring,

harms overall performance

Observation 1.

Slowdowns[6]: The Inefficient Write Stall Solution

I/O service is

uninterrupted

thanks to

slowdowns

preventing write
stalls...

…At the cost of

overall

throughput and

latency

Background Motivation Design Evaluation Conclusion

13

● Slowdowns, while preventing a complete write stall from occurring,

harms overall performance.

Observation 1.

Slowdowns[6]: The Inefficient Write Stall Solution

I/O service is

uninterrupted

thanks to

slowdowns

preventing write
stalls...

…At the cost of

overall

throughput and

latency.

Both state-of-the-art and industry-standard solutions employ write

slowdowns to prevent write stalls, which can sharply degrade over

throughput and significantly increase tail latency.

Background Motivation Design Evaluation Conclusion

14

● PCIe Traffic drop sharply during a write stall, implying inefficient

device resource usage

Observation 2.

Under-utilization of PCIe Bandwidth

Background Motivation Design Evaluation Conclusion

15

● PCIe Traffic drop sharply during a write stall, implying inefficient

device resource usage

○ RocksDB is shown to leave up to 90% of available PCIe

bandwidth around 50% of the time during a write stall

Observation 2.

Under-utilization of PCIe Bandwidth

Background Motivation Design Evaluation Conclusion

16

● PCIe Traffic drop sharply during a write stall, implying inefficient

device resource usage.

○ RocksDB is shown to leave up to 90% of available PCIe

bandwidth around 50% of the time during a write stall.

Observation 2.

Under-utilization of PCIe Bandwidth

PCIe bandwidth is under-utilized during write stalls in industry

standard LSM-KVS due to the compaction operation blocking

device I/O.

Background Motivation Design Evaluation Conclusion

17

The status quo

• Observation 1. ultimately leads to the following options for write stalls

• Observation 2. reveals an unexploited resource to help mitigate write stalls

and increase performance without sacrificing system resources:

underutilized PCIe and device bandwidth during write stalls

Allowing Write Stalls

● Overall throughput and

latency conserved

● Complete interrupts in I/O

service as write stalls are

allowed to occur

Slowdowns

● Maintains I/O service at all

times

● Overall throughput and

latency penalty due to said

slowdowns

Background Motivation Design Evaluation Conclusion

VS

18

The status quo

• Observation 1. ultimately leads to the following options for write stalls.

• Observation 2. reveals an unexploited resource to help mitigate write stalls

and increase performance without sacrificing system resources:

underutilized PCIe and device bandwidth during write stalls.

Allowing Write Stalls

● Overall throughput and

latency conserved

● Complete interrupts in I/O

service as write stalls are

allowed to occur.

Slowdowns

● Maintains I/O service at all

times

● Overall throughput and

latency penalty due to said

slowdowns

Can write stalls be mitigated without sacrificing system resources by

leveraging underutilized PCIe and device bandwidth during write

stalls?

Background Motivation Design Evaluation Conclusion

VS

19

Proposed Solution: KVAccel

Background Motivation Design Evaluation Conclusion

20

Proposed Solution: KVAccel

• KVAccel’s design is based on two key factors: Disaggregation and
Aggregation

Disaggregation

● Division of SSD into hybrid

interface (block and key-

value) and its required I/O

paths

● Maintenance of each

interface’s separate LSM-

Tree

Aggregation

● Manage data from each

interface as if it was one

database instance

● Unify separate I/O

commands and database

state with rollback

Background Motivation Design Evaluation Conclusion

21

Overview of KVAccel

● Co-Design of Hardware & Software provides 2 I/O paths

● Different I/O paths taken based on the presence of a write stall

Background Motivation Design Evaluation Conclusion

22

Overview of KVAccel

● Co-Design of Hardware & Software provides 2 I/O paths

● Different I/O paths taken based on the presence of a write stall

Background Motivation Design Evaluation Conclusion

23

Overview of KVAccel

● Co-Design of Hardware & Software provides 2 I/O paths

● Different I/O paths taken based on the presence of a write stall

Background Motivation Design Evaluation Conclusion

24

Hybrid Dual-Interface SSD

● Hybrid interface SSD achieved by logical NAND flash address disaggregation

via a specified address boundary
○ SSD issues different commands for each interface

Background Motivation Design Evaluation Conclusion

25

Software Modules(1)

● Detector

○ Detects write stalls checking

3 components
■ # of Level 0 SSTs

■ Memtable size

■ Pending compaction size

● Controller

○ Directs I/O commands to

the correct interface based

on the Detector’s output.

Background Motivation Design Evaluation Conclusion

26

Software Modules(2)

● Metadata Manager

○ Keeps track of KV pairs

located in Dev-LSM via a

hash table for membership

testing

● Rollback Manager

○ Initiates and performs the

rollback operation based on

the rollback scheduling

policy and the Detector’s

output

Background Motivation Design Evaluation Conclusion

27

Rollback Operation: Scheduling

● Rollback refers to return the KV pairs in Dev-LSM back to Main-LSM

into one LSM-KVS instance

● Rollback operation can be scheduled eagerly or lazily based on

workload characteristics

Lazy Rollback

● Delay rollback until the

current write workload is

completely finished

● Ideal for a write intensive

workload to lower

interference of rollback with

write operations

Eager Rollback

● Perform rollback as soon as

there are enough resources

available (by using L0 file

count threshold)

● Ideal for a read orientated

workload to avoid slow Dev-

LSM read operations

Background Motivation Design Evaluation Conclusion

28

Rollback Operation

● To accelerate rollback, KV pairs are read in bulk using a range scan

operation

● Iterator reads Dev-LSM in its entirety and serializes the KV pairs

● KV pairs are then sent to the host by performing DMA multiple times

Background Motivation Design Evaluation Conclusion

29

Evaluation

Background Motivation Design Evaluation Conclusion

30

Evaluation Setup

• Testbed: KV-SSD on

Cosmos+

OpenSSD

Platform[7]

Background Motivation Design Evaluation Conclusion

[7]: Cosmos+ OpenSSD Platform: http://www.openssd-project.org/platforms/cosmospl/

http://www.openssd-project.org/platforms/cosmospl/
http://www.openssd-project.org/platforms/cosmospl/
http://www.openssd-project.org/platforms/cosmospl/

31

LSM-KVS and Benchmark Configurations

Background Motivation Design Evaluation Conclusion

[8]: Facebook, “DB Bench” https://github.com/facebook/rocksdb/wiki/

[8]

https://github.com/facebook/rocksdb/wiki/
https://github.com/facebook/rocksdb/wiki/
https://github.com/facebook/rocksdb/wiki/
https://github.com/facebook/rocksdb/wiki/
https://github.com/facebook/rocksdb/wiki/

32

Write Stall Avoidance

● Throughput minimum values greatly increased, as KVAccel is

designed to allow as much throughput as the SSD and system

allows without slowdowns

Background Motivation Design Evaluation Conclusion

33

Performance Evaluation

● (a) Throughput, (b) P99 Latency, (c) Efficiency

Background Motivation Design Evaluation Conclusion

34

Performance Evaluation
(a) Throughput

● KVAccel shows at most a 37% and 17% improvement over than RocksDB

and ADOC, respectively

Background Motivation Design Evaluation Conclusion

35

● Maximum of 30% and 20% decrease in latency was also observed between

KVAccel and RocksDB, ADOC, respectively

Performance Evaluation
(b) Throughput

Background Motivation Design Evaluation Conclusion

36

Performance Evaluation
(c) Efficiency

Background Motivation Design Evaluation Conclusion

● KVAccel maintains the better efficiencies in host machine’s resources

between all LSM-KVS compared

37

Rollback Policies Evaluation
Eager vs Lazy Rollback analysis

● From (b) and (c), we observe that it still outperforms RocksDB and ADOC

under read-oriented workloads

Background Motivation Design Evaluation Conclusion

W:R=10:0 W:R=9:1 W:R=8:2

38

● As the read ratio increases, Eager Rollback becomes increasingly

advantageous

Rollback Policies Evaluation
Eager vs Lazy Rollback analysis

Background Motivation Design Evaluation Conclusion

W:R=10:0 W:R=9:1 W:R=8:2

39

Conclusion

Background Motivation Design Evaluation Conclusion

40

Conclusion

● Prior work addresses write stalls to a limited extent

○ Hardware and software are treated in isolation

● KVAccel achieved a 17% improvement in throughput and a 20%

reduction in latency compared to ADOC.

● KVAccel demonstrates the effectiveness of hardware-software co-

design

○ Alleviates write stalls by utilizing:

■ Under-used PCIe bandwidth

■ Computational capabilities within SSDs

Background Motivation Design Evaluation Conclusion

41

Thank you!

• Contact

• Kihwan Kim / lewis461@sogang.ac.kr

• Hyunsun Chung / hchung1652@sogang.ac.kr

• Seonghoon Ahn / ok10p@sogang.ac.kr

• Data-Intensive Computing & AI Systems

Laboratory https://discos.sogang.ac.kr/

<Camera-ready paper>
Can be found on Google Scholar

Background Problem Definition Motivation Design Evaluation Conclusion

mailto:lewis461@sogang.ac.kr
mailto:hchung1652@sogang.ac.kr
mailto:ok10p@sogang.ac.kr
https://discos.sogang.ac.kr/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Thank you!

