
ByteExpress: A High-Performance and Traffic-Efficient
Inline Transfer of Small Payloads over NVMe
Junhyeok Park

junttang@sogang.ac.kr
Sogang University
Seoul, South Korea

Junghee Lee
j_lee@korea.ac.kr
Korea University
Seoul, South Korea

Youngjae Kim∗

youkim@sogang.ac.kr
Sogang University
Seoul, South Korea

ABSTRACT
Recent computational storage devices enable host-side tasks
such as SQL filtering and key-value operations to be offloaded
to the device. However, these tasks often involve small pay-
loads, typically a few dozen to hundreds of bytes, which are
inefficiently handled by the conventional NVMe protocol due
to its page-based DMAmechanism. Even tiny payloads incur
4 KB PCIe transfers, leading to severe bandwidth waste and
increased latency. Prior approaches either break NVMe com-
patibility or are only effective for very small payloads on the
order of a few dozen bytes. This paper presents ByteExpress,
a new mechanism that efficiently transmits small payloads
by placing them inline in 64-byte chunks directly into the
NVMe submission queue, immediately following the NVMe
command. ByteExpress requires only slight modifications to
the NVMe driver and controller logic, while preserving full
compatibility with existing APIs and SSD architectures. We
implemented ByteExpress on the Linux NVMe driver and
OpenSSD, demonstrating up to 98% reduction in PCIe traffic
and 40% and 39% lower latency compared to PRP and a state-
of-the-art approach, respectively, for sub-page payloads.

CCS CONCEPTS
• Information systems→ Flash memory; Storage archi-
tectures; Storage management.

KEYWORDS
Non-Volatile Memory Express Protocol, Solid-State Drive.
ACM Reference Format:
Junhyeok Park, Junghee Lee, and Youngjae Kim. 2025. ByteExpress:
A High-Performance and Traffic-Efficient Inline Transfer of Small
∗Y. Kim is the corresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotStorage ’25, July 10–11, 2025, Boston, MA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1947-9/2025/07.
https://doi.org/10.1145/3736548.3737837

Payloads over NVMe. In 17th ACMWorkshop on Hot Topics in Storage
and File Systems (HotStorage ’25), July 10–11, 2025, Boston, MA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3736548.
3737837

1 INTRODUCTION
Recent advances in Solid-State Drive (SSD) technology have
led to increasingly powerful devices, with modern Non-
Volatile Memory Express (NVMe) SSDs now equipped with
multi-core Arm processors and substantial internal DRAM.
As these capabilities continue to evolve, SSDs are gradually
shifting from simple storage solutions to intelligent data-
processing devices, opening new opportunities for offloading
and executing tasks traditionally handled by the host [43].
These trends have led to the emergence of new classes of com-
putational storage devices, including Computational SSDs
(CSDs) that can execute user’s analytics tasks such as SQL fil-
ters inside the SSD [3, 14, 20], and Key-Value SSDs (KV-SSDs)
that natively support key-value operations within the device
by bypassing traditional file systems [11, 13, 19, 24, 33].
To interact with these new types of devices, users com-

monly employ the NVMe passthrough [17] (§2.1), wherein
application-level requests, such as SQL predicates for CSDs
or key-value pairs for KV-SSDs, are encoded as custom
NVMe Commands (CMDs) and sent directly to the device. In-
terestingly, a closer look at this new storage interface reveals
that the actual data payloads (i.e., predicates and key-value
pairs) transferred in such requests are often small (§2.2).
CSDs process filter operations based on computation task
specifications that typically require only a table identifier
and predicates, resulting in payloads of just tens to hundreds
of bytes [14]. Similarly, the values handled during real-world
key-value operations also tend to be a few dozen bytes in
size, as evidenced by Meta’s internal workload analysis [4].
Ironically, the conventional NVMe protocol is not well-

suited for handling such small payloads (§2.3). Specifically,
NVMe employs Physical Region Pages (PRPs) for data trans-
fer, which requires data to be transferred in 4 KB memory
page units. As a result, even a 32-byte payload incurs 4 KB of
PCIe traffic, more than 130× greater than the requested size
(see Figure 1(c)). This significant traffic bloating can lead to
increased latency and unnecessary power consumption [3],

114

https://orcid.org/0009-0008-9293-173X
https://orcid.org/0000-0003-0733-0136
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0009-0008-9293-173X
https://orcid.org/0000-0003-0733-0136
https://orcid.org/0000-0001-8786-3850
https://doi.org/10.1145/3736548.3737837
https://doi.org/10.1145/3736548.3737837
https://doi.org/10.1145/3736548.3737837
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3736548.3737837&domain=pdf&date_stamp=2025-07-10

HotStorage ’25, July 10–11, 2025, Boston, MA, USA J. Park et al.

0 1 2 3 4 5 6 7 8 9
Request Number (100K)

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127

128+

Va
lu

e
Si

ze
 (B

yt
es

)

0

9K

18K

27K

36K

(a) Value Size Distribution in MixGraph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Payload Size (KB)

0
2
4
6
8

10
12
14
16

Tr
af

fic
 (G

B
)

PCIe Traffic
Requested Size
Latency

0

5

10

15

20

25

Latency (μs)

(b) PCIe Traffic and Transfer Latency

32 64 128 256 512 1K
Payload Size (Bytes)

0

20

40

60

80

100

120

140

Tr
af

fic
 A

m
p.

 F
ac

to
r

(c) Traffic Amp. Factor
Figure 1: (a) Value size heatmap from MixGraph All_random with its default settings, (b) PCIe traffic and transfer
latency (NAND off) for PRP-based writes across varying sizes, and (c) traffic amplification for sub-1KB payloads.

making it a critical bottleneck for frequent, small direct I/Os.
NVMe also supports Scatter-Gather Lists (SGLs), which can
enable fine-grained DMA for small payloads. However, SGLs
are not supported across all NVMe devices, and even when
supported, the Linux kernel is configured by default to use
them only for transfers larger than 32 KB [18] (§5). Accord-
ingly, this work focuses on optimizing PRP-based transfers.

Prior works have attempted to address this issue using two
primary approaches: (1) bypassing the NVMe stack via PCIe
Memory-Mapped I/O (MMIO) to enable byte-level writes di-
rectly to the device [1], or (2) embedding the payload inline
within one or more custom NVMe CMDs and transmitting
them in fragments [35]. However, both solutions suffer from
critical limitations. The former requires substantial modifica-
tions to SSD architecture and controller firmware, making it
difficult to integrate with existing NVMe-based CSDs or KV-
SSDs (§3.1). The latter, meanwhile, loses scalability for larger
payloads due to repeated CMD generation and processing
overhead caused by its mandatory serialization (§3.2).

In this paper, we present ByteExpress, a novel mechanism
that efficiently transmits small payloads without disrupting
the NVMe-based interface or requiring changes to SSD ar-
chitecture. ByteExpress leverages a simple yet powerful idea:
it directly places the small payload, in 64-byte chunks, into
the NVMe Submission Queue (SQ) after the CMD itself. This
approach allows for fine-grained, performant PCIe transfers.
To realize this idea, ByteExpress addresses two key chal-

lenges: how to identify the payload correctly and how to pre-
serve ordering of chunks. First, it reuses existing NVMe CMD
metadata by embedding the payload size into a reserved
field, enabling the controller to determine how many 64-byte
chunks to fetch. Second, ByteExpress ensures strict intra-
and inter-SQ ordering by leveraging the driver’s existing SQ
locking and enforcing queue-local chunk retrieval on the
device, preserving ordering of the CMD and payload chunks.

We implemented ByteExpress on the Linux kernel NVMe
driver [18] and the OpenSSD platform [36], and demon-
strated that it reduces PCIe traffic by up to 98% and improves
latency by more than 40% across key-value, SQL pushdown,
and microbenchmark workloads, outperforming both PRP
and the state-of-the-art NVMe CMD-based method.

2 BACKGROUND AND MOTIVATION
2.1 NVMe-Based New Storage Interface
Recent computational storage devices, such as Key-Value
SSDs (KV-SSDs) [15, 19, 24, 32, 33] and Computational SSDs
(CSDs) [3, 14, 20, 45], extend the standard NVMe protocol to
deliver key-value pairs or computation tasks directly to the
device. In these systems, user-level APIs translate and encap-
sulate high-level operations, such as key-value operations or
SQL predicates pushdown, into custom NVMe Commands
(CMDs), along with the relevant data, and submit them to the
SSD via the NVMe driver. These requests typically leverage
the NVMe passthrough [17], allowing applications to bypass
the kernel I/O stack and interact directly with the driver. This
enables seamless data exchange with such devices without
significantly modifying the I/O stack, as shown in Figure 2.

Host KV-SSD

CSD
User

Application Passthrough

OS I/O Stack PCIe
Key-Value

Predicate

NVMe
Driver

Figure 2: The NVMe passthrough-based interface used
in computational storage such as KV-SSDs and CSDs.

2.2 The Advent of Small, Direct I/O
2.2.1 Value Transfer in KV-SSDs. Recent production-
scale analyses reveal that most values written by key-value
databases are small. Meta reported that in their deployment
of RocksDB [7], a widely used persistent key-value store, the
majority of values are only a few tens of bytes in size [4]. Sim-
ilarly, Twitter observed that their average value size is less
than 100 bytes in production environments [5]. Figure 1(a)
illustrates this trend using the MixGraph workload [8], a
benchmark reflecting Meta’s workload characteristics [4].

These small values are persisted individually in KV-SSDs,
in accordance with the key-value pair-level transaction
model defined in the NVMe key-value extension [31]. As
a result, small direct I/O operations are a natural and fre-
quent part of KV-SSD behavior in real-world scenarios. Al-
though batching multiple key-value pairs into a single bulk
PUT has been explored in some prior work [21, 33], such
approaches may not always be applicable, particularly in
use cases where fine-grained persistence is desired for each
key-value pair [2, 6, 38, 44].

115

ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer of Small Payloads over NVMe HotStorage ’25, July 10–11, 2025, Boston, MA, USA

BAR SpaceBAR SpaceBAR SpaceBAR Space

Host DRAM

SSD DRAM

PCIe

Memory Page

Payload

DMA

NVMe Driver

NVMe Controller Data Buffer

NVMe CMD

3

4

5

6

FTL

7
completion

I/O

1

2

NAND Flash

Host DRAM

SSD DRAM

PCIe

NVMe Controller Data Buffer
FTL

I/O

NAND Flash

2/8/14

3/9/15

5/11/
17

6/12/18

copy

1/7/13

Host DRAM

SSD DRAM

PCIe

NVMe Controller Data Buffer
FTL

I/O

NAND Flash

NVMe Driver

copy

NVMe CMD

6

1

Host DRAM

SSD DRAM

PCIe
(CXL)

NVMe Controller

Block I/F Buffer

NVMe Driver

NAND Flash

FTL
Byte I/F Buffer

Txn
Log

Byte I/F Driver

4

merge
later

5
completion

1

Byte I/F Write

(a) NVMe PRP-Based (c) NVMe CMD-Based(b) PCIe MMIO-Based (d) NVMe SQ-Based

2

SQ

NVMe Driver

BAR Space
4/10/16

copy

cmdID
opcode

PayloadPayload

PCIe MMIO

Byte I/F Controller

3

Payload
3 copy

pageAddress
numOfPages
dataLength

cmdID
opcode

4

cmdID
opcode

pageAddress
numOfPages
reservedFields

partialPayloadpartialPayload

5

2
SQ

SQ SQ

NVMe CMDs

I/O

Figure 3: Illustration of data transfer flows for small, direct I/O writes, including (a) the conventional NVMe PRP
mechanism, (b) & (c) representative techniques proposed by prior works, and (d) the proposed ByteExpress.

2.2.2 SQL Predicate Pushdown in CSDs. In CSDs, SQL
filter operations can be early executed within the SSD, which
is especially effective for high-selectivity workloads with
simple SELECT-WHERE queries [14, 20, 29, 42]. A key obser-
vation across these systems is that the SSD already stores
table schema. As a result, the host only needs to transmit a
predicate and a table identifier to initiate filter execution.
Even when expressed as a completely unoptimized SQL
string without any binary encoding, the total payload size
remains small. We analyzed example queries from prior stud-
ies [9, 14, 20] as shown in Figure 4.

VPIC Laghos Asteroid TPC-H Q1 TPC-H Q2
SQL Query

0

100

200

300

400

500

600

S
tr

in
g

L
en

gt
h

(B
yt

es
)

Full SQL String
Table Name &
Predicate Segments

Figure 4: Example queries used in CSD works, showing
the lengths of full string and table/predicate segments.

For each workload, we extract the table name and predi-
cate portion from the full SQL string. Scientific workloads
such as VPIC [23], Laghos [40], and Asteroid [39] involve
simple predicates, resulting in payloads of less than 100 bytes.
For TPC-H, we focus on Q1 and Q2 queries used in prior
work [9, 14], isolating the filter condition on a single table
(e.g., lineitem in Q1 and region in Q2), which similarly
yield payloads under 100 bytes.

2.3 NVMe is Not Small I/O Friendly
Figure 3(a) illustrates the standard data transfer process in
NVMe SSDs based on the Physical Region Page (PRP) mech-
anism. The host prepares the data in memory pages and
constructs an NVMe CMD that specifies the address and
number of pages to transfer. The CMD is submitted to the
NVMe driver (1). The driver inserts the CMD into the Sub-
mission Queue (SQ) (2) and triggers the doorbell register
in the PCIe Base Address Register (BAR) space to notify the

device of a new submission (3). The device, polling the door-
bell register, detects the submission and performs a 64-byte
Direct Memory Access (DMA) fetch of the CMD (4). It then
reads the indicated host page addresses and counts (5) and
copies the corresponding pages into device DRAM via DMA
(6). Finally, the device signals completion to the host (7).

We conducted an experiment on the OpenSSD [36], send-
ing 1 million payloads of 1 to 16 KB via NVMe passthrough.
As shown in Figure 1(b), the PCIe traffic generated remained
aligned to 4 KB boundaries, regardless of the actual payload
size. We disabled NAND I/O and measured transfer latency
alone, which also exhibited a stepwise increase at 4 KB in-
tervals. Figure 1(c) illustrates this inefficiency for sub-1 KB
transfers: for example, a 32-byte request generates over 130
times more traffic than its actual size.

3 SMALL PAYLOAD TRANSFER METHOD
3.1 PCIe MMIO-Based Transfer
PCIe Memory-Mapped I/O (MMIO)-based transfer refers to
a mechanism that enables direct data exchange between the
host and SSD by utilizing the PCIe BAR space. This region,
where doorbell registers and SQ tail pointers typically reside,
supports synchronous memory operations, allowing hosts
to bypass traditional block-based data paths for small I/O.
Representative implementations of this approach include
2B-SSD [1] and ByteFS [26]. These systems expose a Byte In-
terface API over the BAR space, enabling the host to directly
write small payloads with 64-byte cacheline-unit PCIe traffic
into a designated devicememory buffer (see Figure 3(b)). This
design allows for low-latency, fine-grained data transfers [1].

However, applying this approach to existing NVMe-based
storage devices introduces several key challenges. First, the
device must be significantly modified to include dedicated
buffer memory and maintain transactional coordination, typ-
ically via a persistent log, between the new Byte Interface
for small payloads and the existing block-based I/O path for
large payloads to ensure consistency. Second, on the host
side, NVMe passthrough-based APIs cannot be reused, re-
quiring the development of a new interface layer.

116

HotStorage ’25, July 10–11, 2025, Boston, MA, USA J. Park et al.

3.2 NVMe CMD-Based Transfer
NVMe CMD-based transfer refers to the use of NVMe CMDs
to deliver data from the host to the SSD. BandSlim [35]
demonstrates how NVMe CMDs can be repurposed for fine-
grained data movement. It embeds small payload fragments
directly into CMD fields and issues a sequence of NVMe
CMDs (each carrying a portion of the data) to create fine-
grained PCIe traffic patterns (see Figure 3(c)). By utilizing
the NVMe passthrough, this method offers the advantage of
requiring no modifications to SSD architectures.
However, this reliance on CMD issuance introduces ad-

ditional complexity and performance overheads. Because
payload fragments must be sent through serialized CMDs, a
dedicated software layer is required to manage fragment or-
dering and CMD generation. Moreover, frequent issuance of
CMDs significantly increases protocol overhead, particularly
as the number of fragments grows. As a result, when the
payload size exceeds just a few dozen bytes (e.g., 64 bytes),
the cost of repeated CMD submission becomes a major bot-
tleneck, leading to substantial performance drops [35] (§4.2).

3.3 ByteExpress: NVMe SQ-Based Transfer
At the heart of ByteExpress is a concise yet powerful insight:
NVMe already enables fine-grained data delivery over
PCIe. This capability is embedded in the design of the NVMe
SQ, where the host places a CMD in memory and the device
performs a 64-byte DMA fetch from the SQ’s tail. If we rein-
terpret the CMD itself as a payload or a portion of payload,
this mechanism effectively becomes a built-in fine-grained
I/O path. ByteExpress builds on this insight by placing the
actual payload into the SQ in 64-byte chunks (see Figure 3(d)),
reusing the existing infrastructure for small, direct transfers.

3.3.1 Challenge#1: Identifying the Payload. ByteEx-
press leverages the fact that the NVMe driver already has full
knowledge of the payload at submission time. Specifically,
the payload size is encoded in the data length field of the
NVMe I/O CMD, and its address is specified through the PRP
entry fields during CMD construction. Right before placing
the CMD into the SQ, ByteExpress repurposes a reserved
field within the CMD to store the payload length again. This
enables the NVMe controller to later retrieve and interpret
the exact size of the payload without additional protocol
changes. After the submission of the CMD, ByteExpress im-
mediately appends the payload in 64-byte chunks, using the
subsequent SQ entries. Each chunk occupies a single SQ en-
try, which is the same size as the NVMe CMD. Once all data
chunks are written, the driver raises the doorbell register.
On the device side, when the NVMe controller fetches a

CMD, it first examines the designated field to read the em-
bedded payload length. This indicates that the CMD uses
ByteExpress semantics and instructs the controller to expect

a sequence of payload chunks following the CMD. The con-
troller then calculates the number of subsequent SQ entries
to fetch based on the payload length and issues DMA fetches
in 64-byte units, storing the received payload into a desig-
nated buffer. The buffer can refer to, for example, a key-value
log of KV-SSDs, a workspace for filter processing in CSDs,
or even a NAND page buffer entry of normal block SSDs.

3.3.2 Challenge#2: Preserving Data Ordering. ByteEx-
press preserves ordering between the NVMe CMD and its
associated 64-byte payload chunks through two complemen-
tary mechanisms. First, on the host side, the NVMe driver
guarantees exclusive access to each SQ using spin locks [18].
ByteExpress leverages this by inserting both the CMD and
its payload chunks while holding the lock, ensuring that the
entries are placed consecutively and in order. Second, on
the device side, the controller preserves inter-SQ ordering
by fetching subsequent entries exclusively from the same
SQ once a ByteExpress-applied CMD is detected. In our im-
plementation on OpenSSD [36], the controller polls SQs in
round-robin and, upon identifying a ByteExpress CMD, se-
quentially fetches the following payload chunks from the
same queue without switching queues mid-transaction.

While effective in our environment, this strategy assumes
that chunk fetching of one payload remains confined to a
single SQ, which may not hold across all SSD implemen-
tations [16] and may affect load distribution [27]. To relax
this constraint, an identifier-based reassembly mechanism
can be employed, allowing the controller to accept chunks
out-of-order across SQs without enforcing strict ordering.
To minimize SRAM usage during tracking of in-flight trans-
actions [22], each chunk can embed metadata including a
payload ID, chunk number, and total chunk count, enabling
direct placement at the correct DRAM offset. Only light-
weight metadata, such as the payload ID and a receive bitmap,
is needed in SRAM to monitor reassembly progress. A full
exploration of this mechanism is left as future work.

4 EVALUATION
4.1 Experimental Setup
We implemented and evaluated ByteExpress on a Linux host
machine connected to the Cosmos+ OpenSSD platform [36].
The host machine is equipped with a 64-core Intel Xeon Gold
6226R CPU and 384 GB of DDR4 memory. The OpenSSD
features an Xilinx Zynq-7000 FPGA, 1 TB NAND, and 1 GB
DRAM. We set up OpenSSD with the host machine via a
PCIe Gen2 8-lane connection using the NVMe protocol.
Implementation: ByteExpress1 was implemented with

minimal changes on both the host and device sides. On
the host, we modified the Linux kernel NVMe driver [18]

1https://github.com/junttang/byteexpress

117

https://github.com/junttang/byteexpress

ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer of Small Payloads over NVMe HotStorage ’25, July 10–11, 2025, Boston, MA, USA

(v6.6.31), implementing the logic in under 30 lines of code
within the nvme_queue_rq(...). On the controller side, we
extended the OpenSSD [36] by adding less than 20 lines to
the get_nvme_cmd(...), which fetches CMDs from the SQ.

4.2 Analysis on Various Payload Sizes
We evaluated PCIe traffic and transfer latency (with NAND
I/O disabled on the OpenSSD) across various payload sizes
using NVMe passthrough, issuing 1 million writes per con-
figuration with NVMe PRP, BandSlim [35], and ByteExpress.
PCIe traffic was measured via Intel PCM [12], and the results
are shown in Figure 5.

32 64 128 256 512 1K 2K 4K
Payload Size (Bytes)

0

1

2

3

4

5

6

Tr
af

fic
 (G

B
)

0

20

40

60

80

100

Latency (μs)

NVMe PRP (Traffic)
BandSlim (Traffic)
ByteExpress (Traffic)

NVMe PRP (Latency)
BandSlim (Latency)
ByteExpress (Latency)

Figure 5: PCIe traffic and average latency for various
payload sizes across different transfer methods.

Both ByteExpress and BandSlim significantly reduced traf-
fic for payloads smaller than 4 KB compared to PRP. In par-
ticular, ByteExpress reduced traffic by up to 96.3% for the
64-byte case over PRP. Interestingly, in the 64-byte to 4 KB
range, ByteExpress outperformed BandSlim by up to 39.8%
in traffic reduction. This gain comes from ByteExpress’s
ability to inject payloads directly into the SQ, avoiding the
overhead of issuing separate NVMe CMDs, such as doorbell
ringing, tail pointer address updates, and completion signal-
ing. For transfer latency, ByteExpress reduced latency by
up to 40.4% over PRP in the 32–128 byte range and outper-
formed BandSlim beyond 64 bytes, for instance, achieving a
72% reduction at 128 bytes. These results highlight the clear
latency advantage of ByteExpress for ∼128-byte payloads,
typical in real-world key-value store workloads and SQL
predicate pushdowns (§2.2).

Table 1: The overheads introduced by ByteExpress.

System Driver SQ Submit Controller SQ Fetch

NVMe PRP (ALL) ∼ 60ns ∼ 2400ns
ByteExpress (64B) ∼ 100ns ∼ 2800ns
ByteExpress (128B) ∼ 130ns ∼ 3200ns
ByteExpress (256B) ∼ 180ns ∼ 4000ns

Overhead Analysis: We evaluated ByteExpress’s overhead
during two stages: host-side insertion of payload chunks into
the SQ and device-side fetching from the SQ (see Table 1). On
average, inserting one chunk takes ∼30ns, and fetching an
SQ entry takes ∼400ns. This overhead fairly increases with
payload size due to more SQ entries being used. As shown in

Figure 5, this causes ByteExpress to become slower than the
PRP-based transfer starting around the 256-byte. However,
this also implies that for smaller payloads, it achieves per-
formance gains despite the added overhead, demonstrating
that the cost per SQ entry at both sides is sufficiently low.
ByteExpress’s performance drop beyond 256 bytes is a

clear limitation compared to PCIe MMIO-based approaches,
which sustain low latency even beyond 1 KB [1]. While this
constraint stems from ByteExpress’s adherence to the NVMe
protocol and is therefore fundamental, one obvious optimiza-
tion remains: ByteExpress can be combined with PRP using
a simple threshold-based switching mechanism, just as pro-
posed in BandSlim [35]. When the payload size exceeds a
certain threshold (e.g., 256 bytes), PRP can be used; other-
wise, ByteExpress is applied. Since ByteExpress requires no
modifications to the core NVMe architecture, this hybrid
approach can be employed seamlessly.

4.3 Effects on KV-SSD and CSDWorkload
KV-SSD: We evaluated ByteExpress on a state-of-the-art
OpenSSD-based KV-SSD [25] with NAND I/O enabled, run-
ning 1 million PUTs using MixGraph [4] (default settings)
and FillRandom [8] (128-byte fixed values).

NVMe PRP
BandSlim

ByteExpress
0

1

2

3

4

5

Tr
af

fic
 (G

B
) 3.9

0.12 0.21

Traffic
Throughput

0

2

4

6

8

10 Throughput (Kops/sec)

NVMe PRP
BandSlim

ByteExpress
0

1

2

3

4

5

Tr
af

fic
 (G

B
) 3.9

0.25 0.2

Traffic
Throughput

0

2

4

6

8

10 Throughput (Kops/sec)

(a) MixGraph (b) FillRandom (128 bytes)
Figure 6: PCIe traffic and average write throughput for
different transfer methods applied in the KV-SSD.

Figure 6 shows the results. In MixGraph, where over 60%
of values are under 32 bytes (see Figure 1(a)), ByteExpress
reduced PCIe traffic by up to 95% compared to PRP, though
its traffic was 1.75× higher than BandSlim, which transmits
sub-32-byte payloadswithin a single CMD. Despite this, Byte-
Express achieved approximately 8% higher throughput than
BandSlim (the error bars indicate the 1st–99th percentile
range). In FillRandom, ByteExpress not only reduced PCIe
traffic further than BandSlim but also achieved about addi-
tional 1 Kops/sec in throughput. These results show that
ByteExpress robustly covers a wide range of small-payload
scenarios, while maintaining both traffic efficiency and high
performance even with NAND I/O.
SQL Predicate Pushdown for CSD: We evaluated ByteEx-
press in SQL predicate pushdown scenarios using example
queries from Figure 4. For each query, we extracted both
the full SQL string and the substring corresponding to the
table identifier and predicate, and treated them as the com-
putation task message to the SSD. As shown in Figure 7(a),

118

HotStorage ’25, July 10–11, 2025, Boston, MA, USA J. Park et al.

VPIC Laghos Asteroid TPC-H Q1 TPC-H Q2
SQL Query

0
500

1000
1500
2000
2500
3000
3500
4000

Tr
af

fic
 (B

yt
es

)

BandSlim (Full)
ByteExpress (Full)
NVMe PRP (Full & Filter)

BandSlim (Filter)
ByteExpress (Filter)

VPIC Laghos Asteroid TPC-H Q1 TPC-H Q2
SQL Query

0
5

10
15
20
25
30

Tp
ut

 (M
B

/s
ec

)

NVMe
PRP

BandSlim (Full)
ByteExpress (Full)

BandSlim (Filter)
ByteExpress (Filter)

(a) PCIe Traffic (b) Average Throughput
Figure 7: (a) PCIe traffic and (b) average throughput for each method when transferring the full SQL strings (left of
each vertical dashed line) and only the predicate and table name segments (right) of the queries in Figure 4.

both strings are well under 4 KB, allowing BandSlim and
ByteExpress to significantly reduce traffic compared to PRP.
For example, in the Asteroid case [39], both methods cut
traffic by nearly 98% when sending a single pushdown task.
For transfer performance, ByteExpress achieved higher

throughput than PRP for all cases when sending only the
predicate and table name (see Figure 7(b)). In contrast, Band-
Slim’s throughput was similar to or slightly below PRP. For
workloads like VPIC [23], Laghos [40], and Asteroid [39],
where the full SQL string is under 100 bytes, ByteExpress
also outperformed both PRP and BandSlim even when send-
ing the entire string. These results show that while some
CSD-based systems use compact binary encodings [9, 14]
and others [20, 29] adopt slightly larger intermediate rep-
resentations [37], ByteExpress remains effective across this
spectrum from very small to moderately sized payloads.

5 DISCUSSION
Comparisonwith Scatter-Gather List: In addition to PRPs,
NVMe provides an alternative method known as the Scatter-
Gather List (SGL) [28, 30], which enables variable-sized DMA
transfers and thus can address traffic inefficiencies associated
with small payloads. Specifically, for writes, SGL enables fine-
grained DMA by allowing a single data block descriptor to
directly reference a small, contiguous memory region. For
reads, bitbucket descriptors in SGL can act as placeholders
for unused segments, enabling completion of small-data read
requests without requiring data return.
However, despite their functional overlap, SGL and By-

teExpress exhibit clear differences in execution flow. The
SGL requires constructing a SGL descriptor within the CMD,
submitting the CMD, and having the controller interpret the
descriptor before initiating a DMA transaction. ByteExpress
also requires submitting the CMD but appends the payload
directly into the subsequent SQ entries, enabling the con-
troller to fetch the payload immediately without additional
descriptor parsing. This streamlined design of ByteExpress
is intended to reduce protocol-level overhead by avoiding
descriptor handling and separate DMA setup, which can
become increasingly significant as I/O sizes shrink.

Interestingly, the Linux NVMe driver sets a default thresh-
old of 32 KB for enabling SGL [18, 41], which means that
PRP is used for transfers smaller than this threshold unless

reconfigured by the user. This indicates that while SGL is
fully capable of supporting small transfers, PRP remains com-
monly used for small payloads in practice. Given this, and
the fact that PRP is mandatory in NVMe over PCIe [30] and
thus supported across all NVMe SSDs, we chose to focus our
optimization efforts on PRP-based transfers in this study. A
broader comparative analysis encompassing PRP, SGL and
mechanisms such as ByteExpress would help complete the
performance landscape for small I/O transfers.
Page Granularity and PCIe Generation Variants: Our
current evaluation is limited to a 4 KB page granularity due to
platform constraints [36]. While this granularity is standard
in many NVMe-based systems, some storage configurations
support finer-grained transfer units (e.g., 512 bytes) [10],
which may affect the performance characteristics of Byte-
Express. Likewise, higher-bandwidth PCIe generations (e.g.,
PCIe 4.0/5.0) could influence the relative impact of data move-
ment optimizations [34]. Although not covered in our current
evaluation, these variations represent important axes that
could affect the applicability and benefits of ByteExpress
under broader system conditions.

6 CONCLUSION
ByteExpress offers a lightweight, practical solution to the
long-standing inefficiency of small, direct data transfer over
NVMe. By repurposing the NVMe submission queue to carry
64-byte payload chunks, ByteExpress enables efficient, fine-
grained small-data transmission without modifying SSD in-
ternal architecture or NVMe passthrough-based APIs. Evalu-
ation results show that ByteExpress reduces PCIe traffic by
up to 98% and significantly improves performance for small
I/O patterns common in KV-SSDs and CSDs.

ACKNOWLEDGMENTS
We thank the reviewers and our shepherd, Javier González,
for their constructive comments that have significantly im-
proved the paper. This work was funded in part by the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korean Government (MSIT) (RS-2024-00453929), in part
by the Institute of Information & Communications Technol-
ogy Planning Evaluation (IITP) grant funded by the Korea
Government (MSIT) under Grant RS-2021-II210528.

119

ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer of Small Payloads over NVMe HotStorage ’25, July 10–11, 2025, Boston, MA, USA

REFERENCES
[1] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,

Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2018. 2B-SSD: the
Case for Dual, Byte- and Block-Addressable Solid-State Drives. In
Proceedings of the 45th Annual International Symposium on Computer
Architecture (Los Angeles, California) (ISCA ’18). IEEE Press, Piscat-
away, NJ, USA, 425–438. https://doi.org/10.1109/ISCA.2018.00043

[2] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: an
efficient hybrid PMem-DRAM key-value store. Proc. VLDB Endow. 14,
9 (May 2021), 1544–1556. https://doi.org/10.14778/3461535.3461543

[3] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu,
Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu,
Feng Zhu, and Tong Zhang. 2020. POLARDB meets computational
storage: efficiently support analytical workloads in cloud-native rela-
tional database. In Proceedings of the 18th USENIX Conference on File
and Storage Technologies (Santa Clara, CA, USA) (FAST’20). USENIX
Association, USA, 29–42.

[4] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020.
Characterizing, modeling, and benchmarking RocksDB key-value
workloads at facebook. In Proceedings of the 18th USENIX Conference
on File and Storage Technologies (Santa Clara, CA, USA) (FAST’20).
USENIX Association, USA, 209–224.

[5] Walter Daelemans, Mike Kestemont, Enrique Manjavacas, Martin Pot-
thast, Francisco Rangel, Paolo Rosso, Günther Specht, Efstathios Sta-
matatos, Benno Stein, Michael Tschuggnall, Matti Wiegmann, and Eva
Zangerle. 2019. Overview of PAN 2019: Bots and Gender Profiling,
Celebrity Profiling, Cross-Domain Authorship Attribution and Style
Change Detection. In Experimental IR Meets Multilinguality, Multi-
modality, and Interaction. Proceedings of the 10th International Con-
ference of the CLEF Association (CLEF 2019) (Lugano, Switzerland).
Springer-Verlag, Berlin, Heidelberg, 402–416.

[6] etcd Authors. 2023. etcd Raft Log Durability and Performance. https:
//etcd.io/docs/v3.5/faq/#why-is-etcd-so-slow Accessed: 2025-05-25.

[7] Facebook. 2012. RocksDB. Facebook. https://rocksdb.org Last accessed:
2024-09-01.

[8] Facebook. 2017. DB Bench. Facebook. https://github.com/facebook/
rocksdb/wiki/Benchmarking-tools Last accessed: 2024-10-01.

[9] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit:
a framework for near-data processing of big data workloads. In Pro-
ceedings of the 43rd International Symposium on Computer Architecture
(Seoul, Republic of Korea) (ISCA ’16). IEEE Press, Piscataway, NJ, USA,
153–165. https://doi.org/10.1109/ISCA.2016.23

[10] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage
Can Do, and How to Exploit it: High-Performance I/O for High-
Performance Storage Engines. Proc. VLDB Endow. 16, 9 (May 2023),
2090–2102. https://doi.org/10.14778/3598581.3598584

[11] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind Arvind, and Sungjin
Lee. 2020. PinK: high-speed in-storage key-value store with bounded
tails. In Proceedings of the 2020 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC’20). USENIX Association, USA,
Article 12, 15 pages.

[12] Intel. 2022. Intel® Performance Counter Monitor - A Better Way to
Measure CPU Utilization. https://www.intel.com/content/www/us/
en/developer/articles/tool/performance-counter-monitor.html. Last
Accessed: 2024-10-01.

[13] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. 2017. KAML: A Flexible, High-Performance Key-Value SSD.
In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, Piscataway, NJ, USA, 373–384. https:

//doi.org/10.1109/HPCA.2017.15
[14] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun

Cho, Daniel D. G. Lee, and Jaeheon Jeong. 2016. YourSQL: a high-
performance database system leveraging in-storage computing. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 924–935. https://doi.org/10.14778/
2994509.2994512

[15] Min-Gyo Jung, Chang-Gyu Lee, Donggyu Park, Sungyong Park, Jungki
Noh, Woosuk Chung, Kyoung Park, and Youngjae Kim. 2021. GPUKV:
an integrated framework with KVSSD and GPU through P2P commu-
nication support. In Proceedings of the 36th Annual ACM Symposium
on Applied Computing (Virtual Event, Republic of Korea) (SAC ’21).
Association for Computing Machinery, New York, NY, USA, 1156–1164.
https://doi.org/10.1145/3412841.3441990

[16] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho.
2014. The multi-streamed solid-state drive. In Proceedings of the 6th
USENIX Conference on Hot Topics in Storage and File Systems (Philadel-
phia, PA) (HotStorage’14). USENIX Association, USA, 13.

[17] Linux Kernel. 2025. libnvme ioctl.h Source Code. https://github.com/
linux-nvme/libnvme/blob/master/src/nvme/ioctl.h Accessed: 2025-04-
01.

[18] Linux Kernel. 2025. NVMe PCI Driver Source Code. https://github.
com/torvalds/linux/blob/master/drivers/nvme/host/pci.c Accessed:
2025-04-01.

[19] Yang Seok Ki. 2017. Key-Value SSD Explained: Concept, Device,
System and Standard. https://www.snia.org/sites/default/files/SDC/
2017/presentations/Object_ObjectDriveStorage/Ki_Yang_Seok_Key_
Value_SSD_Explained_Concept_Device_System_and_Standard.pdf.
Presented at SNIA Storage Developer Conference (SDC), 2017.

[20] Jongryool Kim. 2023. Accelerating Data Analytics Using Object-based
Computational Storage System in HPC. In Supercomputing Conference
(SC23), Exhibitor Forum. SK hynix Inc., SC Conference Organizing
Committee, Denver, CO, USA, N/A. Presented at SC23 Exhibitor
Forum, Booth #2101.

[21] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo Kim. 2019.
Transaction support using compound commands in key-value SSDs. In
Proceedings of the 11th USENIX Conference on Hot Topics in Storage and
File Systems (Renton, WA, USA) (HotStorage’19). USENIX Association,
USA, 1.

[22] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun,
Sungjin Lee, Jooyoung Hwang, Jongyoul Lee, and Jihong Kim. 2019.
Fully automatic stream management for multi-streamed SSDs using
program contexts. In Proceedings of the 17th USENIX Conference on
File and Storage Technologies (Boston, MA, USA) (FAST’19). USENIX
Association, USA, 295–308.

[23] Los Alamos National Laboratory. 2025. Vector Particle-In-Cell (VPIC)
Project. https://github.com/lanl/vpic Accessed: 2025-04-01.

[24] Chang-Gyu Lee, Hyeongu Kang, Donggyu Park, Sungyong Park,
Youngjae Kim, Jungki Noh, Woosuk Chung, and Kyoung Park. 2019.
iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data
Analytics. In 2019 IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, Piscataway, NJ, USA, 384–395. https://doi.org/10.
1109/MASCOTS.2019.00048

[25] Seungjin Lee, Chang-Gyu Lee, Donghyun Min, Inhyuk Park, Woosuk
Chung, Anand Sivasubramaniam, and Youngjae Kim. 2023. Iterator
Interface Extended LSM-tree-based KVSSD for Range Queries. In Pro-
ceedings of the 16th ACM International Conference on Systems and Stor-
age (Haifa, Israel) (SYSTOR ’23). Association for Computing Machinery,
New York, NY, USA, 60–70. https://doi.org/10.1145/3579370.3594775

[26] Shaobo Li, Yirui (Eric) Zhou, Hao Ren, and Jian Huang. 2025. ByteFS:
System Support for (CXL-based) Memory-Semantic Solid-State Drives.
In Proceedings of the 30th ACM International Conference on Architectural

120

https://doi.org/10.1109/ISCA.2018.00043
https://doi.org/10.14778/3461535.3461543
https://etcd.io/docs/v3.5/faq/#why-is-etcd-so-slow
https://etcd.io/docs/v3.5/faq/#why-is-etcd-so-slow
https://rocksdb.org
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.14778/3598581.3598584
https://www.intel.com/content/www/us/en/developer/articles/tool/performance-counter-monitor.html
https://www.intel.com/content/www/us/en/developer/articles/tool/performance-counter-monitor.html
https://doi.org/10.1109/HPCA.2017.15
https://doi.org/10.1109/HPCA.2017.15
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.1145/3412841.3441990
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.h
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.h
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://www.snia.org/sites/default/files/SDC/2017/presentations/Object_ObjectDriveStorage/Ki_Yang_Seok_Key_Value_SSD_Explained_Concept_Device_System_and_Standard.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Object_ObjectDriveStorage/Ki_Yang_Seok_Key_Value_SSD_Explained_Concept_Device_System_and_Standard.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Object_ObjectDriveStorage/Ki_Yang_Seok_Key_Value_SSD_Explained_Concept_Device_System_and_Standard.pdf
https://github.com/lanl/vpic
https://doi.org/10.1109/MASCOTS.2019.00048
https://doi.org/10.1109/MASCOTS.2019.00048
https://doi.org/10.1145/3579370.3594775

HotStorage ’25, July 10–11, 2025, Boston, MA, USA J. Park et al.

Support for Programming Languages and Operating Systems, Volume 1
(Rotterdam, Netherlands) (ASPLOS ’25). Association for Computing
Machinery, New York, NY, USA, 116–132. https://doi.org/10.1145/
3669940.3707250

[27] Xiaojian Liao, Youyou Lu, Zhe Yang, and Jiwu Shu. 2023. Efficient Crash
Consistency for NVMe over PCIe and RDMA. ACM Trans. Storage 19,
1, Article 7 (Jan. 2023), 35 pages. https://doi.org/10.1145/3568428

[28] Robert E. Marks. 2013. NVM Express: A Standard for Non-Volatile
Memory. https://files.futurememorystorage.com/proceedings/2013/
20130812_PreConfD_Marks.pdf. Presented at Flash Memory Summit
Pre-Conference Seminar, August 12, 2013.

[29] Aldrin Montana, Yuanqing Xue, Jeff LeFevre, Carlos Maltzahn,
Josh Stuart, Philip Kufeldt, and Peter Alvaro. 2023. A Moveable
Beast: Partitioning Data and Compute for Computational Storage.
arXiv:cs.DC/2212.11459 https://arxiv.org/abs/2212.11459

[30] NVM Express Inc. 2011. NVM Express Specification. https://
nvmexpress.org/developers/nvme-specification. Last Accessed: 2024-
09-12.

[31] NVM Express Inc. 2021. NVM Express Key Value Command Set Speci-
fication. https://nvmexpress.org/developers/nvme-specification/. Last
Accessed: 2024-09-12.

[32] Chanyoung Park, Jungho Lee, Chun-Yi Liu, Kyungtae Kang, Mah-
mut Taylan Kandemir, and Wonil Choi. 2025. AnyKey: A Key-Value
SSD for All Workload Types. In Proceedings of the 30th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (Rotterdam, Netherlands) (ASPLOS
’25). Association for Computing Machinery, New York, NY, USA, 47–63.
https://doi.org/10.1145/3669940.3707279

[33] Inhyuk Park, Qing Zheng, Dominic Manno, Soonyeal Yang, Jason Lee,
David Bonnie, Bradley Settlemyer, Youngjae Kim, Woosuk Chung, and
Gary Grider. 2023. KV-CSD: A Hardware-Accelerated Key-Value Store
for Data-Intensive Applications. In 2023 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, Piscataway, NJ, USA, 132–144.
https://doi.org/10.1109/CLUSTER52292.2023.00019

[34] Junhyeok Park, Chang-Gyu Lee, Soon Hwang, Seung-Jun Cha,Woosuk
Chung, and Youngjae Kim. 2025. Maximizing Interconnect Bandwidth
and Efficiency in NVMe-Based Key-Value SSDs with Fine-Grained
Value Transfer. IEEE Micro (2025). https://doi.org/10.1109/MM.2025.
3572475

[35] Junhyeok Park, Chang-Gyu Lee, Soon Hwang, Soonyeal Yang, Jungki
Noh, Woosuk Chung, Junghee Lee, and Youngjae Kim. 2024. BandSlim:
A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-from-
Block Approach. In Proceedings of the 53rd International Conference
on Parallel Processing (Gotland, Sweden) (ICPP ’24). Association for
Computing Machinery, New York, NY, USA, 1187–1196. https://doi.
org/10.1145/3673038.3673064

[36] OpenSSD Project. 2017. Cosmos+ OpenSSD Platform. http://www.
openssd-project.org/platforms/cosmospl. Last accessed: 2024-09-22.

[37] Substrait Project. 2024. Substrait. https://substrait.io/.
[38] Redis. 2024. Redis Persistence - Appendfsync Always. https://redis.

io/docs/latest/operate/oss_and_stack/management/persistence/ Ac-
cessed: 2025-05-25.

[39] LANL Asteroid Impact Team. 2017. DeepWater Impact Dataset. https:
//github.com/lanl-asteroid-impact/deep-water-impact-dataset-1 Ac-
cessed: 2025-04-01.

[40] LANL-OCS Team. 2025. Laghos Sample Dataset. https://github.com/
lanl-ocs/laghos-sample-dataset Accessed: 2025-04-01.

[41] Mellanox Technologies. 2017. nvme: add Scatter-Gather List (SGL)
support in NVMe driver. https://lore.kernel.org/all/04aaed5c-1a8a-
f601-6c9c-88bf1cf66e8a@mellanox.com/T/. Email on Linux Kernel
Mailing List.

[42] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae
Kim, Xiaosong Ma, Peter J. Desnoyers, and Yan Solihin. 2013. Active
flash: towards energy-efficient, in-situ data analytics on extreme-scale
machines. In Proceedings of the 11th USENIX Conference on File and
Storage Technologies (San Jose, CA) (FAST’13). USENIX Association,
USA, 119–132.

[43] Xiangqun Zhang, Janki Bhimani, Shuyi Pei, Eunji Lee, Sungjin Lee,
Yoon Jae Seong, Eui Jin Kim, Changho Choi, Eyee Hyun Nam, Jongmoo
Choi, and Bryan S. Kim. 2025. Storage Abstractions for SSDs: The Past,
Present, and Future. ACM Trans. Storage 21, 1, Article 2 (Jan. 2025),
44 pages. https://doi.org/10.1145/3708992

[44] Yiwen Zhang, Jian Zhou, Xinhao Min, Song Ge, JiguangWan, Ting Yao,
and Daohui Wang. 2023. PetaKV: Building Efficient Key-Value Store
for File System Metadata on Persistent Memory . IEEE Transactions
on Parallel & Distributed Systems 34, 03 (March 2023), 843–855. https:
//doi.org/10.1109/TPDS.2022.3232382

[45] Qing Zheng, Jason Lee, Dominic A. Manno, and Gary Grider. 2023.
Toward Standardized, Open Object-Based Computational Storage For
Large-Scale Scientific Data Analytics. In Proceedings of the 8th Interna-
tional Parallel Data Systems Workshop (PDSW’23). IEEE, Denver, CO,
USA, N/A. https://pdsw.org/pdsw23/index.shtml

121

https://doi.org/10.1145/3669940.3707250
https://doi.org/10.1145/3669940.3707250
https://doi.org/10.1145/3568428
https://files.futurememorystorage.com/proceedings/2013/20130812_PreConfD_Marks.pdf
https://files.futurememorystorage.com/proceedings/2013/20130812_PreConfD_Marks.pdf
https://arxiv.org/abs/cs.DC/2212.11459
https://arxiv.org/abs/2212.11459
https://nvmexpress.org/developers/nvme-specification
https://nvmexpress.org/developers/nvme-specification
https://nvmexpress.org/developers/nvme-specification/
https://doi.org/10.1145/3669940.3707279
https://doi.org/10.1109/CLUSTER52292.2023.00019
https://doi.org/10.1109/MM.2025.3572475
https://doi.org/10.1109/MM.2025.3572475
https://doi.org/10.1145/3673038.3673064
https://doi.org/10.1145/3673038.3673064
http://www.openssd-project.org/platforms/cosmospl
http://www.openssd-project.org/platforms/cosmospl
https://substrait.io/
https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/
https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/
https://github.com/lanl-asteroid-impact/deep-water-impact-dataset-1
https://github.com/lanl-asteroid-impact/deep-water-impact-dataset-1
https://github.com/lanl-ocs/laghos-sample-dataset
https://github.com/lanl-ocs/laghos-sample-dataset
https://lore.kernel.org/all/04aaed5c-1a8a-f601-6c9c-88bf1cf66e8a@mellanox.com/T/
https://lore.kernel.org/all/04aaed5c-1a8a-f601-6c9c-88bf1cf66e8a@mellanox.com/T/
https://doi.org/10.1145/3708992
https://doi.org/10.1109/TPDS.2022.3232382
https://doi.org/10.1109/TPDS.2022.3232382
https://pdsw.org/pdsw23/index.shtml

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 NVMe-Based New Storage Interface
	2.2 The Advent of Small, Direct I/O
	2.3 NVMe is Not Small I/O Friendly

	3 Small Payload Transfer Method
	3.1 PCIe MMIO-Based Transfer
	3.2 NVMe CMD-Based Transfer
	3.3 ByteExpress: NVMe SQ-Based Transfer

	4 Evaluation
	4.1 Experimental Setup
	4.2 Analysis on Various Payload Sizes
	4.3 Effects on KV-SSD and CSD Workload

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

