Integrating Distributed SQL Query Engines with Object-Based

Computational Storage

Junghyun Ryu Soon Hwang Junhyeok Park
Sogang University Sogang University Sogang University
Seoul, Republic of Korea Seoul, Republic of Korea Seoul, Republic of Korea

jhryu@sogang.ac kr soonhw@sogang.ac.kr junttang@sogang.ac.kr
Seonghoon Ahn JeoungAhn Park Jeongjin Lee
Sogang University Memory Systems Research Memory Systems Research
Seoul, Republic of Korea SK hynix Inc. SK hynix Inc.
okl0p@sogang.ac.kr jungahn.park@sk.com jeongjin0.lee@sk.com
Jinna Yang Soonyeal Yang Jungki Noh
Memory Systems Research Memory Systems Research Memory Systems Research
SK hynix Inc. SK hynix Inc. SK hynix Inc.
jinna.yang@sk.com soonyeal.yang@sk.com jungki.noh@sk.com
Qing Zheng Woosuk Chung Hoshik Kim
Los Alamos National Laboratory Memory Systems Research Memory Systems Research
Los Alamos, NM, USA SK hynix Inc. SK hynix Inc.
qzheng@lanl.gov woosuk.chung@sk.com hoshik kim@sk.com
Youngjae Kim"
Sogang University
Seoul, Republic of Korea
youkim@sogang.ac.kr
Abstract CCS Concepts

Existing object storage systems like AWS S3 and MinIO offer only
limited in-storage compute capabilities, typically restricted to sim-
ple SQL WHERE-clause filtering. Consequently, high-impact op-
erators such as aggregation and top-N are still executed entirely
at the compute layer. Recent advances in Object-based Computa-
tional Storage (OCS) enable these complex operators to run natively
within storage, creating opportunities for substantial reductions
in data movement and query time. To demonstrate these benefits
in distributed SQL engines, we used Presto as a case study and
developed the Presto-OCS connector, which analyzes execution
plans to identify pushdown-eligible operators and offloads them to
OCS for efficient in-storage execution. Evaluations with real-world
HPC analytics queries and the TPC-H benchmark show that our
approach achieves up to 4.07x speedup and 99% data movement
reduction compared to filter-only pushdown. When combined with
compression techniques, our approach delivers 1.39X speedup over
compressed filter-only pushdown, demonstrating that advanced
query pushdown complements existing optimizations.

Y. Kim is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC Workshops °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1871-7/2025/11

https://doi.org/10.1145/3731599.3767371

« Information systems — Information storage systems; Data
management systems; Storage architectures.

Keywords

Computational Storage, Object Storage, SQL Query Engines, Big
Data Analytics

ACM Reference Format:

Junghyun Ryu, Soon Hwang, Junhyeok Park, Seonghoon Ahn, JeoungAhn
Park, Jeongjin Lee, Jinna Yang, Soonyeal Yang, Jungki Noh, Qing Zheng,
Woosuk Chung, Hoshik Kim, and Youngjae Kim. 2025. Integrating Dis-
tributed SQL Query Engines with Object-Based Computational Storage.
In Workshops of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC Workshops ’25), November
16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3731599.3767371

1 Introduction

Disaggregated architectures have become dominant in both cloud
and High-Performance Computing (HPC) environments, emerging
as the standard for large-scale data analytics systems by separating
the compute and storage layers [2, 33, 43]. While this separation
enables independent scalability and simplifies system management,
it also creates a critical performance challenge: the network bottle-
neck [15, 36, 49]. In practice, entire files are often transferred across
the network even when queries access only a small fraction of the

https://orcid.org/0009-0008-9293-173X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731599.3767371
https://doi.org/10.1145/3731599.3767371
https://doi.org/10.1145/3731599.3767371

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

data, making excessive data movement a major contributor to query
latency and overall execution time [20, 37, 51]. This inefficiency has
emerged as one of the most pressing obstacles to scaling modern
analytics systems.

To address this growing bottleneck, modern object storage plat-
forms such as Amazon S3 [3] and MinlO [34] have introduced query
pushdown techniques that offload part of the SQL processing to the
storage layer. By executing simple operators such as WHERE-clause
filtering or column projections closer to the data, these systems
(e.g., S3 Select [40] and MinIO Select [35]) can reduce the volume
of data transferred over the network. As a result, they have become
widely adopted backends for cloud-based and HPC OLAP systems,
valued for their scalability, cost-effectiveness, and compatibility
with disaggregated architectures.

However, the scope of such pushdown remains narrow, as cur-
rent object storage systems lack support for diverse query push-
down capabilities. Consequently, more complex queries including
aggregation (GROUP BY) or top-N (ORDER BY + LIMIT) operators
must still be executed on the client side, leaving the fundamental
data movement challenge only partially addressed. Thus, the nar-
row scope of query pushdown in current object storage systems
highlights the need for a more powerful solution.

Recognizing this limitation, SK hynix recently proposed an en-
hanced design called Object-based Computational Storage (OCS) [23],
which extends the boundaries of in-storage query processing. Un-
like S3 Select or MinIO Select, which are restricted to simple filtering
and column projection, OCS embeds an SQL query execution engine
directly inside the storage system. This in-place processing enables
amuch broader set of operators, including aggregation (GROUP BY)
and top-N (ORDER BY + LIMIT), to be executed close to the data,
substantially reducing network traffic and query latency. To achieve
interoperability and efficiency, OCS adopts Substrait Intermediate
Representation (IR) [45] for standardized query plan exchange and
Apache Arrow [9] for lightweight, high-performance columnar
result serialization. With Substrait ensuring compatibility across
query engines and Arrow providing efficient data transfer, their
design opens up new opportunities to bridge the long-standing gap
between disaggregated storage and analytics engines, addressing
the fundamental bottleneck of data movement that prior approaches
could not overcome.

Despite OCS’s ability to pushdown complex queries, there has
been no attempt to integrate it with distributed SQL query engines
such as Presto [41], creating a critical gap that prevents its wide-
spread adoption. Presto is one of the most widely used distributed
SQL query engines for interactive analytics across heterogeneous
data sources, with a modular architecture that allows pluggable
storage connectors via its Service Provider Interface (SPI) [39]. To-
day, object storage systems are typically accessed in Presto through
the Hive connector [38], which provides a unified API across S3-
compatible backends. While this abstraction simplifies integration
and ensures compatibility, it also imposes a fundamental limitation:
pushdown is restricted to basic filters and column projections, leav-
ing operators such as aggregation (GROUP BY) and top-N (ORDER
BY + LIMIT) entirely unoffloaded.

Ryu et al.

This limitation exposes the central problem: without a dedicated
connector, OCS’s advanced pushdown capabilities cannot be lever-
aged within Presto’s execution framework. Addressing this gap
introduces several key challenges:

e Limited accessibility of OCS features: Although OCS supports
complex operations such as aggregation and top-N, these capa-
bilities remain inaccessible through the Hive connector, which is
bound to the limited S3 Select API.

e Preserving Presto’s modularity: The integration must adhere
to Presto’s design philosophy of modularity, ensuring that OCS-
specific optimizations do not compromise compatibility with
existing query pipelines.

e Query translation overhead: The connector must efficiently
translate Presto’s internal query representations into Substrait
IR, which OCS requires for execution.

To address these challenges, this paper proposes the design of a
Presto-OCS Connector that fully exploits the advanced pushdown
capabilities of OCS while preserving Presto’s modular architecture.
Our approach builds on Presto’s Connector SPI framework, which
is designed to support storage-specific optimizations without break-
ing compatibility with the standard query execution pipeline. In
this design, the Presto-OCS connector extends Presto’s local op-
timizer, which is a component that allows storage connectors to
apply their own optimizations after the main query planning phase.
This extension enables the connector to identify pushdown-eligible
operators during query optimization, determining which operators
can be efficiently executed at the storage layer rather than in the
compute layer. By doing so, we demonstrate that advanced query
pushdown can be seamlessly integrated into Presto’s modular ar-
chitecture. These operators are then translated into Substrait IR and
dispatched to OCS via gRPC [19], enabling in-storage execution of
complex queries that conventional object storage systems cannot
handle. We implement our design on Presto version 0.286, a widely
used distributed SQL query engine, and integrate the proposed OCS
connector into its execution framework.

Evaluation on HPC and business OLAP workloads demonstrates
the significant benefits of the proposed Presto-OCS connector.
For the Laghos dataset [29], a fluid dynamics simulation from
Los Alamos National Laboratory, our approach achieves a 2.25x
speedup (from 1,015 to 450 seconds) with a 99.99% reduction in
data movement (from 5.1GB to 0.5MB) compared to filter-only
pushdown. The Deep Water Impact dataset [22] shows a 1.32x
speedup (from 441 to 335 seconds) with 99.98% less data transferred
(from 5.37GB to 1MB). For TPC-H Query 1, we observe a 4.07X
speedup (from 9 to 2.21 seconds) with a 99.7% reduction in data
movement (from 192MB to 0.5MB). Additionally, experiments with
various compression algorithms reveal that our approach achieves
1.36x~-1.39% speedup over compressed filter-only pushdown across
all compression methods (Snappy: 1.37x, GZip: 1.39X%, Zstd: 1.36X),
confirming that advanced operator pushdown and compression are
complementary techniques that together maximize performance in
computational storage systems.

Integrating Distributed SQL Query Engines with Object-Based Computational Storage

Compute Nodes

Distributed SQL

Query Engine
(e.g., Presto, Spark)

@ata Movem@
[

Object Storage

(e.g., S3, MinIO)

Figure 1: Overview of the disaggregated architecture for dis-
tributed SQL query processing with object storage

2 Background

2.1 Excessive Data Movement in Analytical
Workloads

Modern large-scale data processing analytics systems are now in-
creasingly built on disaggregated architectures that physically sep-
arate compute and storage nodes [2, 33, 41, 43]. This separation
enables independent scalability and simplifies system maintenance
but also incurs unavoidable network data movement during data
analytics, as all data must be retrieved from remote storage. Fig-
ure 1 illustrates the disaggregated architecture, where compute
nodes must retrieve all data from physically separated storage nodes
through network connections. Compared to local I/O, remote ac-
cess introduces higher latency and bandwidth constraints. This
inefficiency is particularly pronounced in high-selectivity analyti-
cal workloads such as Online Analytical Processing (OLAP), where
queries typically access only selected columns or a subset of rows.
In high-selectivity workloads, only a small portion of the dataset is
needed, yet entire files may still be transferred, making data move-
ment the dominant bottleneck [33]. For instance, scientific data
analytical workloads used in High-Performance Computing (HPC)
typically access only a small fraction of the dataset, yet still incur
significant overhead from transferring entire files [20, 32, 37, 51].
Large-scale commercial data analytics systems also follow this trend.
For example, more than half of all queries in Google’s analytical
workloads return less than 1% of total data [33].

2.2 Object Storage Systems and Their
Computation Support

Object storage is a storage architecture that manages data as discrete
objects identified by globally unique IDs. Well-known object storage
systems such as AWS S3 [3] and MinlO [34] adopt flat bucket-object
namespaces and separate metadata from data. Unlike hierarchical
file systems with directory structures, object storage eliminates
POSIX constraints such as file locking, improving scalability and
parallel data access. Additionally, object storage systems can store
columns as independent objects, facilitating distributed placement
across storage tiers based on data access patterns in tiered Storage
Systems [42].

The stateless nature of object storage enables horizontal scal-
ing without performance degradation, allowing multiple compute
nodes to read data in parallel without metadata overhead. From a
columnar processing perspective, object storage naturally aligns

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

with column-oriented data formats like Parquet [7] and ORC [6],
where each column chunk or row group can be stored as a separate
object [42]. This enables selective column retrieval without reading
entire datasets, significantly reducing I/O overhead for analytical
queries that typically access only a subset of columns. The object-
level granularity also facilitates efficient predicate pushdown and
column pruning, as compute nodes can request only the specific
column objects required for query execution. These features im-
prove overall storage efficiency and I/O performance, which is why
object storage has become the prevalent storage layer for data ana-
lytics workloads in cloud and has been increasingly adopted in HPC
environments processing large-scale scientific datasets [14, 16].

To further reduce data movement when processing SQL-based
analytics workloads on object storage systems, query pushdown
techniques have emerged as an optimization strategy [15, 49]. Query
pushdown offloads certain SQL operators directly to the storage
layer, allowing data reduction to occur before network transfer. Op-
erators such as filter, projection, aggregation and top-N are particu-
larly suitable for pushdown, as they require modest computation
but significantly reduce data volume [50]. Representative examples
include S3 Select [40] and MinlO Select [35], which enable storage-
side filtering through SELECT (column projection) and WHERE (fil-
ter) clauses for CSV, JSON, and Parquet formats. By executing these
operators at the storage side, only filtered rows and columns are
transmitted to compute nodes, reducing data movement. As shown
in Figure 2 (a), traditional object storage systems execute all SQL
operators at the compute node, requiring full dataset or column
chunk transfer. Figure 2 (b) illustrates how S3 Select and MinlIO
Select reduce this overhead by performing filtering and column
projection at the storage layer, transmitting only the processed
results to compute nodes.

However, their pushdown capabilities remain limited. AWS S3
and MinlO offer limited query pushdown methods which only
support SELECT and WHERE clauses for storage-side filtering,
with results returned in traditional row-oriented formats (CSV,
JSON) that lack the columnar processing benefits of modern formats
like Apache Arrow. Data-reducing operators such as aggregation
and top-N, which can significantly reduce result sizes, must still
be handled by compute nodes, missing substantial opportunities
for minimizing data movement if executed at the storage layer.
Moreover, S3 Select lacks support for double-precision floating-
point values, making it unsuitable for scientific domains that require
high numeric precision. MinlIO Select, built on the S3 Select API,
inherits the same limitations.

2.3 Towards Computational Object Storage

To overcome the mentioned limitations of conventional object stor-
age, SK Hynix has introduced Object-based Computational Stor-
age (OCS) [23]. OCS integrates an embedded SQL engine capa-
ble of executing a broad range of SQL operators such as column
project (SELECT), expression project (SELECT), filter (WHERE), ag-
gregation (GROUP BY), sort (ORDER BY), and limit/top-N (LIMIT,
ORDER BY + LIMIT) directly at the storage level, with support
for complex data types including double-precision floating-point
numbers.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Query #2'5|

No Pushdown
& Read All

| Object |j

Query #1B|

No Pushdown
& Read All

1
Example SQL Query #1
1

Example SQL Query #2 Iﬁ

_____ . Compute
Submit Node
Query

| Object |j

(a) Traditional Object Storage

| Execute

Ryu et al.

Query #1

Pushdown
& Read Little

| E ;
| I
Early
Early f t Execute
- (more)
M v

Query #2|5|

Pushdown
& Read Little

Query #1 Query #2|5|

Pushdown * No Pushdown I
& Read Little & Just Read

7
L)

A
(ot]

Early

| Execute

(b) MinIO / S3 Select (c) SK Hynix OCS

Figure 2: (a) In traditional object storage systems, all SQL operators are executed at the compute node, requiring the transfer of
the entire row group regardless of query selectivity. (b) S3 Select and MinlIO Select add limited compute capabilities (filtering
and column projection) at the storage layer to reduce data movement by transferring only the processed results. (c) SK Hynix
OCS enables early execution of a wider range of SQL operators—such as aggregation and top-N—directly within the storage

layer, expanding the scope of pushdown.

As shown in Figure 2 (c), OCS significantly extends pushdown
capabilities to include aggregation, sorting, and result limiting op-
erators. Since operators such as aggregation and limiting have sig-
nificant potential to achieve even greater data movement reduction
compared to simple filtering at the storage layer, this capability ex-
tends in-storage processing that further minimizes data movement
and accelerates query performance for analytical queries in HPC
environments. To represent query plans, OCS adopts the Substrait
Intermediate Representation (IR) [45], which promotes interop-
erability across query engines. For result transmission, Apache
Arrow [9] is used as a columnar in-memory format optimized for
analytical workloads.

2.4 Limitations of the Hive Connector for
Query Pushdown

Distributed SQL engines such as Presto [41] and Spark [5] rely on
the Hive connector [38] as the primary interface to object stor-
age. The Hive connector has long served as the de facto standard
for accessing S3-compatible object storage in distributed SQL en-
gines. It provides a unified interface to diverse S3-compatible object
storage backends and leverages the Hive Metastore [4] to deliver
catalog services including schemas and tables required for query
planning and optimization. In addition, the Hive connector exposes
storage-supported pushdown APIs such as S3 Select, which has
become standard for query pushdown and is adopted for filter and
column project pushdown in object storage systems including AWS
S3, MinlO. This ensures users can apply pushdown for common
operators across diverse object storage systems.

However, query pushdown through the Hive connector remains
limited to the standard pushdown API, which limits potential per-
formance gains. Although modern storage systems such as OCS
support more complex operators including aggregate and top-N for
pushdown, the Hive connector exposes only basic operators and
thus cannot exploit these extended capabilities. This implies that
the OCS-specific connector is required to fully utilize the extended
storage-specific capabilities.

3 Design of Presto-OCS Connector

We design and implement Presto-OCS connector, which extends
Presto’s Connector Service Provider Interface (SPI) [39] to enable
advanced operator pushdown into object storage. At a high level,
(i) the connector intercepts query operators during optimization,
(ii) detects pushdown-eligible operators, and (iii) translates them
into Substrait, an emerging standard for cross-system query plan
representation, for in-storage execution.

3.1 Presto’s Connector-Based Architecture

Presto is a distributed ANSI SQL-compatible query engine origi-
nally developed by Meta to provide a unified SQL interface over
heterogeneous data sources, following an “SQL-on-Anything" archi-
tecture [41]. Built on a disaggregated architecture that separates the
compute engine from storage, Presto supports a flexible connector-
based interface, enabling customized access mechanisms for various
storage systems such as AWS S3 [3], HDFS [8], and others. This
flexible execution model enables direct SQL querying over diverse
backends and has led to widespread adoption by large-scale en-
terprises such as Meta and Uber [30]. More recently, there have
been efforts to apply Presto as a data analytics application in HPC
environments [11, 48].

3.2 Presto’s Query Planning Workflow

Presto adopts a coordinator-worker architecture, where the coordi-
nator is responsible for planning and scheduling query execution
across workers, and the workers execute the assigned query frag-
ments. To process an SQL query, the coordinator performs the
following planning steps, as illustrated in Figure 3:

(1) SQL Parsing: The input query is parsed into an abstract syntax
tree (AST).

(2) Analysis and Logical Plan Construction: The AST is seman-
tically analyzed (e.g., type checking and schema resolution) and
converted into a logical plan tree composed of nodes such as
TableScanNode, FilterNode, and AggregationNode, each repre-
senting an operator in the query pipeline.

(3) Logical Optimization (Global Optimizer): Rule-based trans-
formations (e.g., join reordering and projection pruning) are
applied.

Integrating Distributed SQL Query Engines with Object-Based Computational Storage

o
[=3
wn
o
58

2. Abstract
----- Parser & Analyzer - Syntax Tree

3. LogicaI:Plan

Residual
Operators

PD OP
Selection

: Scor
Local Optimizer 'q...... 4. Optimized .
y g (OCS-Sli:ve) 1'4 Logical Plan Global Optimizer
5. Residual

Operators (Physical Plan) o [
Presto Worker

: 6
Beoomn Scheduler "

Figure 3: Query planning sequence in Presto’s coordinator.

(4) Connector-Specific Optimization (Local Optimizer): Through

the ConnectorPlanOptimizer interface, each connector can in-

spect and rewrite plan nodes based on backend-specific logic.

Our system detects pushdown-eligible operators at this phase.

Physical Planning: The logical plan is translated into a physi-

cal plan, including execution strategies and parallelism configu-

ration.

(6) Split Generation and Scheduling: The TableScan operator
is partitioned into splits for parallel execution across available
workers. Split generation considers data distribution, worker
availability, and parallelism configuration to optimize workload
balance. The scheduler distributes these splits to workers and
also assigns subsequent tasks in the execution pipeline, ensur-
ing each worker knows its complete sequence of operators for
processing the query.

—
il
~

3.3 Unlocking the Potential of Computational
Object Storage

Integrating OCS into Presto requires preserving Presto’s modu-
lar architecture. As mentioned in Section 2.4, simply replacing
the storage backend with OCS via the Hive connector is insuf-
ficient, since existing connectors in distributed SQL engines are
primarily designed as I/O adapters with limited pushdown func-
tionality. The challenge, therefore, is to design a connector that
exploits OCS-specific pushdown features while operating within
Presto’s execution pipeline. This requires careful coordination be-
tween Presto’s planning and execution phases, with the connector
identifying pushdown-eligible operators during planning and cor-
rectly executing them at storage during runtime. To fully utilize
OCS’s computational capabilities, we developed a separate connec-
tor that extends beyond simple I/O translation to directly expose
near-data processing capabilities. This design decouples OCS access
from the Hive connector, preserving the standard Hive interface
for conventional object stores while providing an optimized path
for OCS with advanced query pushdown support.

3.4 Presto-OCS Connector

The Presto-OCS connector is implemented via Presto’s SPI [39]
without requiring any modification to the core execution pipeline.
The connector focuses on the pushdown of data-reducing operators
such as filter, aggregation, and top-N to minimize unnecessary data
movement. To achieve this, it employs key components including

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Presto Coordinator | Presto Worker

'
'
'

. Local .. | Taski# E _____ Residual Task|| !
Planner Optimizer Scheduler Execution E
T '

: l '

: '

H '

'
'
'
'
'
'
'
'
'
'
'
'
'

(OCs Connector)

Target :

Selectivity Operator Task#0
I
[rasrro D). fResidual Task esu
o Execution
2

H (OCS Connector)
y Page Source Provider
[Substrait Plan Generator] [Result Handler]

:
§_OCS Pushdown API (gRPC) |
[substrait Plan Sender | [Execution Result Receiver |

D» Substrait : » Arrow

V |
Object-based Compuational Storage@

Figure 4: Execution flow of the Presto-OCS integrated archi-
tecture.

Presto
Cluster |

the Selectivity Analyzer for evaluating operator data reduction po-
tential, the Operator Extractor for capturing pushdown candidates,
and the PageSourceProvider for managing storage communication.
These components work together through an optimized pipeline,
translating operators into Substrait IR [45] and offloading them to
OCS through gRPC [19] for low-latency execution. Figure 4 illus-
trates how these components interact within the system. The Presto
cluster consists of a coordinator responsible for query planning and
scheduling, and multiple workers that execute the distributed query
fragments. The connector’s pushdown logic operates at the Local
Optimizer stage where pushdown decisions are made, with the iden-
tified operators later executed by OCS. The OCS system comprises
a frontend node that accepts Substrait IR plans and storage nodes
that process them, returning results in Arrow columnar format. By
integrating OCS-specific pushdown logic through Presto’s SPI and
leveraging Substrait/Arrow standards, this design enables advanced
in-storage computation that is not possible with the conventional
Hive connector. When a user submits an SQL query, the overall
execution proceeds as follows:

(1) Pushdown Target Selection: The coordinator constructs the
logical plan from the AST and applies both global and connector-
specific optimizations. During this phase, Presto-OCS Connec-
tor’s Selectivity Analyzer traverses the logical plan, estimating
operator selectivity using Hive metastore statistics and identi-
fying high data-reduction operators. As part of this traversal,
the Operator Extractor captures the identified operators along
with their associated SQL conditions, including filter predi-
cates (e.g., range boundaries, equality constraints), aggrega-
tion specifications (e.g., GROUP BY keys, aggregate functions),
and sorting criteria (e.g., ORDER BY columns, LIMIT values).
These extracted components are preserved in the connector’s
internal data structures for subsequent translation into storage-
executable formats.

(2) Task Scheduling: The scheduler partitions the optimized plan
into tasks and assigns them to workers. Workers assigned to
initial tasks, those responsible for retrieving data from remote
storage, are notified about the pushdown operators selected
in the previous phase. This notification includes information
about which operators will be executed at the storage layer
and indicates that intermediate results, rather than raw data,

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

will be returned from OCS. The workers can then prepare their
execution context accordingly, expecting pre-processed data in
Arrow format instead of raw table scans, and adjusting their
subsequent processing logic to handle these partially computed
results.

(3) Translating and Submitting Pushdown Plans to Storage:
When workers execute initial tasks for data retrieval, they in-
voke the PageSourceProvider, a Presto SPI interface responsible
for sending requests to remote storage and processing the re-
turned data. The OCS connector’s PageSourceProvider recon-
structs the pushdown target operators and their associated
conditions into SQL statements, combining filter predicates, ag-
gregation functions, and sorting criteria into a cohesive query.
This reconstructed SQL is then translated into Substrait IR,
which provides a standardized format for expressing the query
plan across different systems. The Substrait IR encapsulates all
necessary execution details, including operator semantics, data
types, and function signatures, ensuring accurate reproduction
of the intended operators within the OCS storage layer.

(4) In-Storage Execution on OCS: OCS receives and parses the
Substrait plan through its gRPC endpoint, then executes the
plan using its embedded SQL engine. The storage nodes per-
form the operators directly on the stored data, executing filters
to eliminate unnecessary rows, applying aggregations to reduce
data volume, and performing sorts or limits as specified. Upon
completion, OCS serializes the results into Apache Arrow colum-
nar format, which provides an efficient binary representation
for analytical workloads, and returns them to the requesting
worker through the established gRPC connection.

(5) Result Reception and Post-Processing: The OCS Connec-
tor’s PageSourceProvider receives the Arrow-formatted inter-
mediate results from OCS and deserializes them into Presto’s
internal page format for further processing. These deserialized
pages are then fed to the worker’s execution pipeline as if they
were standard table scan results, maintaining compatibility with
Presto’s existing operator implementations. The worker pro-
ceeds to execute any residual operators that were excluded from
pushdown to storage, such as complex joins across multiple ta-
bles, window functions requiring global context, or user-defined
functions incompatible with storage-side execution. These resid-
ual operators process the pre-filtered and pre-aggregated data
from OCS, benefiting from the reduced data volume while pre-
serving full SQL semantics. Once all residual operators complete
their execution, the worker streams the final results directly to
the client.

4 Implementation Details

We implemented the Presto-OCS connector on Presto version 0.286
with Open]DK 11.0.22, using Apache Hive 3.0.0 as the metadata
catalog. The implementation leverages Presto’s stable SPI interfaces
to ensure compatibility while adding pushdown capabilities through
custom optimizer and page source provider components.

Local Optimizer: To identify pushdown opportunities, the opti-
mizer analyzes query plans via Presto’s logical plan tree structure
and performs a bottom-up traversal using the ConnectorPlanOpti-
mizer interface. For each node, it evaluates pushdown eligibility

Ryu et al.

based on expression complexity, expected input size, and data re-
duction ratio.

The selection process leverages Hive metastore statistics includ-
ing min/max values for range filter selectivity, Number of Distinct
Values (NDV) for estimating aggregation cardinality, and row count
for computing reduction ratios. For filter operators, the optimizer
assumes a normal distribution of values between the column’s
min/max boundaries and estimates the proportion of rows falling
within the query’s range predicate. For aggregation operators, the
optimizer estimates output cardinality as row_count/NDV of the
GROUP BY column(s), where aggregations with low NDV are priori-
tized for pushdown as they produce minimal output. For top-N oper-
ators, selectivity calculation is straightforward as the LIMIT clause
explicitly specifies the output row count, which can be directly com-
pared against the total row count. The pushdown decision is based
on comparing the estimated selectivity and computational complex-
ity against user-configurable thresholds. Operators with selectivity
above the threshold and acceptable computational overhead are
marked as pushdown candidates. However, this approach has lim-
itations. The assumptions of normal distributions may not hold
for skewed data distributions. Adapting to diverse data distribu-
tions dynamically and determining optimal thresholds for different
workload characteristics remain important areas for future work.

Selected operators are recorded in the connector’s table metadata
structure along with their dependency relationships and execution
order constraints. The corresponding PlanNodes are merged into a
modified TableScan operator, which encapsulates the pushdown op-
erators under the assumption that OCS will execute these operators
and return only the processed results.

Page Source Provider: During query execution, Presto invokes
the connector’s PageSourceProvider to retrieve data from storage.
Our OCS-specific implementation generates Substrait IR for the
operators stored in table metadata. The translation process extracts
pushdown operators and reconstructs them into SQL statements,
combining filters with predicates, aggregations with grouping keys
and functions, and sorts with ordering criteria. These SQL state-
ments are then translated into Substrait IR through complex map-
pings: SQL clauses become Substrait relations, expressions are trans-
formed with proper type casting, and Presto’s function signatures
map to Substrait’s standardized namespace. Type normalization
handles differences in null handling, decimal precision, and times-
tamp representations between systems. The completed Substrait
plan is serialized using Protocol Buffers and transmitted to OCS via
gRPC. OCS executes the query using its embedded SQL engine and
returns Arrow columnar results, which the connector deserializes
into Presto’s page format with necessary type conversions.
Pushdown Monitoring and Auxiliary Components: The con-
nector implements monitoring via Presto’s EventListener interface
to collect runtime statistics, including operator execution times,
data volumes, and pushdown success rates. The collected metrics
are stored in a pushdown history component that maintains a slid-
ing window of recent executions to identify patterns and inform
future optimization decisions. Additional components handle col-
umn metadata, table properties, schema synchronization, and split
management for parallel execution, ensuring reliable operation.

Integrating Distributed SQL Query Engines with Object-Based Computational Storage

Table 1: Hardware specifications

Compute Node Specifications

CPU Intel(R) Xeon(R) Gold 6226R (64 cores, 2.9 GHz max)
Memory 384 GB DDR4
Storage 1 TB NVMe SSD

Frontend Node Specifications
CPU Intel® Xeon® Silver 4410Y (48 cores, 3.9 GHz max)
Memory 64 GB DDR4
Storage 1 TB NVMe SSD

Storage Node Specifications

CPU Intel® Xeon® Silver 4410Y (16 cores, 2.0 GHz max)
Memory 64 GB DDR4
Storage 1 TB NVMe SSD + 512 GB SATA SSD

5 Evaluation
5.1 Experimental Setup

Testbeds. Table 1 lists the hardware specifications of our experi-
mental setup. The compute node runs a single-node Presto deploy-
ment, with the coordinator and one worker on the same machine.
The Object-based Computational Storage (OCS) follows a hierarchi-
cal design comprising a frontend node and multiple backend stor-
age nodes. The frontend exposes a unified endpoint to applications,
parses incoming queries, and dispatches them to the appropriate
storage node. Each storage node holds data and includes an embed-
ded SQL engine to execute query plans locally. For our experiments,
we used a single storage node. Note that we restricted the storage
node to 16 cores at 2.0 GHz (compared to 48 cores at 3.9 GHz for
the frontend) to emulate the resource-constrained environment
typical of production storage nodes. All nodes are interconnected
through a 10 GbE Ethernet network. All machines, including the
compute and OCS nodes, run Ubuntu 22.04.4 LTS. Presto version
0.286 is used as the distributed SQL query engine, compiled with
OpenJDK 11.0.22. Apache Hive 3.0.0 serves as the metadata catalog
for schema and statistics.

Workloads. To evaluate the performance impact of leveraging
OCS’s extended pushdown capabilities in Presto, we employ scien-
tific simulation datasets with their corresponding analytical queries
used at Los Alamos National Laboratory (LANL), as well as a stan-
dard decision-support benchmark (TPC-H).

e Laghos Dataset: The LAGrangian High-Order Solver (Laghos)
dataset is generated by a fluid dynamics simulation mini-application
on unstructured meshes. It consists of 256 Parquet files, each con-
taining 10 columns and 4,194,304 rows, totaling approximately
24 GB [29]. To evaluate pushdown performance of various opera-
tors, we modified the original LANL query by appending a LIMIT
clause, thereby introducing a top-N operator into the plan.

e Deep Water Dataset: The Deep Water Asteroid Impact dataset
simulates an asteroid strike in a deep-sea environment. It con-
tains 64 Parquet files, each representing a snapshot at a different
timestep, with 27 million rows and 4 columns per file, totaling
30 GB [22].

e TPC-H Benchmark: To evaluate performance in traditional On-
line Analytical Processing (OLAP) scenarios, we include Query 1
from the TPC-H benchmark [47], which represents aggregation-
heavy workloads in decision-support systems.

Table 2 presents the SQL queries, their selectivity (ratio of result
to input size), and Presto logical execution plans for each dataset.

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

5.2 Results

For the evaluation, we conducted experiments and analyses guided
by four research questions.

Q1. Does reducing data movement through pushdown improve
query execution time?: Figure 5 compares query execution time
and data movement across three workloads as we progressively
enable query pushdown for different operator types, where the
x-axis shows the cumulative set of operators selected for pushdown
(following the execution order in Table 2) and the y-axis shows
both execution time in seconds (bars) and data movement from OCS
to Presto (red solid line) on separate scales, with data movement
measured in GB for Laghos and Deep Water Impact dataset, and
MB for TPC-H Q1. Figure 5 (a) presents performance results for the
Laghos dataset. Since each operator in this query reduces its output
size relative to its input, additional operator pushdown consistently
decreases both data movement and execution time. Data movement
decreases from 24GB without pushdown to 5.1GB with filter-only
pushdown, 0.75GB when aggregation is added, and merely 0.0005GB
with complete pushdown of all three operators (filter, aggregation,
and top-N). These reductions in data movement directly lead to
performance improvements: execution time decreases from 2,710
seconds at baseline to 1,015 seconds with filter-only pushdown,
828 seconds with filter and aggregation pushdown, and 450 sec-
onds with full operator pushdown. This implies that minimizing
data movement is critical to performance optimization. Notably,
the complete pushdown configuration reduces data movement by
99.99% (from 5.1 GB to 0.0005 GB) and achieves a 2.25X speedup
compared to the filter-only pushdown approach employed by tradi-
tional object storage systems. These results highlight the limitations
of traditional object storage systems that support only filter and
column projection pushdown. The Presto-OCS connector lever-
ages OCS’s extended pushdown capabilities to offload aggregation
and top-N operators, enabling in-storage processing that delivers
performance gains beyond those achievable through conventional
filter-based approaches.

Q2. Is pushdown always beneficial regardless of operator type?:
Query pushdown does not guarantee performance improvements
for every operator type. As shown in Figure 5 (b), for the Deep
Water Impact dataset, filter-only pushdown reduced data move-
ment from 30GB to 5.37GB (82% reduction) and execution time
from 1,033 seconds to 441 seconds (2.33% speedup) compared to no
pushdown. In Figure 5 (c), TPC-H Q1 showed minimal data move-
ment reduction from 194MB to 192MB (1.03% reduction) but still
achieved a 1.22x speedup with filter-only pushdown. However, in
both cases, expression projection pushdown resulted in increased
execution times. Specifically, Deep Water Impact experienced a 7%
slowdown and TPC-H Q1 experienced a 55% slowdown when pro-
jection pushdown was added to filter-only pushdown. This is due to
the computational overhead of expression evaluation in projections,
which reference multiple columns and involve complex arithmetic.

Offloading such projections to OCS rather than computing them
on the more capable compute node introduced additional latency
while providing no data movement reduction. In both datasets,
adding aggregation pushdown after filter and projection dramat-
ically reduced data movement and recovered performance. Com-
pared to filter-only pushdown, Deep Water Impact achieved a 1.32X

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Ryu et al.

Table 2: Queries used for each dataset and their selectivity.

Dataset Query Selectivity Execution Plan
Laghos SELECT min(vertex_id) AS VID, min(x), min(y), min(z), avg(e) FROM parquet 0.0023842% TableScan — Filter —
WHERE x, y, z BETWEEN 0.8 AND 3.2 GROUP BY vertex_id ORDER BY E LIMIT 100 Aggregation — Top-N
Deep Water || SELECT MAX((rowid % (500*500))/500), timestep FROM parquet 0.0000032% TableScan — Filter —
WHERE v02 >0.1 GROUP BY timestep Project — Aggregation
TPC-H SELECT returnflag, linestatus, SUM(quantity), SUM(extendedprice), SUM(extendedprice * 0.0000667% TableScan — Filter —
(1 - discount)), SUM(extendedprice * (1 - discount) * (1 + tax)), AVG(quantity), Project — Aggregation
AVG(extendedprice), AVG(discount), COUNT(*) FROM lineitem — Sort
WHERE shipdate < DATE °1998-12-01" - INTERVAL 90 DAY’ GROUP BY returnflag, linestatus
ORDER BY returnflag, linestatus
[Execution Time [Execution Time [Execution Time
—o— Data Movement —o— Data Movement —o— Data Movement
—_ 30 — 35 ~ 15
2 2500} = 21000 10m B — o {200 _
1?e 8 o g12f =
& 2000 F \ 720?)@800* —zsgg 1150 o
£ 1500 s E & 600f joE g ° 1100 £
L > F 415 > F 6l >
§ 1000} {102 § 400f 102 8§ =
3 so0f \\ 1s £ 3 200} . 1, 88 3f 1° £
9] 9] “ N 5 9]
o 0 ™ 0 e &5 0 \\. o o X 0 § [a
no filter filter filter no filter filter filter no filter filter filter
pushdown +aggr. +aggr. pushdown +proj. +proj. pushdown +proj. +proj.
+top-N +aggr. +aggr.
Pushdown Operator Type Pushdown Operator Type Pushdown Operator Type
(a) Laghos (b) Deep Water Impact (c) TPC-H

Figure 5: Execution time comparison. For each dataset, query pushdown was progressively applied to SQL operators in execution

order to observe changes in runtime and data movement.

speedup (441 to 335 seconds) and reduced data movement from
5.37GB to 1MB, while TPC-H Q1 achieved a 4.07x speedup (9 to
2.21 seconds) and reduced data movement from 192MB to 0.5MB.
This is attributed to the nature of aggregation operators, which
consolidate multiple rows into a single row per group using func-
tions like MAX, SUM, and AVG. Since the query for the Deep Water
Impact dataset has a single GROUP BY key that produces only one
distinct group and the TPC-H Q1 query has multiple GROUP BY
keys that result in just four groups, the aggregation results contain
just one and four rows respectively, reducing the data size. These
results highlight that the effectiveness of pushdown depends on
the operator type, complexity, and order, as well as the trade-off
between compute and network overhead.

Q3. How does OCS pushdown perform with data compression?: To
evaluate the impact of data compression on pushdown performance,
we conducted experiments using the Deep Water Impact dataset in
its raw form and with lossless compression algorithms: Snappy [18],
GZip [17], and Zstd [12]. We limit our experiments to lossless
compression because the standard Parquet ecosystem currently
supports only lossless codecs. While lossy compression techniques
such as SZ [25, 46] or ZFP [26] could achieve higher compression
ratios for scientific data, implementing them within Parquet would
require custom extensions beyond the current Parquet ecosystem.
Exploring the performance when combining query pushdown with
lossy compression remains an important direction for future work.

Figure 6 presents the execution times for both filter-only and
all-operator pushdown configurations across these compression

schemes. The filter-only pushdown represents the approach sup-
ported by conventional object storage systems, while the all-operator
pushdown leverages OCS’s extended capabilities to pushdown the

complete operator chain.

The results show that query pushdown and compression are
complementary techniques that together achieve superior perfor-
mance. Compressed data with basic filter-only pushdown (451.7
seconds with Zstd) outperformed uncompressed data with full op-
erator pushdown (530.4 seconds) demonstrating that compression
combined with basic filter pushdown can deliver substantial per-
formance gains over advanced pushdown alone. This highlights
that compression remains a valuable optimization technique that
should not be overlooked when implementing near-data processing.
However, when comparing within the same compression scheme,
OCS’s extended pushdown capabilities consistently outperformed
filter-only pushdown across all compression methods.

For uncompressed data, all-operator pushdown achieved a 1.22x
speedup (from 649.3 to 530.4 seconds) over filter-only pushdown.
This performance gap widened with compression: Snappy showed
a 1.37x speedup, GZip a 1.39% speedup, and Zstd achieved a 1.36x
speedup when upgrading from filter-only to all-operator pushdown.
Furthermore, higher compression ratios correlated with better per-
formance in both pushdown configurations. Execution times de-
creased progressively from no compression to Zstd, with the most
aggressive compression (Zstd) achieving the best results: 451.7
seconds for filter-only and 331.6 seconds for all-operator push-
down. This trend confirms that the I/O reduction from compression

Integrating Distributed SQL Query Engines with Object-Based Computational Storage

[Filter Pushdown
I All Pushdown 4

700

600

Execution Time
(second)
w e w
o o o
o o o
T T T
L L

N

o

o
T

fary

o

o
T

raw snappy gzip zstd

Figure 6: Impact of compression algorithms on pushdown
performance. Lower execution times indicate better perfor-
mance.

Table 3: Breakdown of execution time for a single query

Execution Stage Time (ms) | Share (%)
Logical Plan Analysis 1 0.06%
Substrait IR Generation 33 1.94%
Pushdown & Result Transfer 682 40.12%
Presto Execution (Post-Scan) 814 47.90%
Others 169 9.97%
Total 1,700 100%

outweighs decompression overhead, even in storage-side query
processing.

These findings suggest that OCS-enabled operator pushdown
serves as a powerful complement to existing compression tech-
niques. While compression reduces data size at rest and during
transfer, extended pushdown with aggregation and projection fur-
ther reduces data movement by processing queries in-storage.

Q4. Does the Presto-OCS connector incur significant overhead?:
We evaluate whether the Presto-OCS connector introduces signif-
icant overhead from query plan traversal for pushdown operator
selection or Substrait Intermediate Representation (IR) generation.
Table 3 quantifies the overhead of pushdown optimization and
Substrait conversion. For a single query on one Parquet file from
the Laghos dataset, logical plan traversal and Substrait IR gener-
ation accounted for only 0.06% and 1.94% of the total execution
time, respectively. The combined overhead for all pushdown-related
logic was under 2%, demonstrating that the Presto-OCS connector
achieves its optimization goals with negligible impact on perfor-
mance.

6 Related Work

Scientific computing in HPC environments has addressed data
movement bottlenecks through various approaches. Systems like
ADIOS [28], Catalyst [10], and Damaris [13] enable in-situ and in-
transit processing, analyzing data while still in memory or during
transfer to avoid intermediate storage operations. Compression
remains the cornerstone of modern scientific data reduction, with
methods generally divided into lossless and lossy schemes. Lossless
compression [12, 17, 18, 24, 27, 31, 44, 52] guarantees exact fidelity
and is required in situations where even the smallest deviation

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

is unacceptable. Lossy compression achieves much higher reduc-
tion by tolerating controlled error. Frameworks such as SZ [25, 46],
ZFP [26], and MGARD [1] let users specify error bounds, balancing
size reduction and accuracy.

Recent query pushdown systems have explored in-storage pro-
cessing strategies for reducing data movement. PushdownDB [50]
explores how query pushdown can improve DBMS performance
while leveraging AWS S3. FlexPushdownDB [49] introduces a hy-
brid approach that combines Weighted-LFU policy caching with
computation pushdown to optimize query performance. Fusion [15]
addresses the inefficiency of traditional computation pushdown
on erasure-coded storage and proposes an object store specifically
optimized for query pushdown on erasure-coded data.

Computational Storage Devices (CSDs) can offer hardware-level
solutions for data-intensive workloads. KV-CSD [37] embeds key-
value processing logic directly in storage devices for HPC appli-
cations. YourSQL [21] offloads database operations to CSDs by
implementing a storage-side query execution engine that processes
SQL queries directly within the storage device.

While compression enables substantial size reductions, it remains
constrained by the need to restore data into its original form (even
with lossy methods) and therefore must account for all data points
in a dataset. By contrast, this paper explores a research direction
where reduction is achieved by processing data directly at its storage
location. In this model, only the processed results—often orders
of magnitude smaller than the raw input—are returned, thereby
reducing data movement. This approach reduces data without being
constrained by entropy and is particularly effective when analysis
is bottlenecked by network transfer rather than storage media
bandwidth. However, its benefits diminish when storage bandwidth
itself is the primary constraint.

In practice, we expect in-storage processing to be used in tandem
with compression, reducing local storage read overhead while fur-
ther minimizing network transfers to deliver optimal performance.

7 Conclusion

This paper presents the design and implementation of a connector
that integrates OCS with Presto, a widely used distributed SQL
engine, to enable query pushdown of advanced SQL operators
supported by OCS. The proposed Presto-OCS connector leverages
Presto’s Connector SPI to detect data-reducing operators during
query planning, translates them into Substrait intermediate repre-
sentations, and offloads them to OCS for in-storage execution. A
key architectural achievement is that the connector extends the
Presto SPI to unlock OCS’s advanced pushdown capabilities while
maintaining seamless compatibility with the existing ecosystem,
all without altering the core Presto framework. Experimental evalu-
ation with real-world HPC and OLAP workloads demonstrates that
the Presto-OCS connector achieves up to a 4.07X speedup in query
execution and a 99% reduction in data movement compared to filter-
only pushdown. Furthermore, achieving up to a 1.39X speedup on
compressed data confirms that advanced query pushdown is a pow-
erful complement to data compression.

Acknowledgments
This work was supported by SK hynix Inc.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

References

(1]

[2

(3]

[

=
A=A

(11

[12]

[13

[14

[15]

[16

[17]
[18]

[19]
[20]

[21

[22]

[23

[24

[25]

[26]

[27

Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. 2018. Multilevel
techniques for compression and reduction of scientific data—the univariate case.
Springer Computing and Visualization in Science 19, 5-6 (2018).

Amazon Web Services. 2024. Amazon Athena Documentation. https://docs.aws.
amazon.com/athena/latest/ug/what-is.html.

Amazon Web Services, Inc. 2006. Amazon S3. https://aws.amazon.com/s3/.
[Online; accessed 2025-08-24].

Apache Foundation. 2010. Apache Hive. https://hive.apache.org/.
accessed 2025-08-24].

Apache Foundation. 2010. Apache Spark. https://spark.apache.org/. [Online;
accessed 2025-08-24].

Apache Foundation. 2013. Apache ORC. https://orc.apache.org/.
accessed 2025-08-24].

Apache Foundation. 2013. Apache Parquet. https://parquet.apache.org/. [Online;
accessed 2025-08-24].

Apache Foundation. 2013. HDFS Architecture Guide. https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html. Accessed: 2025-08-23.

Apache Foundation. 2016. Apache Arrow. https://arrow.apache.org/. [Online;
accessed 2025-08-24].

Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland,
Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling In Situ
Data Analysis and Visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization. doi:10.1145/
2828612.2828624

Zbigniew Baranowski and Vasileios Dimakopoulos. 2020. Introduction to Presto.
CERN Indico Event 869037. https://indico.cern.ch/event/869037/contributions/
3663775/attachments/1960650/3258410/Introduction_to_Presto.pdf

Yann Collet and Chip Turner. 2016. Zstandard - Real-time Data Compression
Algorithm. https://github.com/facebook/zstd.

Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Robert Sisneros,
Orcun Yildiz, Shadi Ibrahim, Tom Peterka, and Leigh Orf. 2016. Damaris: Address-
ing performance variability in data management for post-petascale simulations.
ACM Transactions on Parallel Computing 3, 3 (2016). doi:10.1145/2987371
Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud Ob-
ject Storage for High-Performance Analytics. Proceedings of the VLDB Endowment
16, 11 (2023). doi:10.14778/3603581.3603592

Michael Freedman, Qiwen Zhang, Erik Peterson, and Frank McSherry. 2025.
Fusion: An Analytics Object Store Optimized for Query Pushdown. In Proceedings
of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). doi:10.1145/3669940.3707234
Frank Gadban and Julian Kunkel. 2021. Analyzing the Performance of the S3
Object Storage API for HPC Workloads. MDPI Applied Sciences 11, 18 (2021).
doi:10.3390/app11188540

GNU Project. 2022. GNU Gzip: General-Purpose Data Compression Software.
https://www.gnu.org/software/gzip/.

Google. 2011. Snappy. https://github.com/google/snappy. [Online; accessed
2025-08-24].

Google. 2015. gRPC. https://grpc.io. [Online; accessed 2025-08-24].

Junmin Gu, Scott A. Klasky, Norbert Podhorszki, Ji Qiang, and Kesheng Wu.
2018. Querying Large Scientific Data Sets with Adaptable IO System ADIOS.
In Supercomputing Frontiers, Vol. 10776. Oak Ridge National Laboratory. doi:10.
1007/978-3-319-69953-0_4

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel
D. G. Lee, and Jacheon Jeong. 2016. YourSQL: a high-performance database
system leveraging in-storage computing. Proc. VLDB Endow. 9, 12 (2016). doi:10.
14778/2994509.2994512

Patchett John, Samsel Francesca, Tsai Karen, Gisler Galen, Rogers David, Abram
Greg, and Turton Terece. 2016. Visualization and analysis of threats from asteroid
ocean impacts. Los Alamos National Laboratory Technical Report.

Jongryool Kim. 2023. Accelerating Data Analytics Using Object Based Computa-
tional Storage ina HPC. https://sc23.supercomputing.org/proceedings/exhibitor_
forum/exhibitor_forum_pages/exforum116.html The International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC).
Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. ndzip: A high-
throughput parallel lossless compressor for scientific data. In 2021 Data Compres-
sion Conference (DCC).

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-Controlled Lossy Compression Optimized
for High Compression Ratios of Scientific Datasets. In Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data). do0i:10.1109/BigData.2018.8622520
Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014). doi:10.1109/
TVCG.2014.2346458

Peter Lindstrom and Martin Isenburg. 2006. Fast and Efficient Compression of
Floating-Point Data. IEEE Transactions on Visualization and Computer Graphics
12, 5 (2006). doi:10.1109/TVCG.2006.143

[Online;

[Online;

(28]

[29

[30

)
=

[32

[33

(34]

[35]

&
2

[37

[38

[39

[40

[41

[42

[43

[44

[45

™~
)

[47

[48

[49

[50

[51

(52]

Ryu et al.

Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and integration for scientific codes through the adaptable IO
system (ADIOS). In Proceedings of the 6th International Workshop on Challenges
of Large Applications in Distributed Environments. doi:10.1145/1383529.1383533
Los Alamos National Laboratory. 2024. Laghos Sample Dataset. https://github.
com/lanl-ocs/laghos-sample-dataset. [Online; accessed 2025-08-24].

Zhenxiao Luo, Lu Niu, Venki Korukanti, Yutian Sun, Masha Basmanova, Yi He,
Beinan Wang, Devesh Agrawal, Hao Luo, Chunxu Tang, Ashish Singh, Yao Li,
Peng Du, Girish Baliga, and Maosong Fu. 2022. From Batch Processing to Real
Time Analytics: Running Presto at Scale. In Proceedings of the 2022 IEEE 38th
International Conference on Data Engineering (ICDE). doi:10.1109/ICDE53745.
2022.00165

LZ4. 2011. LZ4 - Extremely fast compression. https://github.com/lz4/1z4. [Online;
accessed 2025-08-24].

Dominic Manno. 2023. Improving Storage Systems for Simulation Science with
Computational Storage. Compute+Memory+Storage Summit.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive
SQL Analysis at Web Scale. Proceedings of the VLDB Endowment 13, 12 (2020).
doi:10.14778/3415478.3415568

MinlO, Inc. 2016. MinlIO: S3 Compatible, Exascale Object Store for AL https:
//min.io/. Accessed: 2025-08-23.

MinlO, Inc. 2019. MinlO Select: S3 Select API Support. https://github.com/minio/
minio/blob/master/docs/select/README.md. Accessed: 2025-08-23.

Xi Pang and Jianguo Wang. 2024. Understanding the Performance Implications
of the Design Principles in Storage-Disaggregated Databases. In Proceedings of
the ACM on Management of Data (PACMMOD). doi:10.1145/3654983

Inhyuk Park, Qing Zheng, Dominic Manno, Soonyeal Yang, Jason Lee, David
Bonnie, Bradley Settlemyer, Youngjae Kim, Woosuk Chung, and Gary Grider.
2023. KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive
Applications. In Proceedings of the 2023 IEEE International Conference on Cluster
Computing (CLUSTER). doi:10.1109/CLUSTER52292.2023.00019

Presto Foundation. 2013. Hive Connector. https://prestodb.io/docs/current/
connector/hive.html. Accessed: 2025-08-23.

Presto Foundation. 2013. SPI Overview. https://prestodb.io/docs/current/develop/
spi-overview.html. Accessed: 2025-08-23.

Randall Hunt. 2017. S3 Select and Glacier Select - Retrieving Subsets of Objects.
https://aws.amazon.com/ko/blogs/aws/s3-glacier-select/

Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In Proceedings of the 2019
IEEE 35th International Conference on Data Engineering (ICDE).

Nick Smith, Bo Jayatilaka, David Mason, Oliver Gutsche, Alison Peisker, Robert
Illingworth, and Chris Jones. 2023. A Ceph S3 Object Data Store for HEP. arXiv
preprint arXiv:2311.16321 (2023). https://arxiv.org/abs/2311.16321

Snowflake Inc. 2014. Snowflake AI Data Cloud. https://www.snowflake.com/.
Accessed: 2025-08-23.

James A Storer and Thomas G Szymanski. 1982. Data compression via textual
substitution. Journal of the ACM (JACM) 29, 4 (1982).

Substrait Project. 2021. Substrait. https://substrait.io/. Accessed: 2025-08-23.
Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017. Significantly
Improving Lossy Compression for Scientific Data Sets Based on Multidimensional
Prediction and Error-Controlled Quantization. In Proceedings of the 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). doi:10.1109/
IPDPS.2017.115

Transaction Processing Performance Council. 2017. TPC Benchmark H (Decision
Support). http://www.tpc.org/tpch/. Revision 2.17.3.

Andrew Waldman. 2018. Evaluation of the Presto Query Engine for integrating
relational databases with big data platforms at scale. CERN openlab Summer
Student Lightning Talk. https://cds.cern.ch/record/2634287

Yifei Yang, Xiangyao Yu, Marco Serafini, Ashraf Aboulnaga, and Michael Stone-
braker. 2024. FlexpushdownDB: Rethinking Computation Pushdown for Cloud
OLAP DBMSs. The VLDB Journal 33, 5 (2024).

Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Ser-
afini, Ashraf Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Acceler-
ating a DBMS Using S3 Computation. In Proceedings of the 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE). doi:10.1109/ICDE48307.2020.00174
Qing Zheng. 2023. Toward Open Object-Based Computational Storage For Anal-
ysis Query Pushdown. The 9th International Parallel Data Systems Workshop
(PDSW) Work-in-Progress (WIP) Session.

Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (1977).

https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://aws.amazon.com/s3/
https://hive.apache.org/
https://spark.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://arrow.apache.org/
https://doi.org/10.1145/2828612.2828624
https://doi.org/10.1145/2828612.2828624
https://indico.cern.ch/event/869037/contributions/3663775/attachments/1960650/3258410/Introduction_to_Presto.pdf
https://indico.cern.ch/event/869037/contributions/3663775/attachments/1960650/3258410/Introduction_to_Presto.pdf
https://github.com/facebook/zstd
https://doi.org/10.1145/2987371
https://doi.org/10.14778/3603581.3603592
https://doi.org/10.1145/3669940.3707234
https://doi.org/10.3390/app11188540
https://www.gnu.org/software/gzip/
https://github.com/google/snappy
https://grpc.io
https://doi.org/10.1007/978-3-319-69953-0_4
https://doi.org/10.1007/978-3-319-69953-0_4
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.14778/2994509.2994512
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_pages/exforum116.html
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_pages/exforum116.html
https://doi.org/10.1109/BigData.2018.8622520
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2006.143
https://doi.org/10.1145/1383529.1383533
https://github.com/lanl-ocs/laghos-sample-dataset
https://github.com/lanl-ocs/laghos-sample-dataset
https://doi.org/10.1109/ICDE53745.2022.00165
https://doi.org/10.1109/ICDE53745.2022.00165
https://github.com/lz4/lz4
https://doi.org/10.14778/3415478.3415568
https://min.io/
https://min.io/
https://github.com/minio/minio/blob/master/docs/select/README.md
https://github.com/minio/minio/blob/master/docs/select/README.md
https://doi.org/10.1145/3654983
https://doi.org/10.1109/CLUSTER52292.2023.00019
https://prestodb.io/docs/current/connector/hive.html
https://prestodb.io/docs/current/connector/hive.html
https://prestodb.io/docs/current/develop/spi-overview.html
https://prestodb.io/docs/current/develop/spi-overview.html
https://aws.amazon.com/ko/blogs/aws/s3-glacier-select/
https://arxiv.org/abs/2311.16321
https://www.snowflake.com/
https://substrait.io/
https://doi.org/10.1109/IPDPS.2017.115
https://doi.org/10.1109/IPDPS.2017.115
http://www.tpc.org/tpch/
https://cds.cern.ch/record/2634287
https://doi.org/10.1109/ICDE48307.2020.00174

	Abstract
	1 Introduction
	2 Background
	2.1 Excessive Data Movement in Analytical Workloads
	2.2 Object Storage Systems and Their Computation Support
	2.3 Towards Computational Object Storage
	2.4 Limitations of the Hive Connector for Query Pushdown

	3 Design of Presto-OCS Connector
	3.1 Presto’s Connector-Based Architecture
	3.2 Presto’s Query Planning Workflow
	3.3 Unlocking the Potential of Computational Object Storage
	3.4 Presto-OCS Connector

	4 Implementation Details
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

