
Cost-Efficient VM Selection for Cloud-Based LLM
Inference with KV Cache Offloading

Kihyun Kim∗, Jinwoo Kim∗, Hyunsun Chung∗, Myung-Hoon Cha†, Hong-Yeon Kim†, Youngjae Kim∗‡
∗Sogang University, Seoul, Republic of Korea, †ETRI, Daejeon, Republic of Korea

{kion777, jinwookim, hchung1652, youkim}@sogang.ac.kr, {mhcha, hykim}@etri.re.kr

Abstract—LLM inference is essential for applications like text
summarization, translation, and data analysis, but the high cost of
GPU instances from Cloud Service Providers (CSPs) like AWS
is a major burden. This paper proposes INFERSAVE, a cost-
efficient VM selection framework for cloud-based LLM inference.
INFERSAVE optimizes KV cache offloading based on Service
Level Objectives (SLOs) and workload characteristics, estimat-
ing GPU memory needs, and recommending cost-effective VM
instances. Additionally, the Compute Time Calibration Function
(CTCF) improves instance selection accuracy by adjusting for
discrepancies between theoretical and actual GPU performance.
Experiments on AWS GPU instances show that selecting lower-
cost instances without KV cache offloading improves cost effi-
ciency by up to 73.7% for online workloads, while KV cache
offloading saves up to 20.19% for offline workloads.

Index Terms—Cloud Computing, LLM Inference, Service
Level Objective (SLO) Management, KV Cache Offloading

I. INTRODUCTION

Large Language Models (LLMs) have become a core
technology in modern Natural Language Processing (NLP),
demonstrating outstanding performance in various applications
such as text summarization, machine translation, and conversa-
tional AI [1]. LLMs built on Transformer-based architectures,
such as GPT [2] and LLaMA [3], leverage multi-layer self-
attention mechanisms and large-scale pretraining to achieve
near-human-level language understanding and generation ca-
pabilities. Thanks to their superior performance, LLMs are
widely used across industries, providing high accuracy and
natural responses in a wide range of tasks, including text
summarization, question answering, and document analysis.

However, to efficiently design an LLM inference system, it
is essential to consider task-specific Service Level Objectives
(SLOs). For instance, in online inference tasks, such as real-
time conversational services or question answering, latency
must be minimized to ensure a seamless user experience.
Minimizing inference latency is a key challenge in these
scenarios.

On the other hand, in batch processing tasks [4, 5] such
as text summarization for large datasets, log analysis, and
document clustering, latency requirements are generally less
strict. Instead, maximizing throughput is critical, as these tasks
involve processing large volumes of input data at once. In such
batch processing environments, handling large batches can eas-
ily lead to GPU memory shortages. Due to the auto-regressive
nature of LLM inference, the Key-Value (KV) cache, which
stores past token information, continuously grows. As a result,
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GPU memory usage increases sharply with sequence length
and batch size.

A common technique to mitigate this issue is KV cache
offloading, which offloads KV cache data exceeding GPU
memory limits to CPU memory or disk. This enables large-
batch processing without running out of memory [6, 7, 8, 9].
However, if the additional latency introduced by offloading is
not properly managed, throughput can significantly degrade,
potentially failing to meet the required SLOs.

Cost Efficiency of LLM Inference in Cloud Environ-
ments: Major cloud service providers such as AWS, GCP, and
Azure offer a variety of GPU instance options with different
performance levels and cost structures, providing flexibility in
resource utilization [10]. However, selecting a cost-efficient
GPU instance in a cloud environment is a complex task
that is difficult for users to perform manually. The challenge
arises because GPU instances vary significantly in price and
performance (Refer to Table I), and workload often require
flexible KV cache offloading strategies, making optimal se-
lection difficult.

Given this complexity, an optimized approach must integrate
the following two key factors:

• GPU instance selection based on workload characteristics
• Efficient KV cache offloading strategies
Balancing throughput targets and cost efficiency by com-

bining these two factors remains a critical challenge that must
be addressed.

Limitations of Existing Research: Previous studies on cost
efficiency in cloud environments [11, 12, 13, 14, 15] have
focused primarily on image processing or general machine
learning workloads. As a result, they do not capture the unique
characteristics of large-scale LLM inference. Moreover, recent
research on cost-efficient LLM inference has largely concen-
trated on real-time inference scenarios [16, 17, 18, 19, 20],
neglecting large-scale data processing environments where KV
cache offloading could be effectively leveraged. Furthermore,
these studies do not comprehensively analyze cost efficiency
in relation to Service Level Objectives (SLOs).

To address these challenges, this paper proposes INFER-
SAVE, the first framework that automatically recommends the
most economical VM instance for LLM serving in cloud
environments by integrating KV cache offloading decisions
with VM selection optimization. INFERSAVE operates as a
decision-making layer that works in conjunction with existing
KV cache offloading frameworks [6, 9], determining when to
apply offloading strategies and which VM instance provides



the most cost-effective execution environment while meeting
SLO requirements. This integration of offloading decisions
with VM selection enables comprehensive optimization of
LLM inference deployments in cloud environments.

The INFERSAVE framework operates as follows: First, it
calculates the required GPU memory based on the specified
SLO and workload size, analyzing the feasibility of KV
cache offloading to determine candidate instances. Next, using
pre-collected performance data, it predicts the performance
and cost of each instance through a modeling step. Finally,
it evaluates these predictions to recommend the most cost-
efficient instance that meets the user’s SLO constraints.

Experimental results show that applying INFERSAVE
achieves significant cost savings compared to traditional
maximum-performance-based policies, with reductions of up
to 73.7% for online workloads and 20.19% for offline work-
loads. In addition, it is designed to be flexible across various
AWS instances and cloud environments, providing a practical
and efficient approach to operating LLM inference services.

II. BACKGROUND AND MOTIVATION

A. LLM Architecture and Inference

Large-scale language models (LLMs), such as OpenAI’s
GPT [2] and Meta’s LLaMA [3], are built on the Trans-
former [1] architecture. These models consist of a multi-layer
structure incorporating self-attention mechanisms and Feed-
Forward Networks, enabling their broad applicability across
various natural language processing (NLP) tasks.

The LLM inference process is divided into two stages:
Prefill and Decode. In the Prefill stage, the input prompt is
processed in parallel to generate the initial output tokens.
During this process, query, key, and value vectors are com-
puted for each token in the input prompt, capturing contextual
information through token-wise interactions. Simultaneously,
the computed key and value tensors are stored in the GPU
memory as a Key-Value (KV) cache to alleviate computational
overhead in subsequent operations.

The KV cache is essential for preventing redundant compu-
tations in Self-Attention, thereby enhancing inference speed
and resource efficiency. For instance, if the Prefill stage
computes and stores the key and value tensors for the input "I
am a," the Decode stage can reuse them to rapidly generate
the next token, "man," without redundant computations.

In the Decode stage, new tokens are sequentially generated
in an Auto-Regressive manner based on previously generated
output tokens. Here, the stored KV cache is reused to reduce
the computational burden of repeated Self-Attention operations
and improve processing speed. However, the size of the
KV cache increases significantly with the input length and
model size. For example, as shown in Fig. 1, in the OPT-
2.7B model running on an AWS g4dn.xlarge with 1,024
input tokens, the KV cache consumes approximately 0.332 GB
of KV cache at a batch size of 2. When the batch size
increases to 32, the KV cache expands to 5.312 GB, which
can lead to GPU memory exhaustion. This memory constraint
can degrade overall system throughput and reduce resource
utilization efficiency [1, 21].

(b)	g4dn.xlarge	with	OPT2.7B	model(a)	g4dn.xlarge	with	OPT1.3B	model
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Fig. 1. KV cache size increases with batch size across different LLMs.

B. Memory Optimization for LLM Inference via KV Cache
Offloading

During LLM inference, the increasing size of the KV cache
can lead to GPU memory exhaustion, resulting in an Out-of-
Memory (OoM) issue. To address this, KV cache offloading
techniques have been proposed [6, 7, 8, 9]. These techniques
operate by offloading KV cache data that exceeds the GPU
memory capacity to CPU memory or disk and retrieving it
to the GPU when required for computation. This approach
effectively alleviates GPU memory pressure, enabling the
processing of long sequences and large batch sizes. In addi-
tion, it allows efficient inference on lower-end GPUs without
requiring additional high-performance GPUs, thus reducing
deployment costs.

However, the latency introduced by data transfers between
the GPU and external storage (e.g., CPU memory or disk)
remains a major limitation of KV cache offloading. If the
frequency of KV cache transfers is high, the increased la-
tency can lead to bandwidth bottlenecks, ultimately degrading
inference performance. Therefore, for effective deployment of
KV cache offloading, it is essential to optimize the process
by considering LLM inference characteristics (e.g., sequence
length, batch size) and user-defined Service Level Objectives
(SLOs), such as maximum allowable response time.

C. Challenges of LLM Inference and KV Cache Offloading in
the Cloud

Cloud service providers (CSPs), such as Amazon AWS,
offer a wide range of GPU virtual machine (VM) instances. As
shown in Table I, their prices vary significantly, ranging from
$0.379 (g4ad.xlarge) to $40.96 (p4de.24xlarge), de-
pending on GPU type, memory capacity, and network band-
width [22].

Moreover, when applying KV cache offloading to LLM
inference, the trade-off between inference performance and
actual cost introduces a complex dilemma. To maximize cost-
efficiency, users must carefully optimize their choice of VM
and offloading strategy based on: (i) Model size, (ii) Sequence
length, and (iii) Service Level Objectives (SLOs), such as
maximum response time. However, a systematic framework
for making these decisions is currently lacking. As a result,
users must experiment with multiple VM options and offload-
ing policies manually to determine an optimal configuration,
which adds significant overhead [6, 9].

In this paper, we outline the key dilemmas of KV cache
offloading for LLM inference in the cloud as follows.



• Dual Nature of KV Cache Offloading: KV cache of-
floading mitigates GPU memory shortage issues, allowing
for the processing of larger batch sizes (e.g., greater than
16). However, it increases latency due to data transfer
between CPU and GPU (e.g., up to 20% latency increase
in FlexGen [6]). Specifically, when the sequence length
exceeds 4096, the KV Cache size grows significantly (e.g.,
exceeding 3.2GB), making offloading essential. This, how-
ever, increases the likelihood of failing to meet Service
Level Objectives (SLOs) such as a 100ms response time.

• Complexity of Cloud VM Selection: As shown in
Table I, the performance and cost between instances
like g4dn.xlarge ($0.526, 16 GiB GPU Memory) and
p4de.24xlarge ($40.96, 7680 GiB GPU Memory) vary
significantly. The optimal VM selection depends on the
model requirements (e.g., memory usage, computation
speed). High-performance VMs reduce the need for KV
cache offloading, while lower-end VMs increase reliance
on offloading.

• Difficulty of SLO-Based Optimization: High-performance
VMs (e.g., g6.48xlarge) solve the Out-of-Memory
(OoM) problem but may lead to GPU utilization dropping
below 50% when the inference load is low, resulting in
wasted costs. On the other hand, lower-end VMs (e.g.,
g4ad.xlarge) have lower initial costs but suffer from
frequent KV cache offloading due to VRAM limitations,
causing latency to increase by more than double [9]. This
results in a dilemma of (i) resource wastage with high-cost
VM selection, and (ii) performance degradation with low-
cost VM selection.

• Lack of Automated Optimization Systems: Currently,
there is a lack of guidelines for automating the selection of
VMs and KV cache offloading in cloud environments. Users
must manually test various VMs (e.g., g5 vs. g6 series) and
offloading settings, which increases time and cost burdens.

This study proposes the necessity of a framework that auto-
matically recommends optimal VM and KV cache offloading
strategies based on SLO, and introduces a model (Solver) that
can balance cost and performance.

D. Existing Approaches and Their Limitations

Recent work on LLM inference optimization falls into three
main categories: (1) KV cache–oriented memory manage-
ment, (2) resource allocation methods, and (3) architectural
partitioning strategies. While each has led to progress in
specific areas, few approaches integrate memory-aware tech-
niques with cost-efficient resource selection—particularly in
heterogeneous cloud environments.
Memory Management Frameworks: FlexGen [6] and
DeepSpeed-Inference [9] provide effective KV cache offload-
ing mechanisms to support inference in memory-constrained
environments. These frameworks focus on optimizing execu-
tion within predetermined hardware configurations and do not
address the problem of selecting cost-effective VM instances
tailored to workload requirements. Consequently, users must
manually determine appropriate infrastructure configurations,

TABLE I
VARIOUS TYPES OF INSTANCES PROVIDED BY AWS (RETRIEVED ON

FEBRUARY 4, 2025, N. VIRGINIA REGION).

Name
GPU On- GPU FLOPS vCPU GPU Mem Mem Network
Type Demand ($) (#) (TFLOPS) (#) (GiB) (Gbps) (Gbps)

g4dn.xlarge T4 0.526 1 8.141 4 16 16 - 25
g4ad.xlarge V520 Pro 0.379 1 7.373 4 8 16 - 10
g5.xlarge A10G 1.006 1 31.52 4 24 16 - 10

g5g.xlarge T4G 0.42 1 8.141 4 16 8 - 10
g6.xlarge L4 0.805 1 30.29 4 24 16 - 10

g6.4xlarge L4 1.323 1 30.29 16 24 64 - 25
g4dn.12xlarge T4 3.912 4 8.141 48 64 192 50

g4dn.metal T4 7.824 8 8.141 96 128 384 100
g4ad.16xlarge V520 Pro 3.468 4 7.373 64 32 256 25
g5.12xlarge A10G 5.672 4 31.52 96 96 192 40

g5g.16xlarge T4G 2.744 2 8.141 64 32 128 25
g6.12xlarge L4 4.602 4 30.29 48 96 192 40
g6.48xlarge L4 13.35 8 30.29 192 196 768 100

p4de.24xlarge A100 40.96 8 19.49 96 7680 640 400

frequently resulting in suboptimal resource utilization and cost
inefficiencies.
Cloud Resource Allocation Methodologies: Melange [16]
optimizes cost-performance trade-offs by mixing GPU types
based on workload-level profiling, including request charac-
teristics and SLO constraints. However, it does not explicitly
model per-model memory requirements or support KV cache
offloading, both of which are critical for LLM workloads
with large batch sizes or long input/output sequences where
memory is often the primary bottleneck. Without memory-
aware modeling, Melange may recommend configurations that
appear cost-efficient but fail at runtime due to Out-of-Memory
(OoM) errors, particularly for large models or long contexts.
This limitation becomes especially problematic in relaxed-
latency scenarios, where KV cache offloading can enable
the use of lower-cost GPU instances, an opportunity that is
missed when memory is not treated as an explicit optimization
parameter. Aladdin [17], a cluster-level scheduler, coordinates
LLM inference requests across a fixed set of GPU instances to
meet SLO constraints. Although it considers KV cache usage,
it assumes a static cluster and does not support instance type
selection or cost-aware resource optimization.
Architectural Partitioning Strategies: SplitWise [19] and
ThunderServe [18] improve cost efficiency by partitioning
LLM inference into prefill and decode stages, with each stage
assigned to specialized GPU resources. While this approach
enables targeted optimization, it fundamentally differs from
our VM selection framework in several key aspects. These
systems rely on pre-provisioned heterogeneous GPU clusters
and focus on intra-cluster scheduling, rather than selecting
optimal VM configurations. Furthermore, they typically de-
pend on high-bandwidth interconnects such as NVLink, which
limits their applicability in public cloud environments where
only standard PCIe connections are available.

III. PROBLEM DEFINITION

A. Definition of Service Level Objective (SLO) Metrics

In cloud environments, large language model (LLM) in-
ference involves a complex trade-off between memory con-
straints, cost, and service quality. Depending on the type
of inference task, users may have different Service Level
Objectives (SLOs).



In this paper, we define two types of inference tasks: Online
Inference and Offline Inference.

• Online Inference (e.g., chatbots, voice assistants) pri-
oritizes low response latency (e.g., within 100 ms) over
query throughput, as real-time responsiveness is crucial.
Thus, response time serves as the primary SLO metric.

• Offline Inference (e.g., batch processing of large
datasets) prioritizes high query throughput over response
latency, making throughput the primary SLO metric.

This classification aligns with industry practice, as providers
like OpenAI and AWS offer distinct APIs for online and offline
inference [4, 23, 24]. Despite differing SLO metrics, unified
resource management is needed to consistently evaluate both
workload types.

To encompass both of these metrics under a unified frame-
work, we define Tokens Per Second (TPS) as the SLO metric.
TPS represents the number of tokens processed per second,
including both input tokens (Lin) and output tokens (Lout).
LLM inference is typically performed in batches, where a
batch consists of multiple queries (BS). Given that the total
processing time for a batch is denoted as TE2E, TPS is defined
as follows:

TPS =
BS × (Lin + Lout)

TE2E
(1)

This TPS formulation effectively captures both throughput
capacity and response latency in a single metric. For a fixed
workload size, TPS and TE2E maintain an inverse relationship,
allowing this unified metric to address both online and offline
inference requirements.

B. Definition of Cost Efficiency

In this study, our primary objective is to minimize user
costs while ensuring that inference tasks meet their designated
SLOs. To achieve this, we define a cost efficiency metric based
on the previously introduced Tokens Per Second (TPS) metric.

Let TPSSLO denote the target TPS required by the user
to meet the SLO, and let TPSactual represent the actual
throughput achieved during inference. We define the effective
TPS as: TPSeffective = min(TPSactual, TPSSLO).

This minimum function reflects a fundamental economic
principle in resource provisioning: exceeding performance
requirements incurs additional cost without proportional utility
gains. In practice, both online inference (constrained by human
perceptual limits of 4–6 words per second [25, 26]) and offline
inference (bounded by operational deadlines, such as 24-
hour completion windows [4, 23]) exhibit diminishing returns
beyond their respective TPS thresholds. By capping effective
throughput at the SLO level, our metric ensures that computing
resources are evaluated based on practical utility rather than
theoretical performance potential.

Given this, the total time required to process a batch of
queries, denoted as Ttask, is calculated as:

Ttask =
BS × (Lin + Lout)

TPSeffective × 3600
(2)

In cloud environments, GPU usage is typically billed on an
hourly basis. Therefore, we apply a ceiling function to Ttask

to account for the actual billable time.
Based on this, we define SLO-based cost efficiency (CE) as

a metric to evaluate the cost-effectiveness of a given inference
task while ensuring compliance with the SLO. Let VM Price
represent the hourly cost of the virtual machine (in dollars per
hour). The cost efficiency metric is then defined as:

CEtask =
TPSeffective × 3600

⌈Ttask⌉ × VM Price
(3)

This metric provides a quantitative measure of how effi-
ciently a system meets the required SLO while optimizing
costs in a cloud-based inference environment.

C. Preliminary Results

As shown in Table I in Section II, cloud VM instances ex-
hibit significant differences in both performance and cost. This
variability makes it challenging for users to select the most
cost-efficient instance for LLM inference tasks. To validate
the complexity of this decision-making process, we evaluated
the Cost Efficiency (CE) of two representative VM instances
(g4dn.xlarge and g5.xlarge) under varying batch sizes
and SLO requirements. The experiments were conducted for
both cases: with and without KV cache offloading, assessing
its impact on cost efficiency. The results are presented quan-
titatively in Fig. 2.

In a strict SLO environment (100 TPS), g5.xlarge
demonstrated higher cost efficiency than g4dn.xlarge even
at small batch sizes (BS < 16). This is because g5.xlarge
delivers higher performance under high-throughput require-
ments, allowing it to maintain superior cost efficiency over
g4dn.xlarge even at smaller batch sizes. At Batch Size
16, g4dn.xlarge faced GPU memory constraints, neces-
sitating KV cache offloading, which further reduced its cost
efficiency. In contrast, g5.xlarge had sufficient memory to
operate without offloading, maintaining consistently high cost
efficiency as the batch size increased.

In a relaxed SLO environment (10 TPS), g4dn.xlarge
exhibited higher cost efficiency than g5.xlarge at smaller
batch sizes (BS < 16). This is because, under relaxed SLO
conditions, instance cost became a more critical factor than
raw performance. At Batch Size 16, despite g4dn.xlarge
requiring KV cache offloading due to GPU memory limita-
tions, the performance degradation caused by offloading was
not a major issue under the relaxed SLO constraints. As a
result, g4dn.xlarge, with its lower instance cost, achieved
higher cost efficiency compared to g5.xlarge.

To sum up, cost efficiency varies significantly depending
on SLO settings and GPU memory utilization strategies,
demonstrating that using a high-performance GPU is not
always the optimal choice. Particularly in offline inference
tasks, where response time constraints are less stringent, KV
cache offloading techniques can enable cost-efficient inference
even on lower-cost GPUs. These findings highlight that the
optimal GPU instance selection depends on the user’s SLO
requirements and the characteristics of the inference task.
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Fig. 2. Cost efficiency comparison between AWS g4dn.xlarge and
g5.xlarge instances across different batch sizes and SLO constraints.
Results are based on the OPT-2.7B model with 512-token input and 128-
token output.

IV. DESIGN OF INFERSAVE

A. INFERSAVE: A Cost-Efficient VM Selection Framework

Selecting a cost-efficient VM instance in a cloud environ-
ment is a challenging task for users. To address this issue,
we propose INFERSAVE, a software tool designed to assist
users in making cost-efficient VM selections. The INFERSAVE
framework operates in the following four stages:
1) Stage 1 Requirement Analysis and Parameter Ex-

traction: The user provides input parameters, including
cost constraints, model characteristics, and performance
requirements.

2) Stage 2 Resource Suitability Assessment and Can-
didate Instance Identification: Based on the provided
parameters, the framework calculates the required memory
capacity, analyzes the feasibility of KV cache offloading,
and identifies a set of suitable GPU instance candidates.

3) Stage 3 Performance-Cost Prediction Modeling: Lever-
aging pre-profiled performance data, the framework pre-
dicts the TPS of each candidate GPU instance and evalu-
ates its cost efficiency.

4) Stage 4 SLO-Based Optimization and Instance Selec-
tion: The framework recommends the most cost-efficient
GPU instance that satisfies the SLO constraints.

Table II summarizes the input and intermediate parameters
used throughout the four stages of the INFERSAVE framework.

B. Requirement Analysis and Parameter Extraction

This stage involves collecting key input parameters neces-
sary for LLM inference tasks. The most critical parameter
is the maximum willingness-to-pay price (Pmax), which rep-
resents the maximum cost ($/hour) that the user is willing
to pay. This value serves as a fundamental constraint in the
subsequent stages of the algorithm, determining the range of
GPU instances that can be considered.

Additionally, the user specifies the target LLM model
(e.g., OPT-2.7B, LLaMA-7B), and based on this selection,
the system automatically extracts key model parameters such
as model size, number of attention heads, head dimensions,
feed-forward network (FFN) dimensions, and activation size.
Other essential input parameters include the average input
token length, average output token length, batch size, and the
required SLO in terms of TPS (Tokens Per Second).

TABLE II
NOTATION AND FORMULAS FOR MODEL AND MEMORY COMPUTATION.

User Input Parameters
Variable Description and Formula

BS Batch size
Lin Input token length
Lout Output token length
Pmax User max price willingness

TPSSLO User SLO requirement

Model Parameters
h1 Hidden size (model dimension)
h2 Intermediate size (projection)
nh Number of attention heads
L Transformer layers
Coff KV cache offloading ratio

Precisionbytes Bytes per parameter (e.g., FP16 = 2B)
Memmodel Number of parameters · Precisionbytes

MemKVcache 2 ·BS · (Lin + Lout) · nh · Precisionbytes · L
MemKVcache, per_layer MemKVcache/L

Memactivation 2 · (Lin + Lout) ·BS · h1

Instance Specifications
FLOPSGPU GPU’s theoretical FLOPS
BWgpu→cpu GPU-to-CPU bandwidth
BWcpu→gpu CPU-to-GPU bandwidth

This stage plays a crucial role in transforming user require-
ments into quantitative parameters, establishing the foundation
for resource suitability assessment and performance prediction.
Ultimately, it is essential for selecting the most cost-efficient
GPU instance that meets both performance objectives and
budget constraints.

C. Resource Suitability Assessment and Candidate Instance
Identification

At this stage, the system evaluates memory requirements
based on user parameters and assesses the feasibility of KV
cache offloading to identify suitable GPU instances. It first
computes the total memory requirement Memtotal for the given
Transformer model and input-output parameters, defined as:
Memtotal = Memmodel + Memactivation + MemKVcache. The base
memory requirement is also defined as Membase = Memmodel+
Memactivation. The system then evaluates GPU instance suitabil-
ity based on three criteria and applies Algorithm 1.
Case1) No Offloading Required: If the available GPU mem-
ory is greater than or equal to the total memory requirement,
i.e., GPUi

memory ≥ Memtotal then the instance can fully ac-
commodate the model without KV cache offloading. Here, i
refers to the current particular running instance. In this case,
the offloading coefficient is set to Ci

off = 0 and the instance is
added to the candidate pool.
Case2) Offloading Not Feasible: An instance is deemed
unsuitable if it meets any of the following conditions:

• If the available GPU memory is smaller than the model
weights: GPUi

memory < Memmodel.
• If the KV cache size per layer exceeds the available

memory: MemKVcache, per_layer > Memi
avail.

This condition arises because attention operations are per-
formed on the GPU, requiring KV cache to remain in GPU



memory. When the available memory is insufficient, an Out
of Memory (OoM) error occurs, preventing execution.
Case3) KV Cache Offloading Required: If an instance does
not fall into either of the previous categories, KV cache
offloading is required. In this case, the offloading coefficient
is computed as: Ci

off = 1− Memi
avail

MemKVcache
Finally, the selected instances are sorted in ascending order

based on cost, and the results are used as input for the
performance-cost prediction modeling stage. This systematic
approach ensures that the most cost-efficient GPU instance is
selected within the user’s budget while accurately evaluating
the feasibility and cost-efficiency of KV cache offloading.

D. Instance Performance Prediction
At this stage, the system predicts Tokens Per Second (TPS)

for the candidate GPU instances identified in the previous step.
This is achieved through mathematical modeling that leverages
model parameters, hardware profiling information (FLOPS,
bandwidth, etc.) of each candidate instance, and the offloading
coefficient to quantitatively estimate the task processing time.

The total task processing time Ttask consists of the Prefill
and Decode stages and is calculated as follows [6]:

• Prefill Stage: This stage processes the entire input se-
quence. The processing time per layer (Tpre) is multiplied
by the number of layers (n).

• Decode Stage: This stage generates each output token
sequentially. The processing time per layer (Tdec) is
multiplied by the number of layers (n) and the number
of generated tokens (Lout−1), since the first output token
is already processed in the Prefill stage.

Thus, the total task processing time Ttask is expressed as
follows:

Ttask = Tpre · n︸ ︷︷ ︸
Prefill Time

+Tdec · n · (Lout − 1)︸ ︷︷ ︸
Decode Time

(4)

a) Prefill Stage Processing Time: The Prefill stage pro-
cessing time Tpre consists of computation time and KV cache
storage time. Since GPU computation and KV cache offload-
ing occur in parallel, the total delay is determined by the
process with the longest execution time:

Tpre = max
(
CTCF (T p

compute), T
p
trans

)
(5)

The computation time T p
compute in the Prefill stage is divided

into Linear Layer computation and Self-Attention computa-
tion, both of which are calculated by dividing the required
floating-point operations (FLOPs) by the GPU’s theoretical
FLOPS capacity:

T p
compute =

BS(8Linh
2
1 + 4Linh1h2)

FLOPSGPU︸ ︷︷ ︸
Linear Layer compute time

+
BS(4L2

inh1)

FLOPSGPU︸ ︷︷ ︸
Self-Attention
compute time

(6)

The KV cache transfer time T p
trans in the Prefill stage

represents the time required to offload the generated KV cache
from GPU to CPU memory and is computed as:

T p
trans =

Coff · {2 · (Lin + 1) · h1 · Precisionbytes} ·BS

BWgpu→cpu

Algorithm 1: Resource Suitability Evaluation and In-
stance Selection (Price Priority)

Input: Memory Requirements:
Memmodel — Model weight memory requirement
Memactivation — Activation memory requirement
MemKVcache — Total KV Cache memory requirement
MemKVcache, per_layer — KV Cache memory per layer
For each GPU instance i:
GPUi

memory — Total GPU memory
GPUi

price — GPU price
User-defined maximum price: Pmax
Output: GPU candidates that satisfy both price and resource

conditions
1 Candidates← ∅ // Initialize candidate set
2 Memtotal ← Memmodel + Memactivation + MemKVcache ;
3 Membase ← Memmodel + Memactivation ;
4 for each GPU instance i do
5 if GPUi

price ≤ Pmax then
// Apply Price Filter

6 Memi
avail ← GPUi

memory −Membase // Calculate
Available Memory

7 if GPUi
memory ≥ Memtotal then

// Offloading Not Required
8 Ci

off ← 0 ;
9 Add (i, Ci

off) to Candidate Set ;
10 else
11 if GPUi

memory < Memmodel OR
MemKVcache, per_layer > Memi

avail then
// Offloading Not Possible

12 Mark GPU i as Unsuitable // Exclude from
candidates

13 end
14 else

// KV Cache Offloading Required

15 Ci
off ← 1− Memi

avail
MemKVcache

;
16 if MemKVcache, per_layer ≤ Memi

avail then
// Layer-Level Constraint Check

17 Add (i, Ci
off) to Candidate Set ;

18 end
19 else
20 Mark GPU i as Unsuitable // Exclude

from candidates
21 end
22 end
23 end
24 end
25 end
26 Sort Candidate Set by GPUi

price in ascending order ;
27 return Candidate Set Candidates ;

b) Decode Stage Processing Time: The Decode stage
processing time Tdec includes computation time and KV cache
retrieval time. If the KV cache fully resides in the GPU, only
computation time is considered. However, if offloading occurs,
additional latency is introduced due to data transfer from CPU
to GPU. The Decode time is therefore expressed as:

Tdec = CTCF (T d
compute) + T d

trans (7)

The Decode computation time T d
compute consists of Linear

Layer and Self-Attention computation, and is computed as



follows:

T d
compute =

BS · (8h2
1 + 4h1 · h2)

FLOPSGPU︸ ︷︷ ︸
Linear Layer compute time

+
4 ·BS · (Lin +

Lout
2 ) · h1

FLOPSGPU︸ ︷︷ ︸
Self-Attention compute time

The KV cache transfer time T d
trans in the Decode stage refers

to the time required to load KV cache stored in CPU memory
back into GPU memory and is computed as:

T d
trans =

(Coff · 2 · (Lin + 1) + Lout) · h1 · Precisionbytes ·BS

BWcpu→gpu

This modeling approach accounts for scenarios where of-
floading is either required or not, effectively incorporating
GPU memory constraints and computational performance. By
modeling both computation latency and KV cache offloading
overhead, it enables a quantitative analysis of trade-offs be-
tween computation and memory access time across the Prefill
and Decode stages.

Using this modeling framework, Tokens Per Second (TPS)
can be estimated to guide the selection of an optimal GPU
instance for a given inference task. While this theoretical
model offers a solid foundation, theoretical FLOPS values
from GPU vendors may not accurately reflect real-world LLM
inference performance. Section IV-F discusses these limita-
tions and introduces the Compute Time Calibration Function
(CTCF) to correct such discrepancies.

E. Step 4: Final Instance Selection Based on SLO

Based on the TPS (Tokens Per Second) values computed
for each GPU instance in the previous stage, this step selects
the most cost-efficient instance while ensuring that the user’s
Service Level Objective (SLO) is met. The selection process
follows these steps:

First, instances that fail to satisfy the user-defined SLO con-
straint (TPS ≥ TPSSLO) are first excluded from consideration.
The cost efficiency metric is then computed for each remaining
instance using (3). The instance with the highest cost efficiency
is selected, with ties broken in favor of the one offering higher
throughput (TPS).

The final selection result is presented to the user along with
comprehensive details, including instance type, expected TPS,
cost, and KV cache offloading configuration. Additionally, the
system provides alternative options and a performance-cost
trade-off analysis, enabling users to make an informed decision
that is optimized for their specific LLM inference workload.

F. Compute Time Calibration Function (CTCF)

The theoretical FLOPS values provided by GPU manufac-
turers do not accurately reflect real-world performance in LLM
inference workloads. Fig. 3 illustrates the discrepancy between
the FLOPS values advertised by the manufacturer and those
actually utilized in computation across three different GPU
instances. This discrepancy arises from factors such as mem-
ory bottlenecks, reduced GPU utilization, and variations in
computation patterns, which manifest differently in the Prefill
and Decode stages of LLM inference. As a result, selecting
a GPU instance solely based on theoretical FLOPS can lead

g4dn.xlarge	Given	TFLOPS
g4dn.xlarge	Measured	TFLOPS
g5.2xlarge	Given	TFLOPS

g5.2xlarge	Measured	TFLOPS
g6.xlarge	Given	TFLOPS
g6.xlarge	Measured	TFLOPS
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Fig. 3. Comparison of FLOPS provided by the GPU manufacturer (NVIDIA)
and the actual FLOPS utilized when calculating Prefill time on AWS GPU
VMs. The results present TFLOPS measurements for three different GPU
VMs using the OPT-2.7B model with an input size of 512 tokens and an
output size of 128 tokens as batch size grows.

to significant performance mismatches, causing users to incur
unnecessary costs. To address this issue, it is essential to
introduce a calibration method that aligns theoretical FLOPS
values with actual computational performance.

• CTCF Modeling: We conducted preliminary experiments
across various batch sizes to analyze the relationship
between LLM inference time and batch size. The results
consistently showed a linear increase in inference time
for both the prefill and decode stages. This linear trend
was observed across different GPU architectures, includ-
ing T4, A10G, L4, and L40s, with consistent patterns
across multiple sizes of Transformer-based models. The
observed linearity stems from the computational charac-
teristics of Transformer architectures: as batch size in-
creases, both self-attention mechanisms and feed-forward
layers exhibit computation costs that scale proportionally,
while GPU memory access patterns also show similar
linear growth. This persistent scaling behavior across
diverse GPU environments motivated the adoption of a
regression-based CTCF model.

CTCF is a linear transformation function that adjusts theo-
retical computation time to match actual execution time. It is
defined as follows:

CTCF (Tcompute) = α · Tcompute + β (8)

where α is a scaling factor that corrects overestimation or
underestimation of theoretical computation time, and β is a
fixed offset that compensates for systematic delays caused
by GPU execution bottlenecks, memory access latency, and
other hardware constraints. These parameters are optimized
using the least squares method and are determined through
pre-profiling experiments.

Through extensive pre-profiling, α and β values were com-
puted for all AWS GPU instances across various batch sizes
and stored as reference data. As shown in Table III, applying
these per-instance α and β values significantly reduces the
prediction error, bringing the adjusted execution time very
close to the actual measurement. Based on this, INFERSAVE
profiles α and β values for all available AWS GPU instances,
enabling precise FLOPS-based execution time predictions and
recommending the optimal instance for users.

The CTCF-based correction method effectively compensates



TABLE III
VALUES OF α AND β TO CALCULATE ADJUSTED TPREFILL FOR OPT-2.7B

MODEL

Instance Type (GPU Model) α β avg. error rate (%)
g4dn.xlarge (T4) -0.185 24.35 4.47
g5.2xlarge (A10G) -0.074 46.97 2.60
g6.xlarge (L4) -0.1238 42.52 2.23

for the inherent limitations of theoretical FLOPS values pro-
vided by GPU manufacturers, leading to more accurate LLM
inference performance predictions.

V. IMPLEMENTATION

We implemented INFERSAVE in Python (3.10.14), using
NumPy (1.24.3) for numerical computation and statistical
analysis. The system builds on FlexGen, a state-of-the-art
LLM inference framework with KV cache offloading support.
A key strength of INFERSAVE is its ability to identify cost-
efficient configurations without performing runtime profiling
or full-model execution, which minimizes decision latency.
Given user parameters and SLOs, INFERSAVE efficiently
recommends suitable GPU instances by predicting TPS and
computing cost-efficiency. The full source code is available
at: https://github.com/lass-lab/InferSave

VI. EVALUATION

A. Experimental setup
For our evaluation, we conducted two contrasting inference

tasks representative of online and offline scenarios to assess
the impact of offloading strategies on cost and performance
across various cloud-based GPU instances. The goal is to
quantitatively analyze the effect of offloading on both cost and
performance efficiency, and to identify the optimal instance
given a target SLO. Online inference aims to meet strict SLO
requirements while minimizing cost, whereas offline inference
relaxes latency constraints, allowing offloading and the use
of lower-cost instances. Each experiment was repeated three
times per instance, and the average result was used for analysis
to ensure consistency.
Workload Definition: To evaluate INFERSAVE’s ability to
select optimal instances across diverse scenarios, we define
two contrasting inference workloads.

• Online inference workload: To simulate a real-time chat-
bot scenario, we use 128 input tokens and 512 output tokens
per request. This reflects typical interactions where users ask
brief questions and receive detailed answers. The workload
consists of 3,000 requests.

• Offline inference workload: To simulate batch processing
tasks such as document summarization or data wrangling,
we use 1,024 input tokens and 128 output tokens per
request. The workload evaluates system performance over
1,000 requests.

AWS Cloud Experiment Setup: To maintain uniform exper-
imental conditions and minimize potential disruptions caused
by fluctuating cloud workloads, all experiments were con-
ducted on AWS in the us-east-1 (Northern Virginia) region
between 9:00 AM and 10:00 PM KST, during the period
from December 2024 to March 2025. To avoid performance

TABLE IV
SPECIFICATIONS OF VM INSTANCES, INCLUDING 4 GPU-VMS BASED ON

AWS SPECIFICATIONS.
Instance Type On-Demand GPU Memory FP16 PCIe B/W
(GPU Model) Price ($/hr) (GB) (TFLOPS) (GB/s)

g6e.xlarge (L40s) 2.699 48 91.61 12
g6.xlarge (L4) 1.167 24 30.29 12

g5.xlarge (A10G) 1.466 24 31.52 12
g4dn.xlarge (T4) 0.710 16 8.24 6

variation due to regional resource contention, testing was
evenly distributed across availability zones us-east-1a through
us-east-1f. For GPU-based VMs, we used g4dn.xlarge
(NVIDIA T4), g5.xlarge (NVIDIA A10G), g6.xlarge
(NVIDIA L4), and g6e.xlarge (NVIDIA L40s). Detailed
specifications of these instances are provided in Table IV. To
validate the effectiveness of INFERSAVE, we evaluated major
Transformer-based LLMs including OPT-1.3B, OPT-2.7B, and
OPT-6.7B using an in-house benchmark suite. To identify
optimal configurations, we varied the batch size from 1 to
64 under different single-GPU settings.
Policy to Select Instance: As noted in Section II-D, there
are no well-established methods for GPU instance selection in
LLM inference. Accordingly, we compare INFERSAVE against
two baseline approaches in our evaluation.

• Most powerful instance (Max-Performance): This policy
selects the GPU instance with the highest raw performance,
aiming to minimize latency and maximize throughput. How-
ever, it ignores cost, which can lead to unnecessarily high
operational expenses.

• Simple performance prediction (INFERSAVE without
KV cache offloading): This policy selects instances based
on theoretical performance metrics such as FLOPS and
memory bandwidth. However, it does not account for KV
cache offloading effects, and may therefore miss more cost-
efficient options, similar to Melange [16].

B. CTCF Validation

INFERSAVE proposes the Compute Time Calibration Func-
tion (CTCF) to accurately determine the optimal instance
based on user requirements. To validate the accuracy of
CTCF, experiments were conducted on two GPU instances,
g4dn.xlarge and g6.xlarge. The experiments utilized
the OPT-2.7B model, with an input token length of 512 and
an output token length of 128. The model’s key computational
units, including a hidden size of 2560 and an intermediate
size of 2560 × 4, were configured, and the total number of
layers (32) was incorporated to measure computation time. For
FLOPS estimation, the theoretical FLOPS values provided by
GPU manufacturers were used: g4dn.xlarge with NVIDIA
T4 (8.24 TFLOPS) and g6.xlarge with NVIDIA L4 (30.29
TFLOPS).

After applying CTCF, the corrected prediction times were
computed and compared with actual measurements to analyze
the error rate. As shown in Fig. 4, the CTCF-adjusted values
closely matched the actual measurements. Specifically, in
the Decode stage of g4dn.xlarge, the corrected values
exhibited an average error rate of 1% compared to actual
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Fig. 4. CTCF accuracy analysis. The results illustrate the predicted time
(blue), actual time (red), and CTCF-adjusted values (green) for Prefill and
Decode times as batch size increases on two different GPU VMs. Additionally,
the Error Rate between the CTCF-adjusted time and actual time is presented.

measurements, while in the Prefill stage of g6.xlarge, the
average error rate was 2%. These results demonstrate that
the CTCF-adjusted computation time aligns well with real-
world measurements, thereby verifying that INFERSAVE can
accurately recommend the most suitable GPU instance for
users.

C. Evaluation results

To evaluate the effectiveness of INFERSAVE and the pro-
posed methodology, we conducted experiments on both on-
line and offline workloads. While comprehensive tests were
performed across various model and batch sizes, we focus our
analysis on representative results using the OPT-2.7B model
with a batch size of 32. This configuration clearly illustrates
performance differences across GPU instances and serves
as a balanced point in terms of performance and resource
utilization. We set the maximum cost per hour (Pmax) to
$3.00/hr. This value was chosen because g6e.xlarge, the
most powerful instance in our experiments, has an on-demand
price of $2.699/hr, and a slightly higher threshold allows for
a fair comparison across all instances.

1) Online Inference Workload Results: Table V and Fig. 5
show the instances selected by each policy under the SLO
requirements for the online inference workload, along with
their corresponding performance and cost comparisons. We
analyze the top two instance selections made by INFERSAVE
under two TPS constraints (400 and 600 TPS) and compare
them to the Max-Performance policy’s selection. Note that
the results of INFERSAVE without KV cache offloading were
identical to those of Max-Performance, and are therefore
omitted from Table V. This outcome is due to the relatively

TABLE V
COMPARISON OF INSTANCE SELECTION RESULTS UNDER 400 AND 600

TPS SLOS.

SLO Policy VM TPS Cost ($)

400 TPS
INFERSAVE-1st g4dn.xlarge 620.17 0.71
INFERSAVE-2nd g6.xlarge 802.19 1.167

Max-Perf. g6e.xlarge 1506.54 2.699

600 TPS
INFERSAVE-1st g6.xlarge 800.15 1.167
INFERSAVE-2nd g5.xlarge 1206.12 1.466

Max-Perf. g6e.xlarge 1505.37 2.699
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Fig. 5. Comparison of average TPS and cost for different INFERSAVE
configurations and the baseline configuration under varying SLO constraints
for online inference workloads (Left: Average TPS, Right: Cost).

small workload size in this experiment, which allowed all KV
cache data to fit within GPU memory. As a result, offloading
had no effect on performance, and the selected instances
remained the same. Additionally, since the total runtime was
less than one hour, the hourly and total costs were equivalent
in this experiment.

With an SLO requirement of 400 TPS, INFERSAVE selected
g4dn.xlarge as its first choice, offering the lowest cost
of $0.71 while achieving 620.17 TPS. In contrast, the Max-
Performance policy selected g6e.xlarge, which delivered
the highest throughput (1506.54 TPS) at a cost of $2.699, ap-
proximately 280% more expensive than INFERSAVE’s choice.
A similar trend was observed under the 600 TPS constraint,
where INFERSAVE selected g6.xlarge, meeting the re-
quirement at a 56.75% lower cost compared to g6e.xlarge.

These results indicate that the Max-Performance policy
significantly exceeds the required TPS, leading to under-
utilized resources and increased operational costs. In con-
trast, INFERSAVE accurately predicts performance and selects
cost-effective instances that meet the SLO without over-
provisioning.

2) Offline inference workload results: Table VI and Fig. 6
show the instance selections made by each policy under
the SLO requirements for the offline inference workload,
along with their corresponding performance and cost compar-
isons. Due to the large input token size, all instances except
g6e.xlarge required KV cache offloading. Without offload-
ing, only one instance could meet the memory requirements,
leading INFERSAVE without offloading to select the same
instance as the Max-Performance policy.

Given an SLO requirement of 100 TPS, INFERSAVE se-
lected g4dn.xlarge as its top choice, providing approxi-
mately 160 TPS at the lowest total processing cost of $2.13.
In contrast, both the Max-Performance policy and INFERSAVE
without offloading selected g6e.xlarge, which achieved



TABLE VI
COMPARISON OF INSTANCE SELECTION RESULTS

UNDER 100 AND 200 TPS SLOS.

SLO Policy VM Coff (%) TPS Cost ($)

100 TPS
INFERSAVE-1st g4dn.xlarge 100 169.17 2.13

INFERSAVE-2nd g6.xlarge 60 415.04 2.344

Max-Perf., INFERSAVE(w/o KV) g6e.xlarge 0 1506.54 2.699

200 TPS
INFERSAVE-1st g6.xlarge 60 414.28 2.334

INFERSAVE-2nd g5.xlarge 60 414.01 2.932

Max-Perf., INFERSAVE(w/o KV) g6e.xlarge 0 1505.37 2.699
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Fig. 6. Comparison of average TPS and cost for different INFERSAVE
configurations and the baseline configuration under varying SLO constraints
for offline inference workloads (Left: Average TPS, Right: Cost).

significantly higher throughput (approximately 7600 TPS) at a
total cost of $2.699, representing an increase of about 26.7%.
This instance achieves maximum throughput by storing the
entire KV cache in GPU memory, eliminating the need for
offloading. However, despite satisfying the SLO, its high cost
results in lower overall cost efficiency.

With an SLO requirement of 200 TPS, INFERSAVE se-
lected g5.xlarge as its top choice, since g4dn.xlarge
no longer met the performance requirement. This instance
provides approximately 400 TPS while maintaining a total
cost of $2.344. In contrast, the Max-Performance policy again
selected g6e.xlarge, which achieved about 7600 TPS at a
total cost of $2.699, representing roughly a 15% increase in
cost. This result illustrates that, without considering offloading,
an unnecessarily high-performing and expensive instance may
be selected. This leads to excessive costs and reduced overall
cost efficiency.

3) Overall Analysis: By evaluating he experimental results
from both online and offline inference workloads, we derive
key insights for the efficient operation of LLM inference
systems.

(i) The impact of workload I/O patterns on optimal
infrastructure selection: The input and output token
lengths of online inference and batch processing work-
loads differ significantly. These differences serve as key
factors in determining optimal instance types and offload-
ing strategies.

(ii) The significance of selectively applying KV cache
offloading: KV cache offloading is not a universally
effective strategy and yields the greatest cost savings
when applied selectively based on workload character-
istics. For offline batch processing workloads with long
inputs, cost reductions of up to 28% were achieved while

still satisfying SLO requirements. In contrast, for online
inference workloads, applying KV cache offloading was
often more beneficial when both cost and performance
were considered.

(iii) Finding the optimal configuration through INFER-
SAVE: INFERSAVE balances cost and performance by
jointly considering SLO requirements and workload char-
acteristics. Instead of selecting the instance with the high-
est raw performance, it chooses the most cost-efficient
option that satisfies the SLO.

These results demonstrate that INFERSAVE optimizes cost
and performance by analyzing workload characteristics and
selecting the most efficient instance for a given SLO. We next
discuss its system role, applicability, and future directions.

D. Discussion
Decision Layer for KV Cache Offloading: INFERSAVE is
designed to function as a decision layer that complements
existing KV Cache offloading frameworks such as FlexGen [6]
and DeepSpeed-Inference [9]. While these frameworks provide
mechanisms for implementing offloading, INFERSAVE deter-
mines optimal VM selection and offloading strategy based on
workload characteristics and SLO requirements.
Toward Multi-GPU and Distributed Optimization: The
current implementation focuses on single-VM optimization.
Future work could extend to multi-GPU and distributed en-
vironments, addressing inter-GPU communication costs and
synchronization overhead.
Robust Performance Across LLM Workloads: Experiments
with both online and offline workloads show that INFERSAVE
performs well across diverse inference scenarios. These results
demonstrate the effectiveness of combining KV cache offload-
ing with VM selection for a wide range of LLM applications.

VII. CONCLUSION

In this study, we propose INFERSAVE, which utilizes SLO-
aware performance prediction to automatically select cost-
efficient VM instances in the cloud and validate it across
both online and offline workloads. We identify opportunities
to enhance cost efficiency and leverage cheaper, less powerful
GPU instances while meeting SLO requirements by exploiting
techniques such as KV cache offloading. Through extensive
evaluation, our results confirm that INFERSAVE effectively
exploits these opportunities and achieves up to 73.7% lower
operational cost while maintaining SLO compliance. These
results suggest that LLM service providers can balance cost
and performance more effectively by selecting instances based
on SLOs and strategically applying offloading techniques.
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