Disk-Based Shared KV Cache Management for Fast
Inference in Multi-Instance LLM RAG Systems

Hyungwoo Lee
Sogang University
Seoul, Republic of Korea
azwie @sogang.ac.kr

Kihyun Kim
Sogang University
Seoul, Republic of Korea
kihyun@sogang.ac.kr

Myung-Hoon Cha Hong-Yeon Kim

ETRI ETRI
Daejeon, Republic of Korea Daejeon, Republic of Korea
mhcha@etri.re.kr hykim @etri.re.kr

Abstract—Recent large language models (LLMs) face increasing
inference latency as input context length and model size grow.
Retrieval-augmented generation (RAG) exacerbates this by signif-
icantly increasing input tokens, leading to higher computational
overhead during the prefill stage and prolonged time-to-first-token
(TTFT). To address this, the paper proposes using a disk-based
key-value (KV) cache to reduce the prefill computational burden,
thereby shortening TTFT. We also introduce a disk-based shared
KV cache management system, called Shared RAG-DCache, for
multi-instance LLM RAG service environments. This system
leverages the locality of documents related to user queries in
RAG and queueing delays in LLM inference services to proactively
generate and store disk KV caches for query-related documents,
sharing them across multiple LLM instances to enhance inference
performance. In experiments on a single host with 2 GPUs and
1 CPU, Shared RAG-DCache achieved a 15-71% increase in
throughput and up to a 12-65% reduction in latency, depending
on the resource configuration.

Index Terms—LILM, KV-Cache, RAG, Vector DB, TTFT

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated excep-
tional performance across various tasks, and their increasing
scale continues to deliver progressively more powerful capabil-
ities. Models with billions or even trillions of parameters have
significantly advanced the state-of-the-art in natural language
processing, enabling remarkable abilities in understanding
context, generating coherent text, and generalizing across
diverse linguistic scenarios. Nevertheless, despite their extensive
capacity, LLMs frequently encounter difficulties when tasked
with providing accurate responses involving the most recent or
specialized internal corporate data, as such information typically
falls outside the scope of their static pre-training datasets. This
limitation arises because these models do not inherently possess
mechanisms to dynamically update knowledge post-training,
which significantly restricts their applicability in scenarios
requiring up-to-date or domain-specific insights.

To address this limitation, Retrieval-Augmented Generation
(RAG) [1] has gained attention. RAG improves LLM prompts
by retrieving external documents related to the user query,

Y. Kim is the corresponding author.

Jinwoo Kim
Sogang University
Seoul, Republic of Korea
jinwookim@sogang.ac.kr

Jungmin so
Sogang University
Seoul, Republic of Korea
jsol @sogang.ac.kr

Youngjae Kim
Sogang University
Seoul, Republic of Korea
younkim @sogang.ac.kr

James J. Kim
Soteria Inc.
Seoul, Republic of Korea
jkim@soteria-sysm.com

thereby increasing the accuracy of responses regarding up-
to-date information or domain-specific knowledge [1]-[3].
However, incorporating external context documents into the
prompt significantly increases its length, leading to longer
Time-To-First-Token (TTFT) [4] and reduced throughput. This
phenomenon arises primarily from the increased computational
complexity during the prefill phase of LLM inference, where the
model computes attention scores and generates the correspond-
ing key-value (KV) matrices for all tokens in the expanded
prompt. Specifically, the complexity of KV cache generation
scales approximately as (O(L-N2 - D)) [5], [6], where L
represents the number of Transformer layers, N denotes the
total token length of the input (including both original prompts
and added contexts), and D corresponds to the dimensionality
of the hidden representations.

During this process, each token’s embedding is transformed
into query, key, and value vectors, after which self-attention
calculations occur between these vectors, producing the at-
tention scores and resulting value vectors. These calculated
key-value pairs, which constitute the KV cache, must be
computed for every token within the input prompt during
the prefill stage, imposing substantial computational overhead.
Particularly, as the input length (N) grows due to appended
retrieved documents, the self-attention operations require
quadratic complexity (O(L - N? - D)), substantially escalating
the computation demand and slowing inference speed. This
increased complexity becomes especially pronounced with
larger LLM models, whose parameter sizes further amplify the
computational cost.

Nevertheless, in RAG systems, query locality is observed,
where a subset of external documents tends to be frequently
referenced across multiple user queries. To quantify this, an
analysis of question-and-answer datasets such as SQuAD
[7], HotpotQA [8] and TriviaQA [9] found that, on average,
processing 50% of queries requires accessing only a small
fraction—between 3.1% (for SQuAD) and 31.39% (for Trivi-
aQA)—of the total unique documents retrieved. This indicates
that precomputed KV caches for these commonly accessed

documents could significantly reduce redundant computations
during inference.

Related Work: Leveraging this query locality, existing
studies have explored pre-computing and caching KV states
for RAG. RAGCache [10] employs multi-level GPU/CPU
memory caching, but memory capacity limits large-scale
document caching. TurboRAG [11] utilizes offline disk-based
precomputation, achieving significant TTFT reduction by ad-
dressing accuracy issues with mask and positional embeddings,
yet it lacks explicit multi-instance/host KV cache sharing.
More recent systems like CacheBlend [12] and Cache-Craft
[13], often vVLLM-based and single-host oriented, focus on
combining or managing chunk-level KV caches with selective
recomputation to maintain quality. CacheBlend emphasizes
efficient combination of KV caches from multiple text chunks,
while Cache-Craft adds hierarchical storage (GPU, CPU, SSD)
and advanced preloading. However, these approaches do not
primarily target proactive, shared disk-based KV caching
tailored for dynamic multi-instance/host RAG environments
with queue-aware prefetching.

In this paper, we propose a disk-based KV cache man-
agement system composed of two solutions: RAG-DCache
and Shared RAG-DCache. RAG-DCache precomputes and
stores the KV cache for frequently retrieved document chunks
within a disk-resident vector database. During inference, these
precomputed KV caches are reused directly, eliminating the
costly recomputation of the full document context. Shared
RAG-DCache extends this concept to multi-instance inference
environments, enabling multiple LLM instances to share a
common KV cache stored on disk, thus further enhancing in-
ference performance by proactively generating and distributing
KV caches across instances during query waiting periods.

The proposed system consists of three main components.
The KV Cache Manager handles offline precomputation and
manages disk-based KV caches integrated within the vector
database. In multi-instance settings, the KV Cache Generator
proactively prefetches and generates KV caches during query
wait times, utilizing idle resources. Finally, the Prompt Gener-
ator (RAG Processor) constructs LLM prompts by combining
retrieved KV caches with user queries, bypassing redundant
computations. And our system has the following distinctions
from existing research:

e Supports multi-instance/multi-host LLM service environ-
ments. Through a centralized Shared KV Cache Manager,
KV caches stored on disk can be efficiently shared and
reused among multiple LLM instances.

e Leverages query queue time by proactively prefetching and
generating KV caches for waiting queries using idle CPU
or GPU. This mechanism utilizes waiting time, reducing
response latency when the query is processed.

e Presents an optimal resource allocation strategy in a multi-
instance environment. It showed dedicating KV cache
generation to the CPU while utilizing all GPUs for LLM
inference achieves the performance gains.

In experiments on a server equipped with dual GPUs
and a single CPU, using the SQuAD dataset, employing

RAG-DCache (the single-instance component) reduced TTFT
by approximately 10-20%, with throughput increasing with
model and batch size. Furthermore, our multi-instance solution,
Shared RAG-DCache, achieved more improvements, increasing
throughput by up to 71% and reducing latency by up to 65%.

II. BACKGROUND AND MOTIVATION
A. KV Cache Utilization in LLM Inference

Transformer-based LLMs [5] generate text in an autoregres-
sive manner by producing one token at a time. To generate
each token, the model processes the entire prompt and then,
during the decode phase, reuses the previously generated tokens
as input to predict the next token [14]-[18]. Recomputing
all tokens at every generation step would be inefficient, so
the model stores the Key and Value matrices from previous
steps in GPU memory as a cache, which is then reused for
subsequent token predictions. This KV cache is critical for
avoiding redundant computations and helps reduce the overall
complexity of the decode phase. For example, optimization
libraries like DeepSpeed-Inference [19] incorporate KV caching
to enhance inference efficiency in large Transformer models.

B. RAG Prompt Composition

In a RAG system, external documents are retrieved using a
vector database. These documents are divided into manageable
chunks, then converted into vector embeddings using an
embedding model. These embeddings, together with their
document IDs and original texts, are stored in the vector
database [20], [21]. When a query is received, it is similarly
embedded and matched against this vector store to retrieve the
top-k most relevant document chunks. The final LLM prompt
is then composed by concatenating the retrieved document
texts with the user query, typically structured as: "Document:
retrieved texts + Query: user question + Answer:”. However,
as the number of tokens in the prompt lengthens due to added
context, the computational complexity during the prefill phase
increases significantly, leading to higher TTFT and reduced
throughput.

To address this issue, we proposes utilizing external knowl-
edge documents not only as retrieval sources but also as precom-
puted KV caches. Specifically, if the KV tensors of the external
knowledge documents are precomputed and stored, they can
be directly reused whenever the same document is included
in future LLM prompts. By leveraging disk-based caching of
these precomputed KV tensors, the costly prefill computations
associated with document processing are significantly reduced,
resulting in shorter TTFT and improved inference performance.
However, the effectiveness of this caching mechanism funda-
mentally depends on query locality—the frequency with which
particular documents are repeatedly referenced across multiple
queries. Hence, understanding and exploiting query locality
becomes crucial for optimizing system performance, which we
discuss further in the following section.

C. Locality of Documents Retrieved by Queries in RAG

To verify the locality between queries and their retrieved
documents when using RAG, we used popular question-
answering datasets, SQuUAD, HotpotQA and TriviaQA. We first

constructed a FAISS vector database by embedding documents
(using all-MiniLM-L6-v2 [22] embedding model) from each
dataset. Then, for each query, we measured the similarity
between the query embeddings and the document embeddings
using an inner-product-based similarity metric, retrieving the
top-1 most similar document to query. And using the [query, top-
1 document] data, we calculated the proportion of documents
required to process the queries.

SQuAD

HotpotQA TriviaQA

o
=]

@
S

S

ENE =)
S o

N
S

Query Coverage (%)

100 110 50 100 110 50 100
Document Ratio (%)

Fig. 1: CDF of query related documents.

The results (Fig. 1) show that only 22.9%, 3.1%, and 31.4%
of the most frequently retrieved documents account for 50% of
all queries in each dataset. This result suggests that caching a
small subset of frequently accessed documents can effectively
serve a large portion of queries, highlighting the efficiency of
using document caching in RAG systems.

D. Shared KV Cache for Multi-instance LLM Inference

LLM-based inference services generally operate multiple
model instances in parallel to handle numerous real-time user
requests [14]. For example, on a server with two GPUs, two
LLM instances can be run to process two queries simulta-
neously, or one GPU can be allocated to a different task.
In such multi-instance environments, each instance performs
inference independently, so an instance cannot inherently access
the KV cache computed by another instance. Therefore, to
maximize the benefits of caching, a structure is needed that
allows instances to exchange cache data via shared memory
or storage (e.g., disk). We focus on a disk-based KV cache
sharing approach to cope with the increasing number of LLM
parameters and the growing size of input tokens.

Moreover, as requests per second increase with rising service
loads, requests that exceed the capacity of an individual
instance incur queue wait time [23]. In a single-instance LLM
environment, only one request can be processed at a time, so
subsequent requests must inevitably wait. However, in a multi-
instance environment, there is a possibility of utilizing free
resources or other devices to prepare tasks that are waiting in
the queue. For instance, while one GPU is decoding a current
query, it may be possible to leverage another idle GPU or a
CPU to carry out preliminary work for the next query, thereby
reducing response latency. The proposed Shared RAG-DCache
implements this idea by prefetching necessary document KV
caches for requests that wait in the inference service queue
beyond a certain threshold. As a result, when the request
eventually reaches an LLM instance, it can focus solely on the
decoding step.

Figure 2 shows the average response time from when a
client issues a query until the response is received—divided

1Req _ LLM Process Time(Vector DB Search + Inference(Prefill-Decode)) -
/sec (0.3730s) : 78.2%
2Req
/sec
4Req LLM(0.3869s)
:0.57%

/sec
Fig. 2: Inference Latency Based on Requests Per Second in a
Multi-Instance LLM(with RAG) Service Environment.

LLM Process Time
(0.3923s) : 75.7%

into queue wait time, LLM processing time, and network time
(communication time between client and LLM server)—under
varying query rates per second, using a single Llama-3.2-1B
[24] model on one GPU. For detailed experimental settings,
refer to Table I in Section 4. At 1-2 queries per second, LLM
processing time makes up over 70% of the total time. However,
once the query arrival rate exceeds the LLM processing time,
the queue wait time increases exponentially. This suggests
that under heavy loads, it is beneficial to utilize the waiting
period for prefetch operations. Therefore, in a multi-instance
environment, it is desirable to share caches among multiple
instances to avoid redundant computation, and prepare caches
in advance during wait times, allowing the GPU to focus
on pure inference tasks. Shared RAG-DCache is the system
designed to meet these needs.

III. DESIGN AND IMPLEMENTATION

In this section, we detail the architecture and operation of
our proposed RAG-DCache system—a disk-based KV cache
for single-instance LLM inference—as well as its extension to
a multi-instance environment, called Shared RAG-DCache.

A. Disk-based KV Cache Structure and Operation

The RAG-DCache system extends the traditional Retrieval-
Augmented Generation pipeline by adding a disk-resident
Key—Value cache storage and associated management modules.
The basic idea is to precompute the KV cache for each
document chunk in the vector database and store these caches
on disk so that they can be reloaded during inference instead
of recomputed from the original text.

Figure 3 contrasts a standard vector database with our
augmented version. In a conventional RAG setup, the vector
database stores embeddings of document chunks for similarity
search. In our approach RAG-DCache, we augment each stored
document chunk with its precomputed “chunked-document KV
cache,” pairing it with the document’s ID and embedding
in the database. Because document changes rarely once the
vector DB is built, we can leverage idle hardware to generate
these KV caches offline and persist them to disk. It is also
possible to generate a KV cache during inference for a newly
encountered document and then add it to the DB for future
reuse. By caching each document’s transformer key-value pairs
in advance, the LLM can skip directly to using this cached
representation when that document is retrieved for a query,
rather than processing the raw text each time.

Fig. 4 illustrates the design and operation of RAG-DCache,
which incorporates a KV Cache-linked vector DB for LLM
inference using RAG. The main components of disk-based KV
Cache are as follows:

[11,221,32,44..] Vector ID Embedding Vector Chunked Doc
Chunked Doc DB 1 [121,223,34,.] World capital...
embedding

Knowledge Base
(pdf file, web text..)| Document
Chunking

Embedding
Model

(a) General vector DB

N [11,221,32,44..] =
Knowledge Base [embedding | [1113,..1,116..)] _|vecor 1D Embedding hunked Doc u&'{;‘m
(pdffile, web text.)| Document [Model + LLM| Chunked Doc DB -
| Chur|king| ek 1 [121, 223,34,..] World capital... [[113,...],[16...]]

(b) Vector DB with additional utilization of KV Cache
Fig. 3: Vector DB creation process and tuple structure for RAG.

e KV Cache Manager: This module is responsible for creating
and managing the stored caches. It generates the KV cache
for document chunks using the LLM and stores the resulting
key-value tensors in the vector database. It also handles
retrieval of these caches from disk upon request. To minimize
disk I/O latency, the KV Cache Manager employs an in-
memory (CPU RAM) cache to hold frequently or recently
used KV entries, leveraging faster memory access and
reducing repeated disk reads. In essence, it acts as the
interface between slow persistent storage and the rest of
the system, optimizing cache generation and lookup.

o RAG Processor: The RAG Processor orchestrates the RAG
inference workflow. Upon receiving a user query, it performs
a similarity search on the vector database to fetch the
relevant document ID. It then requests the corresponding KV
caches for the document from the KV Cache Manager, and
composes the final LLM prompt by combining the query
with the retrieved KV caches.

o Integrated Vector Database: This is an extended vector
store that holds not only each document chunk’s embedding
and original text, but also the precomputed KV caches.
Each entry in the vector DB effectively becomes a tuple of
the form (embedding, document ID, text, KV cache). The
inclusion of the KV cache alongside the embedding means
that after retrieval, the system immediately has access to
the document’s encoded representation for the LLM. Since
documents are largely static, these caches can be generated
offline and remain valid unless the document content changes.
For any new documents added to the corpus, on-demand
cache generation can be performed and the caches appended
to the database, keeping the cache store up-to-date. This
integrated DB design ensures that the vector index serves a
dual purpose: it provides nearest-neighbor search for relevant
documents and acts as a lookup table for their cached LLM
representations.

The end-to-end operation of RAG-DCache proceeds as
follows (refer to the numbered steps in Fig. 4):

@ Offline Cache Preparation: Initially, use existing docu-
ments to pre-generate the KV caches and build a KV-augmented
vector database. The KV Cache Manager takes each document
chunk and computes its KV cache using the LLM model, then
stores this cache in the vector DB alongside the document’s
embedding and ID. This step can be done offline or in the
background, populating the disk cache before queries arrive.
By the end of this step, the system has a disk-based cache of
key-value pairs ready for many documents in the corpus.

@. © Query Retrieval: When a user query comes in, the
RAG Processor embeds the query and searches the vector
database for the most relevant document ID. This yields the
ID of the document that will be used to augment the query.

6, @ KV Cache Retrieval: For each document ID obtained
in step @ 9 the RAG Processor requests the corresponding
KV cache from the KV Cache Manager. The KV Cache
Manager checks its memory cache for the entry; if present, it
returns it immediately. If not, it loads the KV cache from disk
into memory and returns it to the RAG Processor.

@. © Prompt Composition: Meanwhile, the user’s query
text is converted into the appropriate embedding or token IDs
for the LLM model if not already done during retrieval. Once
the KV cache for the document is in hand, the RAG Processor
constructs the final LLM input prompt. It does this by inserting
the retrieved KV cache data into the model’s context as
“past key-values” and appending the user query tokens as the
current input. Essentially, the LLM is tricked into believing it
has already processed the retrieved documents, because their
resulting key-value pairs are provided, and now it only needs
to attend to the user’s query. In practice, this means setting
the model’s internal key-value state to the cached values and
providing the query tokens as the next sequence to process.

Kr ledge Base —
Doc1
World capital lists are|

Doc 2
New customer ...

Disk 0]
D | Embedding Chunked Document | Chunked Document KV Cache
[11,223,..] | World capital lists are ... [[13,156...],[16,72]...]
[13,222,..] New customer ... [[23,53...1,[62,211]...]

CPU
L2 (5)
m ‘RAG Processor| Dynamic batch H'—’|Kv Cache Manager | Memory cache |F
What is

capital of
Korea? (7] (3

-

~

Vector DB

’, LLM Input Prompt —————— (8] "

4‘_0

It is Seoul.

GPU
Docl KV Cache User Query LM

[(13,156...],[16,72..]] | (Embedding)
:

Fig. 4: Design and Operation of RAG-DCache.

@ LLM Inference (Prefill + Decode): The LLM, now armed
with the combined prompt (document KV Cache + query
embeddings), proceeds to generate an answer. It first goes
through its prefill phase and then the decode phase to produce
output tokens. Because of RAG-DCache, the prefill phase is
dramatically accelerated: instead of recomputing key-value
pairs for the document’s text on the GPU, the model directly
uses the precomputed keys and values. It only needs to encode
the user query itself and then can immediately attend to the
cached document representations when predicting the answer.
After the prefill, the decode stage proceeds as usual to generate
the response token by token.

By leveraging pre-stored caches in this manner, RAG-
DCache reduces the TTFT and overall computational load
on the GPUs. In a baseline RAG system without caching, the
LLM must process the full text of the retrieved documents for
every single query, leading to significant repeated work in the
prefill stage. Our approach avoids this repetition. There is an
overhead for loading the KV cache from disk (when a cache
is not already in memory), but as long as efficient storage (fast

(8]

‘past_key_valuesH Input ids l‘
¥
1
T

SSD) and caching strategies are used, the sum of “(disk load
time) + (cached prefill time)” is typically much less than the
original prefill time required to encode the documents from
scratch. In other words, even accounting for disk I/O, the TTFT
with RAG-DCache is lower than without it, provided the caches
are effectively utilized. This will be quantitatively demonstrated
in our evaluation. Note that when multiple documents are
retrieved (k >1), we do not calculate cross-attention between
the documents we only calculate KV values between the user
query and the retrieved documents. This may lead to accuracy
degradation as shown in the evaluation.(Fig. 8)

To address this issue, instead of precomputing each docu-
ment’s KV Caches and storing them in the vector DB, we
changed our approach so that during inference—when RAG
retrieves documents—the KV Caches for the top-k documents
are generated and stored together with the vector DB. We
also made sure that the generated KV Caches are stored and
managed within the vector DB along with the documents’ IDs,
allowing us to handle any top-k scenario. For example, if top-k
= 3 and the retrieved document IDs are 1, 2, and 3, we calculate
the attention for those three documents together to generate
their KV Caches, then add that combination of document IDs
to the vector DB so the KV Cache Manager can easily locate
them. This approach applied to Shared RAG-DCache, which
will be described next, leverages idle time during the inference
process to precompute KV caches, regardless of the number of
retrieved documents. These precomputed KV caches are then
stored on disk, shared across instances, and reused to improve
efficiency and maintain accuracy.

B. Multi-Instance Structure of RAG-DCache

While RAG-DCache improves single-instance performance,
modern LLM services often deploy multiple LLM instances
(across one or more GPUs or nodes) to handle high query
throughput. In such environments, caches computed in one
instance could be beneficial to others. We therefore introduce
Shared RAG-DCache, an extension of RAG-DCache for multi-
instance LLM service environments. Shared RAG-DCache
enables cache sharing and cache prefetching across multiple
parallel LLM inference processes. The goal is to exploit both
the locality of document usage across different queries and the
idle time that queries spend waiting in a queue due to high
load to proactively generate and distribute KV caches.

Fig. 5 shows the architecture of Shared RAG-DCache, which
builds on the single-instance design with additional components
for multi-instance. The main components are as follows:

e KV Cache Generator: This is a new background module
that proactively creates KV caches for queued queries. It
continuously monitors the central query request queue and
identifies queries that have been waiting longer than a
predetermined threshold. For a query that is stuck in the
queue (indicating the system is busy and the query will not be
served immediately), the KV Cache Generator takes action:
it immediately computes an embedding for the query, uses it
to search the vector database for top-k relevant documents,
and then computes the KV caches for those documents

Multi-User Query

Multiple LLM nodes(cru) 3 Multiple Vector DBs Storage
—_ (index and i
H Vector DB ID
Llama Llama . E @ @ and Doc Index
ES) | - ViD,
vi v2
: (Finance) (Law) V1Dy,V;Dy
e | V1D, VsD,
Llama Llama g [~] @ @ VaD,,ViD,
|| =
LARAAA LM Query Queve v3 va Used Documents
- (C"sfm:) (HR) KV Cache
' 3 L 4+—i
1[13,156..],(16,72...).]
| Prompt Generator(KV Cache+Query) ‘ KV Cache Generator Shared
4 (Prefecth 5-7 query, top-k Docs Search) RAG- [[..13,16..],...56,32]...]
KV Cache Manager (Pre-compute or Reuse top-k Docs Dcache 112,222..1166,62..1.-]
(Search & Retriever & Save) KV Cahce for 5~7 query) (CPU or GPU) [[156,26...1,[19,92...]...]
-~ -
—

Fig. 5: Shared RAG-DCache Architecture.

on the fly. Essentially, it performs steps 2—-5 of the RAG-
DCache workflow ahead of time for queries that are still
waiting. The KV generation uses the same LLM model that
will ultimately answer the query, but it can be executed on
any available device — for example, on an idle GPU if one
exists, or on the CPU if all GPUs are busy — since this is
done asynchronously. Once generated, the new KV cache
is stored to disk via the KV Cache Manager and indexed
by document ID so that any LLM instance can retrieve it
later. If a KV cache for a particular document was already
created previously, the generator will detect this and avoid
redundant computation. In that case, the existing cache can
be reused directly. This component effectively prefetches
document caches during the query’s waiting time, leveraging
otherwise idle compute resources to reduce future work.
Shared KV Cache Manager: In a multi-instance setup,
instead of each LLM instance having its own independent
KV Cache Manager, we deploy a centralized KV Cache
Manager service. This service coordinates the storage and
sharing of KV caches among all LLM instances. It receives
newly generated caches from the KV Cache Generator
and inserts them into the global disk-based cache. When
an LLM instance needs a KV cache for a document, it
queries this shared manager rather than a local disk, and the
manager supplies the data to the instance over the network
or inter-process channel. The Shared KV Cache Manager
thus acts as a cache server, ensuring that all LLM instances
have a consistent view of available KV entries and that
once a document’s cache is generated by any one instance
or the generator, it can be used by all. Like the single-
instance manager, it also implements a memory caching
layer (using CPU RAM) with an eviction policy (e.g., LRU)
to keep frequently accessed caches readily available. This
is especially important in multi-instance scenarios to avoid
repeatedly hitting the disk if multiple instances request the
same cache around the same time.

o Prompt Generator (per-instance): Each LLM instance is

equipped with a Prompt Generator module. This component
is conceptually similar to the RAG Processor’s prompt
composition step in the single-instance case, but tailored
for a multi-instance context. When a query is assigned to a
specific LLM instance for processing, that instance’s Prompt
Generator will request any needed KV caches from the
Shared KV Cache Manager. It then combines the retrieved

KV cache(s) with the query text to form the final input
prompt for its local LLM, identical to how it was described in
the single-instance workflow. With the KV cache preloaded
into the model’s context, the LLM instance can skip directly
to decoding the answer, greatly reducing the latency for
that query. Essentially, the Prompt Generator ensures each
instance makes full use of the globally cached data: it injects
the shared KV into the model and thereby avoids that instance
doing any redundant prefill computation for the documents.

With these components, Shared RAG-DCache transforms a
multi-instance deployment into a cooperative caching system.
Fig. 6 illustrates the Shared RAG-DCache operation sequence:

© O Quecue Monitoring: The system monitors the central
queue of incoming queries continuously. If a query’s wait time
exceeds a configured threshold (indicating prolonged queuing

due to heavy load), that query is flagged for cache prefetching.

The threshold can be tuned — any query waiting longer is
considered a good candidate to start processing early, since it
likely will wait that long anyway.

© Document Pre-search: For each flagged query, the KV
Cache Generator immediately kicks in. It takes the query,
computes its embedding, and performs a vector DB lookup to
fetch the top-k most similar documents. This step is analogous
to the retrieval step normally done by an LLM instance, but
here it happens in parallel, on an idle thread/CPU or a free
GPU, while the query is still in queue. By doing this in advance,
we obtain the set of documents we anticipate the query will
need, without delaying the query’s actual service time.

@ KV Cache Preparation: Next, for each of the k retrieved
documents, the system prepares the KV cache. If the shared
cache already contains a KV entry for a document, the KV
Cache Generator will simply load that cache — possibly from
disk to memory — immediately. If a cache is missing, the
generator will perform a prefill computation for that document
using the LLM model to create the KV cache. Once generated,
the new KV cache is stored into the shared vector DB on
disk via the Shared KV Cache Manager, making it available
system-wide. This step effectively precomputes the heavy part
of the LLM’s work for the document while the query is still
waiting in line. It’s done for all top-k documents so that the
query’s entire retrieved context is cached ahead of time.

@ LLM Inference: Eventually, the queued query reaches
the front of the queue and is assigned to an LLM instance for
execution. At this point, thanks to the previous steps, the
KV caches for its relevant documents have likely already
been generated and stored. The assigned instance’s Prompt
Generator fetches those caches from the Shared KV Cache
Manager. The Prompt Generator then constructs the LLM

prompt, combining the query text with the retrieved KV caches.

Now the LLM can immediately begin decoding the answer,
since the time-consuming document encoding work was done
earlier. Effectively, the query’s waiting time is utilized for
precomputation, leading to significantly faster responses once
the query is actively processed.

Through this mechanism, Shared RAG-DCache ensures that
no two instances ever duplicate the same KV computation, and
that the query wait times in a busy service are put to productive

Doc_id1 KV.pt
Doc_id1+Doc_id2 KV.pt
Doc_id2+Doc_id1 KV.pt

LLM @ Pre-fetch © Search top-k docs
awery [1M
Queue
Vector DB .Search O Prefill and save
+ Prefill (top-k docs KV Cache)

/\ @ Decode using document

KV cache + Query Text
A
) ‘ Queue wait time

(67.1511s) : 99.36%

LLM Proc. time
(0.3869s) : 0.57%

Net(0.052s)
:0.07%

i Vector DB Search + Inference(PrefiIIE - Decode)

Fig. 6: Shared RAG-DCache operation sequence.

use. Since all KV caches reside in a shared disk-based store,
any cache generated by one instance or by the prefetcher is
immediately available to all other instances. This not only cuts
down latency for the individual query that triggered the prefetch,
but also improves throughput overall: multiple LLM instances
can pull from the same cache repository, benefitting from each
other’s work. The design takes advantage of the locality in
user queries and the nature of queued request handling to
significantly reduce redundant computation across the system.

IV. EVALUATION

We implemented the above system and conducted experi-
ments to evaluate the performance gains of RAG-DCache and
Shared RAG-DCache. All experiments were performed on a
single-host server with the following specifications(Table I):

TABLE I: Experimental hardware specifications.

Component | Specification

CPU AMD Ryzen 9 3900XT (12 cores)

GPU NVIDIA RTX 2080 SUPER(2 units, 8GB each)

Memory 64GB RAM

Storage SAMSUNG 970 EVO NVMe SSD 500GB
(Read 3.4GB/s Write:2,4GB/s)

We used the SQuAD vl.1 dataset as a source of queries and
documents for retrieval. This dataset was created by crowdsourc-
ing questions and answers from Wikipedia articles, where each
answer is a direct span of text from the corresponding passage.
It is primarily used as a benchmark to train and evaluate
machine reading comprehension models, specifically for their
ability to perform extractive question answering. Furthermore,
SQuAD vl.1 drives research in natural language understanding
and is often utilized for transfer learning to other related NLP
tasks. For similarity search, we employed a Faiss [21] vector
database. Different large language models were used for single-
instance vs. multi-instance tests, and we measured key metrics
including TTFT and throughput, as well as breakdowns of
latency where appropriate. TTFT captures the latency from
when a query is submitted to when the LLM outputs the first
token of the answer — this primarily reflects the time spent in
the prefill stage since decoding the very first token is usually
quick once the model has the prompt. Throughput is measured
as the number of queries that can be completed per second,
reflecting the system’s capacity under load.

The increase in the vector database storage capacity due
to disk-based KV cache usage is shown in Table II. The
FAISS Vector DB size is the sum of the index, the document
embedding vectors, and the original text size of the documents.

— opt-1.3b —— opt-2.7b opt-6.7b -»- Baseline —«— RAG-DCache w/o MemCache = —e— RAG-DCache
0.6 0.6
¢ A
~.0.20
0.5 _ 0.5 3 X
_ e g f
§ g 04 f 0.15 X
S v IS Py
g g = &
= £03 £0.10 . A
[T = — X o
E % e A "
<02 3 D e
. & _
a>) 0.05 o -~
< & o
o
0.1 000L7
2 4 6 8 10 ' 2 4 6 8 10

Batch Size

(a) TTFT

Batch Size

(b) Prefill Time

Batch Size

(c) KV Cache Loading Time

Fig. 7: Results of TTFT, Prefill Time, and KV Cache Loading Time Measurements by LLM and Batch Size.

RAG-DCache and Shared RAG-DCache require additional
disk space for storing KV caches in addition to the FAISS
vector database storage. As expected, the KV cache size
increases with the number of model parameters. Even with
the same number of parameters, the KV Cache size can differ
depending on the embedding method used by each LLM model.
Additionally, if the number of documents extracted in RAG
(top-k) increases, the size of the KV Cache generated may also
grow. However, by adjusting the disk-based KV Cache that
leverages query-document locality, the required storage space
can be reduced—this may represent a tradeoff between query
throughput and the necessary disk size.

TABLE II: Size of Normal FAISS Vector DB and KV Cache
when using SQuAD dataset and different LLMs.

TABLE III: Experimental Environment.

Component Specification

LLM facebook/opt-1.3b, 2.7b, 6.7b
Embedding Model | all-MiniLM-L6-v2

Dataset SQuAD vl1.1 Train (2,000 samples)
Vector DB Faiss DB, IndexFlatIP

Performance Breakdown: Fig. 7 presents the results for
TTFT, Prefill time, and KV cache loading time under various
conditions. Fig. 7(a) shows the overall TTFT for each model
and batch size, comparing the baseline to RAG-DCache.
Fig. 7(b) and Fig. 7(c) break this TTFT into two components
for the RAG-DCache case: the time spent in the LLM’s prefill
stage, and the time spent loading KV caches from disk. In the
baseline, TTFT is essentially all prefill.

As shown in Fig. 7(a), RAG-DCache consistently reduces

FAISS RAG-DCache and Shared RAG-DCache
Vector DB | opt-1.3b | opt-2.7b | opt-6.7b | LLAMA-1B
0.5MB 5.9GB 9.9GB 16GB 1GB

A. RAG-Dcache Results and Analysis

For the single-instance scenario, we evaluated RAG-DCache
using the SQuAD dataset and Facebook’s OPT [25] decoder-
only LLM of varying sizes. We tested three model sizes to see
how cache benefits scale with model complexity. The vector
database was implemented with Faiss, and we chunked the
SQuAD documents into passages for retrieval. Before inference,
we pre-generated the KV caches for all document chunks that
might be retrieved for the SQuAD queries, by running each
chunk through the respective OPT model’s prefill stage and
storing the resulting KV pairs on disk. The KV Cache Manager
was given a 16GB memory cache to hold recently used caches,
as described earlier. Table III summarizes the experimental
setup, including the LLM models, dataset size (2,000 queries
from SQuAD vl.1 train), and other components. We compared
two settings: a baseline RAG (meaning the LLM processes
raw text of retrieved documents for every query) and RAG-
DCache enabled, across different batch sizes. Here, “batch
size” refers to the number of queries processed simultaneously
by the model. For each combination of model size and batch
size, we measured the average TTFT and the throughput in
both the baseline and RAG-DCache configuration.

TTFT in almost all cases. This is because using the disk-based
KV cache drastically reduces the prefill computation time on
the GPU, and the memory cache further cuts down repeated
disk reads. In Fig. 7(b), we see that the prefill time with RAG-
DCache is much lower than baseline since the LLM doesn’t
need to encode the full documents from scratch. Fig. 7(c) shows
the KV cache loading time incurred for RAG-DCache — this
is an overhead not present in the baseline. However, because
of our caching optimizations, this overhead is kept relatively
small: many cache loads are served from the 16GB memory
cache, and even disk loads are fast on NVMe SSD. The result
is that Prefill time savings outweigh the KV load time, yielding
a net gain. For example, with the OPT-6.7B model at batch
size 4, RAG-DCache might add a few milliseconds to load
caches but saves far more time in GPU computation, leading
to a substantially lower TTFT overall.

However, as shown in the Fig. 8 RAG-DCache works
well when only a single document (top-k=1) is retrieved.
We measured the accuracy of the answer using the formula
F1 x 0.5 + Exact Match x 0.5, and the results showed that
when top-k=1, the accuracy was the same as when RAG-
DCache was not used. When multiple documents (top-k>1)
were retrieved, the accuracy was higher than when RAG was
not used but lower than when RAG-DCache was not applied.
This is because we do not calculate cross-attention between
the documents. To address these issues, researchs like Cache-

Craft and CacheBlend employ a selective KV recalculation
process, updating KV values by including cross-attention
calculations between tokens when necessary. In contrast, our
approach leverages LLM queue waiting time within the LLM
service runtime to pre-calculate and store the KV cache for
retrieved top-k document groups, incorporating cross-attention
from the outset. Therefore, during inference, using this stored,
combined cache improves performance while maintaining
accuracy, without the need for separate selective recalculation.

Bw/oRAG Bw/RAG, w/o RAG-Cache B w/ RAG, RAG-Cache
0.14
0.12

0.1 0.0922 0.0922
0.08
0.06
0.04
0.02

0

0.1156

0.1124

0.1038 0.1066

top-k=1
Fig. 8: Accuracy based on the number of retrieved documents
(top-k) when using RAG-DCache.

top-k=2 top-k=3

Impact of Model Size: The benefits of RAG-DCache
become more pronounced for larger models and batch sizes.
Larger models have heavier per-token computation, so removing
a chunk of tokens from their workload yields a bigger time
savings. Similarly, at higher batch sizes, the GPU is encoding
multiple queries’ documents at once in the baseline, which is
very compute-intensive; with caching, those computations are
skipped, freeing the GPU to handle more queries.

In our experiments, we observed TTFT reductions of
roughly 10%-20% with RAG-DCache compared to the baseline,
depending on the configuration. These percentages tended
towards the higher end (closer to 20%) for larger OPT models
and larger batches. Concretely, Table IV shows the throughput
achieved in each scenario, averaged per model. Without RAG-
DCache, the throughput for OPT-1.3B was approximately 23.74
QPS, which increased to 26.63 QPS with RAG-DCache —
approximately a 12% improvement. For the OPT-2.7B model,
throughput went from 15.32 QPS to 18.01 QPS, approximately
a 17.6% gain. The OPT-6.7B model was the slowest, but
improved to 11.05 QPS with caching (15.7% increase). The
average relative improvement in these models was around
14%—15%, aligning well with the TTFT savings noted above.
These results validate that RAG-DCache not only lowers the
latency per query but also increases the overall throughput of
the system, as the GPUs spend less time on redundant tasks
and can handle more queries.

TABLE IV: Average Throughput of Baseline and RAG-DCache.

Component | opt-1.3b | opt-2.7b | opt-6.7b | Average
Baseline 23.74 15.32 9.55 17.53
RAG-DCache 26.63 18.01 11.05 20.07

B. Shared RAG-DCache Results and Analysis

We next evaluate Shared RAG-DCache in a multi-instance
LLM service scenario. The test environment remained the same
dual-GPU server described above. We switched the LLM to
Meta’s LLaMA-3.2-1B model for these experiments. We used

KV Cache KV Cache
Generator Manager
|| [—
Prompt
Regues

Doc_id1 KV.pt
RAG T
" d 7]| Doc_id1+Doc_id2 KV.pt
{
2| Doc_id2+Doc_id1 KV.pt

Vector DB with disk KV Cache

Client

Queue o
HOnn- foro

Response Queue

LARAAA]

AAAAA

Fig. 9: Experimental System Configuration.

1,000 queries from the SQuAD v1.1 dataset and for each query.
We retrieved either k=1 or k=2 documents to examine the
effect of different context sizes. These queries were sent in
a continuous stream at a rate of 40 requests per second to
simulate a heavy multi-user load. This high query rate ensured
that at any given moment there were multiple queries waiting in
the queue, which is necessary to fully leverage the prefetching
mechanism of Shared RAG-DCache. If the system is not under
load, queries won’t wait in queue and the KV Cache Generator
might not trigger.

And whether Shared RAG-DCache was used or not, the
KV cache values generated during the prefill stage remained
the same regardless of changes in the top-k value. Therefore,
accuracy was not measured separately. Furthermore, to control
for variability in the decode phase, this experiment focused
solely on measuring the prefill stage. This is because response
latency can vary depending on the length of the generated
answer during the decode stage. Our goal was to reduce noise
and highlight the optimization benefits of the prefill stage.
And to isolate the effect of shared disk caching, we disabled
the memory caching in the KV Cache Manager for these
experiments. This means all cache fetches go to disk, ensuring
that any performance improvements observed are due to the
multi-instance sharing and prefetching, not just RAM hits.
Finally, to measure the performance improvement effect as the
Disk-based KV Cache expands, we processed the entire dataset
multiple times in a random order.

The test configuration for this experiment is shown in
Fig. 9. To determine the optimal configuration in the given
environment, we evaluated two resource allocation strategies
for CPU and GPU.

e In Configuration (A) “GPU-Only KV Cache Generation”,
we dedicate one of the two GPUs entirely to KV cache
generation tasks, and use only the other GPU to run the
LLM inference. In other words, GPUO handles all LLM
inference requests, and GPUI is reserved for computing KV
caches of retrieved documents in the background.

e In Configuration (B) “CPU-Based KV Cache Generation”,
we use both GPUs for LLM inference, and assign all KV
cache generation to the CPU. In this setup, the KV Cache
Generator runs on the CPU, while both GPUO and GPU1
are busy serving LLM inference requests.

Configuration (A) tests the scenario where we sacrifice a
GPU to speed up cache prep, whereas (B) tests using no GPU
for cache prep at the expense of slower cache generation on
CPU. In both cases, Shared RAG-DCache is active, which
means that caches are shared across the two LLM instances,
and prefetching is enabled. The baseline for comparison is

i w/o KVGen(Baseline) - w/ KVGen

30 450
400
350
300
250
200
150
100
50
0 0
1 2 3 4 5 1 2 3 4 5

TRY Number

Throughput(Queries/sec)
.
&
AVG. Latency(sec)

TRY Number
(a) top-k=1

30 450
400
350
300
250
200
150
100

50
0 0

1 2 3
TRY Number

Throughput(Queries/sec)
-
&
AVG. Latency(sec)

1 2 3
TRY Number

(b) top-k=2

Fig. 10: Throughput and Avg. Latency with Configuration (A)
when top-k=1 and 2.

a multi-instance system without Shared RAG-DCache(w/o
KVGen). We measure the system’s throughput in queries/sec
and the average end-to-end latency which in our prefill-only
measurement corresponds to how long a query waits plus its
prefill time for each configuration and each top-k documents.

Overall Improvements: Shared RAG-DCache showed sig-
nificant performance improvements over the baseline, though
the magnitude depended on the configuration. In Configuration
(A), as shown in Fig. 10, enabling the shared cache system
to improve throughput by approximately 35-71% and reduce
average latency by 31-65% compared to the baseline, according
to our measurements. As the number of times the dataset
was processed (TRY Number in the figure) increased, the
performance improved further. (For the baseline, since there is
no disk-based KV Cache expansion according to the number
of tries, it was measured only once.)

For a example, in the k=1 scenario under Configuration
(A), throughput increased from 23.96 QPS to 24.78 QPS with
caching, and the average latency dropped from 75.75s to 73.25s.
These particular numbers represent a modest 3.4% throughput
gain and 3.3% latency reduction — relatively small, because
with only one document the baseline was already not very slow
and the single inference GPU was not heavily bottlenecked.

In the k=2 scenario with Configuration (A), we observed
mixed results: the caching system sometimes incurred overhead
that offset its benefit. Specifically, handling two documents
per query on only one inference GPU proved challenging —
the throughput and latency with caching in some trials were
on par with or slightly worse than the baseline. This is likely
because in Configuration (A) the single GPU had to handle
the combined work of two documents’ KV insertion plus the
query itself, sequentially, which increased contention. The KV
generation GPU could produce caches quickly, but the inference
GPU became a bottleneck when k was larger. However, as
the TRY Number increased, throughput improved, and latency
decreased progressively. This is attributed to the accumulation

i w/o KVGen(Baseline) . w/ KVGen
30 250

200

150

100

H
&
AVG. Latency(sec)

50

Throughput(Queries/sec)

0 0
1 2 3 4 5 1 2 3 4 5
TRY Number

TRY Number

(a) top-k=1

30 250

25 200

20
150
15
100
10

50

Throughput(Queries/sec)
AVG. Latency(sec)

0 0
1 2 3 4 10 1 2 3 4 10

TRY Number TRY Number

(b) top-k=2

Fig. 11: Throughput and Avg. Latency with Configuration (B)
when top-k=1 and 2.

of the Disk KV Cache, which increased the likelihood that
queries processed by the LLM would reference the same KV
Cache, thereby improving the Disk KV Cache hit ratio.

In summary, Configuration (A) demonstrated the viability of
shared caching, but it showed limited parallelism — dedicating a
GPU for caches helped less than expected when the remaining
GPU was overloaded with inference work for larger contexts.
However, as the Disk KV Cache accumulated, throughput
improved, and latency progressively decreased.

In Configuration (B), as shown in Fig. 11, with caching
enabled, overall throughput increased by approximately 15%-
28% and latency decreased by 12%—29% compared to baseline
in this configuration. For example, as shown in Fig.10, in the
k=1 case, as the number of times the dataset was processed
increased, the throughput improved from 23.96 to 27.98 QPS,
and the average latency fell from 75.75s to 47.92s. This is a
significant improvement: 17% higher throughput and 37%
lower latency. For k=2, the system with caching went from
14.34 QPS to 17.96 QPS, and latency dropped from 208.22s
to 146.17s. That’s roughly a 25% increase in throughput and
a 30% reduction in latency, respectively.

We note that k=2 queries are inherently slower — even with
caching, the latency was higher than any k=1 scenario simply
because processing two documents’ worth of context takes
extra time and resources. However, the relative improvement
with caching is still substantial for k=2. These results confirm
that Shared RAG-DCache is effective even when additional
context is included, although the best absolute performance
naturally occurs with fewer documents. Indeed, comparing k=1
vs k=2 across the board, we see that k=1 had lower latency and
higher throughput in all configurations (baseline and caching).
This is expected because more documents means more work.

Importantly, however, Shared RAG-DCache mitigates the
performance penalty of larger k: for instance, going from 1 to
2 documents in the baseline caused throughput to drop by 40%
and latency to almost triple, whereas with Shared RAG-DCache

the drop in throughput was less severe and the latency increase
was much smaller — and some of that remaining latency was
due to the heavier workload rather than idle waiting. Even
with k=2, the caching system delivered significantly better
performance than baseline.

Comparison of Configurations (A) vs (B): The comparison
result is shown in Table V. The CPU-based KV generation
(B) clearly emerges as the preferable configuration in our
experiments. It achieved the highest throughput in all cases
and more consistent latency reductions. In Configuration (A),
when one GPU was taken away from inference, the remaining
single inference GPU became a choke point under heavier
loads (like k=2). It could not parallelize the work enough,
and the benefit of offloading some computation to the second
GPU was negated by the loss of overall inference capacity. In
configuration (B), both GPUs were fully utilized for inference
tasks, doubling the inference parallelism, while the CPU
handled cache generation without impeding the GPUs. The
CPU was effectively leveraging otherwise idle time since GPUs
were busy, CPU cycles could be used to precompute caches.
This leads to better pipeline balance: GPU power focused on
what GPUs do best running the model for answers, and CPU
cycles used for background prep work.

As a result, configuration (B) achieved the highest observed
throughput in our tests — for example, 27.98 QPS at k=1 with
caching, which was higher than even the baseline with two
GPUs. It even outperformed Configuration (A)’s throughput
despite Configuration (A) having a whole GPU doing cache
work, indicating that GPU might have been under-utilized or its
benefit was offset by the other GPU’s overload. Additionally,
the latency in configuration (B) was dramatically better: in
Table III, configuration (B) brought average latency down to
47.9s for k=1 and 146.2s for k=2, whereas Configuration (A)
had 73.3s (k=1) and a very high 295.4s.

The k=2 result for Configuration (A) suggests that the single
GPU was so overwhelmed that queries ended up waiting a long
time despite caching — possibly because the KV generation
GPU was producing caches faster than the inference GPU could
use them, leading to a queue buildup. In contrast, configuration
(B) kept latencies much lower by always utilizing both GPUs
for serving queries. These findings underscore that offloading
KV generation to a non-GPU resource yields better overall
system performance, which aligns with our resource allocation
optimization strategy.

TABLE V: Average Performance Results by Configuration

Top-k | Avg. Perf. | Conf. (A) | GPU: 2 LLM(Baseline) | Conf. (B)
1 Throughput 24.78 23.96 27.98
Latency 73.25 75.75 47.92
5 Throughput 11.57 14.34 17.96
Latency 295.37 208.22 146.17

In summary, Shared RAG-DCache provided some perfor-
mance improvements in both configurations compared to the
baseline, Utilizing not only GPU but also CPU resources for
cache generation can maximize effectiveness. Our optimal
setup in this experiment was configuration (B), which improved
throughput by 16.8% and 25.2% for k=1 and 2 respectively,

and cut latencies by 36.8% and 29.8%, relative to the no-
caching baseline as summarized in Table V. Configuration (A)
was suboptimal, showing the importance of a balanced resource
allocation when using Shared RAG-Dcache.

V. DISCUSSION

While Shared RAG-DCache demonstrates performance im-
provements, several aspects need further discussion. The first of
these lies in its application within heterogeneous multi-model
environments. The KV Caches are inherently model-specific.
Different LLM models and distinct tokenization schemes will
generate unique KV Cache values even for identical input
prompts. This specificity means that a KV Cache generated by
one model cannot be directly utilized by another. Consequently,
in real-world scenarios where multiple diverse LLMs might
be deployed concurrently, the performance benefits of Shared
RAG-DCache would be siloed per model type. Extending the
system to enable a form of cross-model cache utility is a
direction for future research to broaden its applicability.

Further considerations involve group KV caching for multi-
document contexts (top-k > 1). Although Shared RAG-DCache
was implemented to preserve accuracy, this method still
introduces storage overhead due to the growth of document
combinations. Its efficiency also relies on the locality of
these document groups, which, unlike established individual
document locality, is less understood and requires dedicated
analysis. Thus, investigating selective caching policies for group
caches is needed. Similarly, to confirm broader applicability
beyond current evaluations, further research across a wider
range of datasets and LLMs is needed. Since LLM and RAG
performance varies with factors like data domains, document
characteristics, query complexity, and model specifics, these
expanded evaluations are necessary. Such testing will assess
Shared RAG-DCache’s robustness and generalizability, and
refine its operational heuristics.

VI. CONCLUSION

In this paper, We proposed Shared RAG-DCache, a disk-
based shared KV cache management system, to optimize LLM
inference in multi-instance environments. By leveraging query
locality and service queue waiting times, our system prefetches
and shares KV caches of frequently accessed documents. This
significantly reduces redundant prefill computations, boosts
overall throughput, and decreases response latency. Experiments
showed throughput improvements up to 70% and notable
latency reductions. Optimal performance was achieved when
GPUs were dedicated to LLM inference and the CPU handled
KV cache generation.

ACKNOWLEDGMENT

This work was partly supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (RS-2025-00564249), and by the Institute
of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government
(MSIT) (No. 2022-0-00498, Development of high-efficiency Al
computing software core technology for high-speed processing
of large-scale learning models).

[1]

[3

—

[4]

[5]

[6

=

[7]

[8

[t}

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktiischel, S. Riedel, and D. Kiela,
“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,”
in Advances in Neural Information Processing Systems 33 (NIPS 2020)
(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.),
pp. 9459-9474, Curran Associates Inc., 2020.

S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana,
and S. Nanayakkara, “Improving the Domain Adaptation of Retrieval
Augmented Generation (RAG) Models for Open Domain Question An-
swering,” Transactions of the Association for Computational Linguistics,
vol. 11, pp. 1-17, 2023.

J. Chen, H. Lin, X. Han, and L. Sun, “Benchmarking Large Language
Models in Retrieval-Augmented Generation.” https://arxiv.org/abs/2309.
01431, 2023.

Q. Fu, M. Cho, T. Merth, S. Mehta, M. Rastegari, and M. Najibi,
“LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM
Inference,” in Workshop on Efficient Systems for Foundation Models 11
at ICML 2024, ICML 2024 Workshop, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances
in Neural Information Processing Systems 30 (NIPS 2017) (1. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), pp. 5998-6008, Curran Associates, Inc., 2017.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast
and Memory-Efficient Exact Attention with I0-Awareness,” in Advances
in Neural Information Processing Systems 35 (NeurlPS 2022) (S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.),
pp. 16344-16359, Curran Associates, Inc., 2022.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
Questions for Machine Comprehension of Text,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 2383-2392, Association for Computational Linguistics,
2016.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and
C. D. Manning, “HotpotQA: A Dataset for Diverse, Explainable Multi-
hop Question Answering,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 2369—
2380, Association for Computational Linguistics, 2018.

M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “TriviaQA:
A Large Scale Distantly Supervised Challenge Dataset for Reading
Comprehension,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1601-1611, Association for Computational Linguistics, 2017.

C. Jin, Z. Zhang, X. Jiang, F. Liu, X. Liu, X. Liu, and X. Jin, “RAGCache:
Efficient Knowledge Caching for Retrieval-Augmented Generation.” https:
/larxiv.org/abs/2404.12457, 2024.

S. Lu, H. Wang, Y. Rong, Z. Chen, and Y. Tang, “Turborag: Accelerating
retrieval-augmented generation with precomputed kv caches for chunked
text.” https://arxiv.org/abs/2410.07590, 2024.

J. Yao, H. Lj, Y. Liu, S. Ray, Y. Cheng, Q. Zhang, K. Du, S. Lu, and
J. Jiang, “CacheBlend: Fast Large Language Model Serving for RAG with
Cached Knowledge Fusion,” in Proceedings of the Twentieth European
Conference on Computer Systems (EuroSys ’25), (New York, NY, USA),
pp. 94-109, Association for Computing Machinery, 2025.

S. Agarwal, S. Sundaresan, S. Mitra, D. Mahapatra, A. Gupta, R. Sharma,
N. J. Kapu, T. Yu, and S. Saini, “Cache-Craft: Managing Chunk-Caches
for Efficient Retrieval-Augmented Generation.” https://arxiv.org/abs/2502.
15734, 2025.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez,
H. Zhang, and 1. Stoica, “Efficient Memory Management for Large
Language Model Serving with PagedAttention,” in Proceedings of the
29th Symposium on Operating Systems Principles (SOSP ’23), (New
York, NY, USA), pp. 611-626, Association for Computing Machinery,
2023.

B. Wu, Y. Zhong, Z. Zhang, G. Huang, X. Liu, and X. Jin, “Fast
Distributed Inference Serving for Large Language Models.” https://arxiv.
org/abs/2305.05920, 2023.

G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis, “Efficient Streaming
Language Models with Attention Sinks,” in The Twelfth International
Conference on Learning Representations (ICLR), 2024.

G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A
Distributed Serving System for Transformer-Based Generative Models,”
in Proceedings of the 16th USENIX Symposium on Operating Systems

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

Design and Implementation (OSDI ’22), (Carlsbad, CA), pp. 521-538,
USENIX Association, July 2022.

Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin, and H. Zhang,
“DistServe: Disaggregating Prefill and Decoding for Goodput-optimized
Large Language Model Serving,” in Proceedings of the 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’24), (Santa Clara, CA), pp. 193-210, USENIX Association, July 2024.
R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li, E. Zheng,
O. Ruwase, S. Smith, M. Zhang, J. Rasley, and Y. He, “Deepspeed-
inference: Enabling efficient inference of transformer models at unprece-
dented scale,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-15, 2022.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen,
and W.-t. Yih, “Dense Passage Retrieval for Open-Domain Question
Answering,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (B. Webber, T. Cohn,
Y. He, and Y. Liu, eds.), (Online), pp. 6769-6781, Association for
Computational Linguistics, Nov. 2020.

J. Johnson, M. Douze, and H. Jégou, “Billion-Scale Similarity Search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535-547,
2021.

W. Wang, H. Bao, S. Huang, L. Dong, and F. Wei, “MiniLMv2: Multi-
Head Self-Attention Relation Distillation for Compressing Pretrained
Transformers.” https://arxiv.org/abs/2012.15828, 2020.

D. Zhang, Y. Luo, Y. Wang, X. Kui, and J. Ren, “BatOpt: Optimizing
GPU-Based Deep Learning Inference Using Dynamic Batch Processing,”
IEEE Transactions on Cloud Computing, vol. 12, no. 1, pp. 174-185,
2024.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “LLaMA: Open and Efficient Foundation
Language Models.” https://arxiv.org/abs/2302.13971, 2023.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen,
C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott,
S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and
L. Zettlemoyer, “Opt: Open pre-trained transformer language models.”
https://arxiv.org/abs/2205.01068, 2022.

https://arxiv.org/abs/2309.01431
https://arxiv.org/abs/2309.01431
https://arxiv.org/abs/2404.12457
https://arxiv.org/abs/2404.12457
https://arxiv.org/abs/2502.15734
https://arxiv.org/abs/2502.15734
https://arxiv.org/abs/2305.05920
https://arxiv.org/abs/2305.05920
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2302.13971

	Introduction
	Background and Motivation
	KV Cache Utilization in LLM Inference
	RAG Prompt Composition
	Locality of Documents Retrieved by Queries in RAG
	Shared KV Cache for Multi-instance LLM Inference

	Design and Implementation
	Disk-based KV Cache Structure and Operation
	Multi-Instance Structure of RAG-DCache

	Evaluation
	RAG-Dcache Results and Analysis
	Shared RAG-DCache Results and Analysis

	Discussion
	Conclusion
	References

