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Abstract—Graph Neural Networks (GNNs) are machine learn-
ing models that process graph-structured data by learning
relationships between vertices and edges, as well as graph-level
characteristics. Recently, with the emergence of large graph
datasets on a TB scale, dataset sizes have exceeded the memory
capacity of single machines. As a result, traditional methods that
load all graph data into memory have become unusable, leading
to the emergence of disk-based GNN training that uses storage
as a memory extension. Recent research has focused on reducing
disk I/O bottlenecks in disk-based GNNs. However, disk-based
GNNs face new challenges in cloud environments due to two main
characteristics. First, compared to node-local environments, the
significantly slower cloud storage I/O speed becomes the main
bottleneck of the entire training process. Second, pre-defined
virtual machines prevent users from freely utilizing desired
memory sizes, bandwidth, and the latest GPU technologies. These
limitations have made existing disk-based GNN research unusable
in cloud environments. To overcome this, we propose MEMORY-
BRIDGE, a system that cost-effectively accelerates GNN training
in cloud environments through a novel two-level architecture that
utilizes affordable GPU resources as training nodes and remote
memory resources without GPUs as memory nodes, instead
of using a single expensive GPU resource. This architecture
consists of two key components: (i) a mathematical solver that
recommends the most cost-effective resource combination, and
(ii) a cloud-specialized GNN framework that implements graph-
aware fixed caching and batch pipelining optimization. The
experimental results show that MEMORYBRIDGE achieved a
speed improvement of up to 32.7x compared to existing GNN
training frameworks and a cost efficiency of 9.9x compared to
alternative resource configuration strategies, effectively handling
the unique problems that arise from the combination of cloud
environments and GNN training.

Index Terms—Graph Neural Network, Cloud Computing,
System Architecture, Resource Optimization

I. INTRODUCTION

Graph Neural Network (GNN) has established itself as an
innovative deep learning model capable of processing graph
data consisting of nodes and edges to analyze the relation-
ships between nodes and edges, as well as the characteristics
of the graph itself [1]. While graph data has traditionally
been used in many fields, including e-Commerce, molecular
biology [2], social networks [3], and finance, its unstructured
nature prevented its use in DNN. Today, GNN is being applied
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effectively in recommendation systems [4, 5], pharmaceutical
field, and anomaly detection based on tasks such as node
classification, link prediction, and graph clustering [6, 7, 8].

GNN requires different data sampling compared to tradi-
tional approaches. While target data for traditional DNNs, such
as text corpora, images, and sounds, consisted of independent
data points, graph data points (nodes, edges) are intercon-
nected. Therefore, to generate batches, one must not only
explore target data points, but also search their neighborhoods
and collect feature vectors corresponding to the embeddings
of the explored data. This process requires extensive data
access. To reduce data access costs, early GNN frameworks
chose to load the entire dataset into memory and maintain
it during training. However, as graph data sizes grew larger,
issues arose where they exceeded single-machine memory
capacity, necessitating expansion beyond single machine mem-
ory capacity. Recent research has adopted disk-based GNN
methodology, which stores graph data on disk and accesses
it during training, focusing on reducing data access costs.
Instead of memory expansion through distributed learning,
expansion using affordable and high-capacity disks like SSDs
was deemed more economical.

Meanwhile, cloud computing, a service that provides com-
puting resources via the Internet, has become a good infras-
tructure for traditional DNN training due to its advantages of
flexibility, scalability, and ease of initial infrastructure setup.
However, cloud storage resources have unique characteristics.

First, unlike traditional node-local computing, cloud storage
is provided in a separated form connected through networks.
While this design allows flexible expansion of the required
capacity, it results in performance degradation due to net-
work communication overhead. For example, while node-
local NVMe SSDs provide bandwidth of 1,500 MB/s - 3,500
MB/s, general-purpose cloud storage (e.g., AWS GP2) is
limited to maximum 250 MB/s, showing about 14 times
performance difference, and cloud storage latency is also about
3-4 times higher than local storage. This performance gap
significantly degrades the performance of disk-based GNN,
which is sensitive to disk I/O, and nullifies existing disk-based
GNN solutions.

Second, pre-defined virtual machines mostly do not support



latest technologies like GPU-based I/O, and users cannot com-
bine desired computing resources. For example, combinations
such as large memory, high storage bandwidth, modest CPU,
and cheap GPU are not available. This, coupled with the first
characteristic, makes it even more difficult for users to utilize
resources as desired.

Therefore, users performing GNN training in cloud environ-
ments face issues where they cannot use as many instances as
desired, and even if used, cannot use them at cost-effective
prices.

Four Observations about GNN and Cloud. To perform
disk-based GNN in cloud environments, resources that are
both cost-effective and sufficiently useful for disk-based GNN
must be utilized. To achieve this, we derived the following
four observations from cloud environments and GNN training.
First, resource performance and cost in cloud environments
are not necessarily proportional. In particular, computing re-
sources with GPUs require relatively higher costs due to high
demand. In contrast, resources without GPUs are provided at
several times lower prices despite having more CPU cores,
memory capacity, and bandwidth than GPU resources. Second,
GNN does not require intensive GPU computation, allowing
the utilization of lower-performance GPUs compared to other
machine learning models. Instead, disk-based GNN is highly
dependent on storage bandwidth, speed, and number of CPU
cores. In particular, when the storage bandwidth is low, the
sampling time for batch generation increases exponentially,
becoming a major bottleneck. Third, computing resources
specialized for disk-based GNN in cloud environments are
not cost-effective. GPU-equipped computing resources are
excessively priced compared to their GPU-less counterparts.
Fourth, network bandwidth of computing resources is pro-
vided relatively abundantly. Most resources have a network
bandwidth 2-3x higher than the storage bandwidth.

Two-level Architecture. Based on the insight that these char-
acteristics suggest effective resource combinations for cloud
GNN training, we propose a two-level architecture utilizing
relatively inexpensive GPU machines and high-performance
memory machines with relatively large bandwidth, memory
size, and CPU counts. The two-level architecture has the fol-
lowing advantages. First, users can selectively utilize the nec-
essary resources. Unlike traditional DNN, GNN suffices with
lower-performance GPUs but requires large I/O bandwidth and
memory space, and the two-level architecture enables cluster
configuration optimized for these requirements. Second, cloud
resources can be used economically. Since single nodes with
equivalent performance are significantly more expensive than
cluster configurations, similar performance can be secured
at much lower costs through a cluster configuration. Third,
I/O bandwidth utilization suitable for cloud characteristics
is possible. While cloud has limited storage bandwidth but
sufficient network bandwidth, utilizing memory nodes can
overcome storage bandwidth limitations with large network
bandwidth.

We propose MEMORYBRIDGE, a system that cost-

effectively accelerates GNN training in cloud environments
based on this architecture. MEMORYBRIDGE utilizes afford-
able GPU resources as training nodes and compute resources
without GPUs as memory nodes, instead of expensive sin-
gle compute resources that include GPUs. MEMORYBRIDGE
consists of two key modules. First, CLUSTERPLANNER is a
mathematical solver that analyzes available resources through
AMAT-based mathematical modeling to recommend the most
cost-effective resource combination. Second, REMOTEGNN
is a cloud-specialized GNN framework that minimizes I/O
bottlenecks through fixed caching utilizing graph power-law
and batch pipelining based on multiprocessing/multithreading.
Specifically, memory machines efficiently manage frequently
accessed graph data through degree-based caching strategy,
and generated batches are asynchronously transferred to train-
ing machines utilizing the cloud’s sufficient network band-
width. Training machines maximize overall system throughput
by overlapping GPU computation and data transfer.

Our contributions are as follows:
• We systematically analyzed three major challenges facing

disk-based GNN in cloud environments: limitations of
existing optimization techniques due to low I/O per-
formance, inability to apply latest methodologies (e.g.,
inability to apply GPU-based I/O technologies), and
difficulty in selecting optimal resource combinations.

• We proposed a cloud-specialized two-level architec-
ture and MEMORYBRIDGE system as a comprehen-
sive solution utilizing it. MEMORYBRIDGE accelerates
GNN training in cloud environments through mathemat-
ical modeling-based resource optimization and efficient
caching and pipelining considering graph characteristics.

• Through experiments, we demonstrated MEMORY-
BRIDGE’s superiority in cost-efficiency, including cache
hit rate and training time aspects compared to existing
research.

We validated MEMORYBRIDGE by comparing it with the
traditional GNN framework PyG [9] and the SOTA disk-based
GNN methodologies Ginex [10] and MariusGNN [11]. The
experimental results show that MEMORYBRIDGE achieved up
to 32.7x faster training speed compared to existing methods,
9.9x cost efficiency compared to other cluster configuration
methods, and achieved the same hit rate with 40% less caching
size compared to other GNN caching systems.

II. BACKGROUND

A. GNN Structure and Training
GNN takes graph data as input. Graph data consists of

graph structure data G = (V,E) and feature vector data
H = {hv, he | v ∈ V , e ∈ E }. Here, V is the node set, E
is the edge set, and hv , he are feature vectors for node v and
edge e respectively. Depending on the type of graph data, at
least one of hv , he may not exist. The purpose of GNN is to
generate appropriate embeddings for each node’s “neighbors”.
Figure 1 shows the GNN training process.

GNN has multiple “layers” arranged in a vertical structure.
The bottom layer “aggregates” and “operates” on neighboring
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Fig. 1. GNN training process.

edge embeddings to generate embeddings, then passes the re-
sulting embeddings to its upper layer. Upper layers collect and
operate on embeddings from multiple lower layers to generate
embeddings, and this process is recursively performed for all
layers. Specifically, the output embedding hn

v of the n-th layer
for node v is calculated as in equation 1:

hn
v = ϕ

({
α(hn−1

u ), β(hu→v)
∣∣ u ∈ Γ(v)

})
(1)

Here, α(·) is a function that aggregates embeddings of
neighboring nodes and can be max, sum, or a more developed
method, β(·) is a function that aggregates edges between v and
its neighbors, ϕ(·) is an embedding operation function, and
Γ(v) is the set of all neighboring nodes of v. According to
this equation, each layer generates embeddings corresponding
to first-order neighbors of a node, thus k layers are needed to
generate k-th order embeddings of v.

Graph Neural Networks (GNNs) can perform full-batch
training, where the entire graph is processed as a single input,
or mini-batch training, where the graph is divided into smaller
subgraphs for training. While full-batch training provides a
holistic view of the graph, it becomes computationally pro-
hibitive for large-scale graphs. Moreover, such graphs often
make it challenging to capture localized information centered
around specific nodes due to their size and complexity. To
address these challenges, subgraph sampling has emerged as
a promising approach, enabling the division of large graphs
into manageable subgraphs for efficient learning. This paper
specifically focuses on advancing mini-batch training method-
ologies for GNNs, leveraging subgraph sampling to balance
computational efficiency and the preservation of critical graph
structures. For this, equation 1 is performed by selecting N
vertices called “seed nodes”. One iteration produces N output
embeddings, and the model is updated by calculating the loss
value of the generated embeddings. In this mini-batch GNN
training, the N edges and their k-th order neighbor data are
called “batches” similar to traditional DNN, and N is called
the batch size. However, k-hop neighbors for seed nodes can
exist in very large numbers, increasing memory usage and
training costs. To solve this, many subgraph sampling methods
have been researched. For example, GraphSAGE limits the
maximum number of edges that can be selected for each
neighbor degree. Figure 2 shows GraphSAGE’s sampling and
batch generation for a given graph. From the first selected seed
node, a maximum of 3 neighbors are selected, and a maximum
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Fig. 2. Example of subgraph sampling proposed in GraphSAGE.
Batch was generated by selecting 3 from 1-hop and 2 from 2-hop.
Edges are omitted in the batch in the figure.

of 2 neighbors of those neighbors are selected to construct the
subgraph. Such methods enable learning of large-scale graphs
and utilization of local information of subgraphs.

Disk-based GNN Traditional GNN was performed by loading
all graph data into memory, generating necessary batches to
pass to GPU, and having GPU generate embeddings. However,
graph data size has grown exponentially, recently exceeding
the memory capacity of many single machines. To perform
training in such environments, disk-based GNN was proposed,
which uses disk space as memory extension instead of loading
all data into memory. This enables training even on machines
with relatively small memory by utilizing disk space instead of
loading all data into memory. However, because storage must
be accessed instead of memory to generate batches, batch gen-
eration speed became slower, and consequently, I/O bottleneck
became a major factor in training speed degradation. Previous
studies proposed many methods to solve this I/O bottleneck.
Notable examples include feature vector caching [10], inter-
device pipelining through data structure modification [11], and
GPU-driven asynchronous I/O methods [12, 13].

B. Cloud Computing

Cloud computing is a service providing computing re-
sources through the internet, and is being used for many
workloads including DNN due to advantages such as flexibil-
ity, scalability, and ease of initial infrastructure setup. Cloud
consists of three elements as follows:
• Computing resources. Called virtual machine (VM) in-

stances, referring to resources including CPU, memory, and
GPU. Users select from pre-defined resources instead of
arbitrary combinations they desire.

• Storage resources. Corresponding to SSD, HDD, etc. in
traditional computing, including not only block storage but
also object storage, shared storage, etc.

• Regions and networks. Each resource belongs to specific
network groups called ’regions’, and each region and re-
source is connected by networks. Users pay fees according
to resource usage time. Generally, higher-performance re-
sources with more vCPUs or larger memory sizes require
higher costs, and sometimes prices increase or decrease
depending on demand.



TABLE I
COMPARISON OF NODE-LOCAL STORAGE AND AWS EBS STORAGE.

Type Bandwidth IOPS
Minimum Maximum Minimum Maximum

Local NVMe 1,000 3,500 100K 750K
GP2 128 250 100 16,000
GP3 125 1,000 3,000 16,000

* AWS Northern Virginia, as of December 2024

TABLE II
AWS EBS PRICING POLICY

Type Price per capacity Price per IOPS Price per bandwidth
GP2 $ 0.1 / GB - -
GP3 $ 0.08 / GB $ 0.005 / IOPS $ 0.04 / MB/s
io2 $ 0.125 / GB $ 0.046 / IOPS -

* AWS Northern Virginia, as of December 2024

Particularly, cloud storage resources have unique problems.
Unlike local storage, especially node-local NVMe SSD, cloud
storage has very slow I/O speed. This is because computing
resources and storage resources are connected through net-
works rather than being physically connected. Table I shows
theoretical bandwidths of typical node-local storage and cloud
storage resources. GP2 is up to 14 times slower than node-local
storage, and GP3 is 3.5 times slower. This indicates that even
using maximum bandwidth will result in significantly slower
I/O performance compared to node-local storage. Meanwhile,
storage bandwidth in cloud is determined by the minimum
of the storage resource’s bandwidth and computing resource’s
bandwidth. For example, if using storage resources with
1000MB/s bandwidth and computing resources with 125MB/s
storage bandwidth, actual storage bandwidth is limited to
125MB/s. In other words, computing resources and storage
have very slow bandwidth compared to node-local even when
using resources with the highest bandwidth, and if either has
low bandwidth, the high bandwidth of the other becomes
meaningless. Moreover, using high bandwidth requires paying
much higher amounts compared to other storage solutions.
Table II shows example prices according to storage capacity
and bandwidth. When using 1TB GP3 storage at 1GB/s, 1

3 of
total storage cost must be paid for bandwidth cost. This makes
storage I/O in cloud have very low cost efficiency compared
to node-local.

C. Challenges of Disk-based GNN in Cloud Environments

Meanwhile, disk-based GNN has characteristics requiring
very high storage I/O. This makes it very difficult for users to
train disk-based GNN in cloud unlike traditional DNN. Unfor-
tunately, previously mentioned existing research failed to con-
sider these cloud characteristics. For Ginex [10], reading data
for caching and creating and deleting files in storage instead
becomes a major bottleneck in training. MariusGNN [11]’s
storage-CPU memory-GPU pipelining is inefficient due to
I/O speed degradation exceeding expectations. GIDS and
Helios [12, 13] are inappropriate in cloud environments where
only pre-defined instances can be used. Therefore, we must
solve the following problem for GNN training in cloud:
Despite cloud resource characteristics, disk-based GNN
training must be cost-effectively accelerated.

III. TWO-LEVEL ARCHITECTURE

TABLE III
SPECIFICATIONS AND PRICES OF SOME AWS COMPUTE RESOURCES

Name vCPU Mem. Strg B/W Nwk B/W Price
g4dn.8xlarge 32 128 GiB 9.5 Gbps 50 Gbps $ 2.176
g4dn.4xlarge 16 64 GiB 4.75 Gbps ≤ 25 Gbps $ 1.204
g4dn.xlarge 4 16 GiB 64 GiB ≤ 3.5 Gbps $ 0.526
r8g.2xlarge 8 64 GiB ≤ 10 Gbps ≤ 15 Gbps $ 0.471

* AWS Northern Virginia, as of December 2024

While cloud computing resources are broadly priced ac-
cording to resource performance, detailed examination shows
that pricing is not necessarily proportional to performance. In
particular, resources including GPUs have higher prices than
other resources due to demand. Table III shows prices and
performance of some resources. We discovered the following
interesting characteristics:
1) GPU resources using the same architecture provide identi-

cal GPU computational performance, with only values like
memory size and bandwidth changing.

2) Resources without GPUs are provided at 39% of the price
compared to resources with GPUs, despite offering similar
levels of CPU counts, memory size, and storage bandwidth.

3) Storage bandwidth varies significantly with price. However,
network bandwidth provides around 3.5Gbps even at lower
prices.

This shows the possibility that combinations of inexpensive
heterogeneous resources might be more cost-effective than
single high-performance GPU resources. For example, instead
of using the expensive GPU resource g4dn.8xlarge, a cluster
can be created by combining the inexpensive GPU resource
g4dn.xlarge with r8g.2xlarge, which has large memory capac-
ity and high bandwidth despite not including a GPU. Specifi-
cally, using resource g4dn.xlarge as a GNN learning machine
and resource r8g.2xlarge as a memory machine can provide
a similar level of configuration to resource g4dn.8xlarge at
a lower price. According to Table III, the combination of
g4dn.xlarge and r8g.2xlarge results in up to 54% hourly cost
savings compared to g4dn.8xlarge. Fortunately, this possibil-
ity of resource combination aligns well with GNN training
characteristics. As observed earlier, while GPU resources
are expensive, GNN has relatively low GPU computational
requirements. This is because typical GNNs consist of 2-3
layers, requiring much less GPU computation compared to
CNNs or Transformer models with dozens of layers. Addi-
tionally, using more layers reflects the entire graph, potentially
disrupting local connectivity relationships. This is similar to
how too large batch sizes in image processing can hinder learn-
ing. Therefore, disk-based GNN training has opportunities to
utilize inexpensive GPU resources instead of expensive high-
performance GPU resources. Instead, GNN requires large I/O
bandwidth and memory space due to graph data characteristics
and subgraph sampling. This naturally connects with another
characteristic of cloud resources confirmed earlier, namely that
high network bandwidth can be secured inexpensively even in
resources without GPUs. As seen in observations (2) and (3) of
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Table III, resources with high memory and network bandwidth
without GPU can satisfy GNN’s high I/O requirements while
being relatively inexpensive.

IV. MEMORYBRIDGE DESIGN

A. Overview

MEMORYBRIDGE is a comprehensive solution enabling
cost-effective GNN training in cloud environments. We use a
two-level architecture consisting of two machines: a memory
machine that reads and processes graph data to generate
batches, and a learning machine that performs actual training.
Under this architecture, MEMORYBRIDGE recommends the
most cost-effective cluster and enables efficient GNN training.
For this, MEMORYBRIDGE consists of two modules: CLUS-
TERPLANNER and REMOTEGNN.
• CLUSTERPLANNER is a mathematical solver that recom-

mends resources expected to be most cost-effective based
on available resources to configure clusters. CLUSTER-
PLANNER operates before users allocate resources, enabling
economical cloud utilization.

• REMOTEGNN is a GNN training framework that optimizes
I/O during GNN training in two-level architecture clusters,
thereby cost-effectively accelerating training. REMOTEGNN
accelerates GNN training in cloud clusters configured with
two-level architecture.
Figure 3 shows the architecture proposed by MEMORY-

BRIDGE and MEMORYBRIDGE’s design overview. Specifi-
cally, the process of performing GNN training using MEM-
ORYBRIDGE in cloud environments is as follows: (1) Before
resource allocation, CLUSTERPLANNER recommends efficient
resource combinations based on user’s available resources. (2)
Users allocate cloud computing and storage resources based
on CLUSTERPLANNER’s recommendations. (3) On allocated
resources, GNN training is performed by writing and execut-
ing GNN training code using REMOTEGNN. This process
is designed to be very easy for users wanting to perform
training using GNN frameworks in cloud environments. In
the following subsections, we describe each module’s design
objectives and specific operation methods.

B. CLUSTERPLANNER Design

Goal. While two-level architecture has the advantage of utiliz-
ing cloud resources efficiently at affordable prices, incorrect
clustering can actually degrade performance. Therefore, we

TABLE IV
CLUSTERPLANNER MODELING NOTATION

Notation Description
|G| Graph dataset size (GB)
I Complete instance set

IGPU Set of GPU instances
vk k-th instance vector
Mk Memory size of k-th instance (GB)
βs
k Storage bandwidth of k-th instance (MB/s)

βn
k Network bandwidth of k-th instance (Gbps)

pk Hourly cost of k-th instance (USD/hour)
βx Bandwidth of storage resource x (MB/s)

ω (βx) Bandwidth price of storage resource x with bandwidth βx (USD/hour)
ϕ (s, x) Inverse of effective bandwidth (s/MB). Calculated as max

(
1
s ,

1
x

)
aim to find the most cost-effective architecture by considering
both performance and price simultaneously. This requires
considering I/O bandwidth along with computing resource
prices. I/O bandwidth can affect time, and time can affect
cost. Too small memory can affect caching performance
increasing training time, while too large memory resources
may require paying high costs. CLUSTERPLANNER enables
cost-effective clustering through mathematical modeling that
comprehensively considers these factors.
Notation. We define basic elements for modeling as shown
in Table IV: Here, I = IGPU ∪ IGPU (where A is the
complement set of A), and each instance vector is defined
as vk = (Mk, β

s
k, β

n
k , pk).

Assumptions. Disk-based GNN training consists of the fol-
lowing systematic steps: loading data from storage (A) -
generating batch in CPU (B) - transferring data to GPU
memory (D) - performing training in GPU (E). For two-
level architecture, network transfer between memory machine
and learning machine (C) is added. For system performance
modeling, we establish assumptions based on the following
observations:
• Batch generation in CPU (B) is relatively negligible com-

pared to storage and network I/O time as it accesses local
memory.

• GPU memory transfer (D) is transfer through internal bus
line, with minimal differences between architectures and
computing resources.

• Since GNN’s main bottleneck is in memory access, GPU
computation time (E) has limited impact on overall per-
formance, and simultaneously, differences between GPU
computing resources are minimal for GNN model training.
Therefore, total execution time for single-machine structure

can be expressed as T1 = T1 (A), and total execution time for
two-level architecture as T2 = T2 (A, C). However, to accu-
rately model these I/O times, following system characteristics
must be considered: (1) storage I/O is simultaneously affected
by storage’s own bandwidth and system’s storage bandwidth,
(2) data access occurs with specific probability rather than
always occurring, and (3) in two-level architecture, data access
patterns change due to presence of memory machine. To
systematically model these complex I/O characteristics, we
apply the AMAT(Average Memory Access Time) concept:

T = ht +mr ·mp (2)



where ht is memory access time, mr is memory miss rate,
and mp is miss penalty. Based on this, we modeled time, per-
formance, and price when training disk-based GNN according
to architecture as follows.
Single Machine Modeling. A GPU computing resource is
selected from IGPU for training execution. At this time, mp is
affected by storage latency. However, latency variation occurs
depending on the network state of the region in cloud and
the actual physical server configuration method, making it
difficult to know accurate latency at CLUSTERPLANNER’s
prediction point. Fortunately, according to our observation
shown in Figure 5, latency and storage bandwidth have a
close correlation. Therefore, we use storage bandwidth βs

k as a
substitute value for latency. Meanwhile, ht is negligibly small
compared to I/O time determined by storage bandwidth, and
since all data is stored in storage in basic disk-based GNN,
mr is 1. Therefore, when storage resource bandwidth is βx,
time T1, hourly price P1, and cost C1 are obtained as in
equation IV-B:

T1(vk, βx) = |G| × ϕ(βs
k, βx) (3)

P1(vk, βx) = ω(βx) + pk (4)
C1(vk, βx) = T1P1(vk, βx) (5)

where ϕ(s, x) = max
(
1
s ,

1
x

)
is the inverse of effective

bandwidth, representing data transfer time limited by lower
bandwidth between computing resource and storage resource,
and ω(βs) is storage cost per bandwidth, multiplied by inverse
of ϕ to represent storage resource cost.
Two-level Cluster Modeling. Following the two-level ar-
chitecture explained in Section IV, select one instance each
from IGPU and IGPU : computing machine vk ∈ IGPU and
memory machine vl ∈ IGPU . Total bandwidth is determined
by network bandwidth of each machine and storage bandwidth
of memory machine. At this time, since βn is sufficiently
larger than storage bandwidth βs, we can assume bandwidth
is limited by storage bandwidth, and ht value in equation 2 is
negligibly small. Since batch generation task accessing storage
is performed on memory machine, mr in equation 2 is the ratio
cached in memory machine, and mp is disk reading speed
in memory machine. Therefore, cost C2 can be obtained as
follows:

T2(vk, vl, βx) =

(
1− Ml

|G|

)
× |G| × ϕ(βs

l , βx) (6)

P2(vk, vl, βx) = ω(βx) + pk + pl (7)
C2(vk, vl, βx) = T2P2(vk, vl, βx) (8)

The obtained C1, C2 are values considering I/O time and
computing resource costs, representing cost-effectiveness of
cloud for performing GNN workloads where I/O time accounts
for most of total time. CLUSTERPLANNER receives list of
available resources, calculates this to obtain |IGPU | tensors
C1 and |IGPU | ×

∣∣IGPU

∣∣ tensors C2. By comparing and
analyzing these cost tensors, it identifies a more cost-effective
configuration between single machine and two-level architec-
ture, and recommends optimized instance combination for that

configuration to users. In our observation, CLUSTERPLANNER
always suggests two-level structure instead of single machine.
Detailed analysis is provided in Section VII-B.

C. Design of REMOTEGNN

Figure 4 depicts REMOTEGNN’s operation process. RE-
MOTEGNN reduces I/O bottlenecks and accelerates over-
all training by quickly generating batches through graph
data caching in memory machine and transferring generated
batches to learning machine through network I/O, which is
relatively faster than storage I/O. The training process is as
follows. During initialization, the memory machine analyzes
graph information and caches necessary data. This is a one-
time process and recaching does not occur until training ends.
When training begins, the memory machine explores the graph
according to given model to generate batches, and generated
batches undergo serialization before being transferred to learn-
ing machine through internal network communication. Batch
generation process and batch transfer network communication
overlap to minimize I/O stalls. The learning machine deserial-
izes received batches and transfers them to GPU. Batches are
transferred to batch queue, and the loader finds data from batch
queue for training. Each data reception, storage, and training is
parallelized like memory machine to minimize stalls as much
as possible.
Batch Pipelining. REMOTEGNN performs multiprocessing-
and multithreading-based batch parallelization to minimize
I/O stalls caused by unnecessary synchronization operations
during GNN sampling while ensuring batches are generated
and transferred at sufficient speed. Before epoch starts, the se-
quence creator in remote machine generates batch sequences,
which are sets of seed node bundles. Multiple batch cre-
ator processes sequentially read batch sequences and explore
graph structure from seed nodes to generate blueprint batches.
Blueprint batches contain metadata about graph structure and
metadata of data requiring I/O, such as feature values. Pro-
cesses that generate blueprint batches insert them into vector
queue. At this time, vector queue is shared memory space,
and since multiple processes simultaneously insert data, the
order in which blueprint batches are inserted into queue may
vary when context switching occurs. However, considering the
grammar of existing graph learning that dynamically generates
batches during training, this is not problematic. Vector loader
processes consume vector queue and make following deci-
sions: (1) If data is not in memory, read data from storage.
Data is loaded in memory-mapped (mmap) format. (2) If data
is already in memory or cache, use that data. If all data is
in memory or cache, vector loaders serialize each data to turn
blueprint batches into actual batches. These batches are passed
to batch sender processes, and batch sender processes transfer
them to learning machine through network communication. In
this process, remote machine’s 4 modules interact with each
other but do not operate synchronously, thus enabling I/O-
effective data processing. In learning machine, batch receiver
thread receives batch data. Received batches are deserialized
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and transferred to GPU for use in training, and model training
using those batches is performed on GPU.

V. CACHE SYSTEM DESIGN

In existing disk-based GNN research, caching primarily
focused on predicting data needed for batches and caching
it. Ginex [10], one of the representative caching systems,
calculated feature vectors to be accessed in advance to enable
processes to efficiently access feature vector data during batch
generation. However, in cloud environments, limitations of
dynamic caching methods become prominent due to very
high storage access latency. Methods that predict and dy-
namically cache data generate multiple disk I/Os, causing
severe performance degradation in cloud environments. We
compared three types: 125MB/s EBS (Normal EBS), 500MB/s
(Fast EBS), and EBS physically attached to compute resource
(Instance storage). Figure 5(a) compares latency when reading
4KB, 1MB, 4MB data from storage. Each time is normalized
based on the fastest Instance storage latency. Experimental
results showed similar latency patterns by bandwidth for EBS.
Particularly, commonly used EBS showed over 5 times longer
latency compared to physically attached EBS. This means
it could be quite critical to overall performance considering
GNN’s work pattern requiring reading small data. Meanwhile,

frequent cache replacement under high read latency can para-
doxically mask cache effectiveness. Figure 5(b) shows AMAT
according to cache miss rate calculated based on read latency
shown in Figure 5(a). Compared to the other two EBS types,
normal EBS has significantly higher penalty for cache misses.
For example, for a miss rate around 0.5, AMAT is up to
6 times higher. Through this, we can infer that high cache
miss rates will have substantial impact on overall training
performance. For effective caching in such environments, we
observed following locality in graph data: First, graph structure
data has high locality as it is accessed every batch because
neighbor nodes must be identified for subgraph sampling.
Second, degrees of graph nodes are not uniform. Instead,
they follow power law where certain nodes monopolize many
edges. Figure 6 shows cumulative edge distribution according
to number of nodes when nodes of the papers100M dataset
are sorted in descending order by degree. Nodes in the top
1% by degree are connected to 13.2% of total edges, top 5%
to 31.3%, and top 10% to 44.5%. Therefore, nodes with high
degrees have much higher probability of being accessed during
batch generation compared to other nodes, thus having high
locality.
Graph-Aware Fixed Caching. Utilizing characteristics ob-
served above, REMOTEGNN caches graph structure data and
feature vector data of high-degree nodes for efficient caching.
Graph structure data is stored in CSC(Compressed Sparse
Column) and CSR(Compressed Sparse Row) format enabling
both external and internal edge exploration in O(1) time. This
requires paying more memory space. For papers100M, graph
structure data occupies about 31.3% of total memory, but this
is an efficient trade-off considering performance gain from
reducing repetitive cloud storage access. For feature vector
data of high-degree nodes, feature vectors of nodes with higher
degrees are cached preferentially. All available memory space
excluding essential data and graph structure data is utilized for
feature vector caching. Detailed analysis of cache performance
is provided in Section VII-C.

VI. IMPLEMENTATION

We implemented MEMORYBRIDGE using Python (3.10.12).
Specifically, CLUSTERPLANNER for cloud architecture pro-
visioning used SciPy (1.11.2), one of Python libraries. RE-
MOTEGNN was developed in approximately 1.2K lines
of Python code using PyG [9] (2.6.1), one of the lat-
est GNN training frameworks. Specifically, batch gener-
ation in memory machine operates identically to PyG’s
Neighborloader. For inter-machine communication, we



TABLE V
GRAPH DATASETS

Type Name Nodes. Edges.

Large
Papers100M 111M 3.3B
MAG240M 244M 3.4B
Friendster 66M 3.6B

Small Arxiv 169K 1M

used OpenMPI (v4.1.4), one of the MPI implementations,
and defined new communication functions in approximately
200 lines of C++ code for MPI transfer optimization. For
data processing, we used Numpy (1.25.1) from Python li-
braries, and for GPU training, we used PyTorch (2.5.1). Users
wanting to use REMOTEGNN for training can perform train-
ing using DistributedGraphLoader instead of PyG’s
Neighborloader. Users can perform GNN training using
identical code in both learning machine and memory ma-
chine, and users familiar with PyG training can easily use
REMOTEGNN with existing code. This is possible because
REMOTEGNN provides abstraction of all caching and data
transfer.

VII. EVALUATION

A. Methodology

Environment. We conducted experiments in Amazon Web
Service (AWS) cloud environment. The experiments were
performed between September and December 2024, using the
Northern Virginia region (us-east-1). We considered G4dn, P2,
P3 GPU instances, and for memory resources, we considered
R6, R7, R8, C7, and C8 instances. We limited instance
memory to 64GB to simulate scenarios where graph data
exceeds single machine memory. For storage, we used GP3
general-purpose SSD with 2.5TB capacity, default bandwidth
of 125MB/s. IOPS was also set to the cloud default of 3,000.
This reflects assumptions about typical cloud environments
used by users.
GNN Model. We selected GraphSAGE [14] as the GNN
model for learning graph data. GraphSAGE can perform
training by generating subgraphs, avoiding the need to learn
all data at once. GraphSAGE is currently the most widely used
method and is appropriate for testing our system that performs
optimization during training through subgraph sampling.
Graph Datasets. For large-scale graph data experiments,
we used OGBN-Papers100M, OGB-MAG240M, and Friend-
ster. All of these exceeded single machine memory capac-
ity after preprocessing, while simultaneously being learnable
by the comparison targets to be discussed. Meanwhile, to
validate REMOTEGNN in in-memory training environments
where datasets are sufficiently smaller than memory, we used
the small-scale dataset OGBN-ARXIV. Detailed information
about the datasets is shown in Table V.
Baselines. We compare our solution with the following three
frameworks:

• PyG [9] with mmap()
• Ginex [10]
• MariusGNN [11]
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Fig. 7. Comparison of training speed by dataset for GNN training
frameworks. All values are normalized based on REMOTEGNN’s
execution time for each dataset.

Since disk-based GNN training is difficult to work well in
PyG, we chose the most basic method using mmap. We
could not compare our solution with Helios [12] as it is
not open source. GIDS [13] was excluded as it uses GPU-
driven asynchronous I/O which cannot be applied in cloud.
Explanations for Ginex and MariusGNN are provided in
sections II-A and II-B.

B. End-to-end Training Performance

Figure 7 compares total end-to-end time with both prepro-
cessing and training phases among four GNN frameworks.All
times are normalized to REMOTEGNN’s execution time. PyG
and Ginex showed up to 32.7 times and 26 times slower
performance compared to REMOTEGNN. PyG’s continuous
use of mmap results in slow disk I/O performance directly
affecting training. For Ginex, the process of creating ‘neighbor
cache’ involves considerable disk I/O, resulting in very slow
performance. This is a key difference from our caching system.
While MariusGNN is faster than the other two methods, it
remains slow. This is because MariusGNN involves significant
I/O when moving data between disk, CPU memory, and GPU,
repeatedly accessing disk in the process, causing the entire
pipelining to stall. In contrast, our solution showed minimum
time across all large-scale datasets. This can be interpreted
in two ways. First, disk I/O was minimized through caching.
This minimizes disk access by internal modules, enabling
effective pipelining. Second, the structure recommended by
CLUSTERPLANNER operates efficiently. Meanwhile, OGBN-
Arxiv is a small dataset that can fit all data in memory.
In this case, REMOTEGNN’s training time was about 1-
2% longer compared to other solutions. This means network
communication overhead is minimal, indicating the validity of
storage speed-centered approach.

REMOTEGNN generates batches randomly on remote ma-
chines that match the runtime environment rather than directly
on training machines. To verify the integrity of this batch
generation and transfer process, we compared the validation
accuracy of a GraphSAGE model trained on the Papers100M
dataset using both PyG and REMOTEGNN at each epoch, as
shown in Figure 8. Since batches are randomly generated at
runtime, batch composition and order are completely different
between the two methods at each epoch, resulting in different
accuracies. However, these values are negligible in overall
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trends, and two different training frameworks using the same
model converge with similar accuracy patterns. This demon-
strates that REMOTEGNN’s batch generation method, network
transfer, and inter-process pipelining neither manipulate batch
data nor affect model accuracy.

C. Analysis of Cost-effectiveness

We validated how economically CLUSTERPLANNER recom-
mends clusters. To our knowledge, MEMORYBRIDGE is the
first solution considering two-level clusters from disk-based
GNN perspective, and CLUSTERPLANNER is the first solver
modeling this. Therefore, we compared CLUSTERPLANNER
with four arbitrary configuration methods. Each configuration
method selects one GPU and one Non-GPU machine, choos-
ing the cheapest and highest-performing machines. Figure 9
shows actual costs and makespan when performing GNN
training using REMOTEGNN after allocating actual resources
with each configuration method. Each cost and makespan
is normalized to CLUSTERPLANNER’s suggested method.
Experimental results showed CLUSTERPLANNER’s recom-
mendation was lowest in both cost and makespan aspects,
providing up to 9.9 times better cost-efficiency compared to
other configurations such as ‘ExpGPU + ChpMem’. Despite
higher hourly rates ($0.93 vs. $0.576), CLUSTERPLANNER’s
recommendation achieved 2.8 times lower total cost than
‘ChpGPU + ChpMem’ due to significantly reduced makespan.
This means CLUSTERPLANNER recommends cost-effective
combinations considering performance instead of simply rec-
ommending combinations with economical hourly prices. Si-
multaneously, it showed up to 12% longer makespan than
using ‘ExpGPU+ExpMem’ combination. This results from I/O
performance improvement due to vCPU differences and cache
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Fig. 10. Comparison of caching systems between Ginex(black) and
REMOTEGNN(blue). Shows hit rate versus cache size relative to total
dataset. Green line indicates 66.6% hit rate.

effects due to memory size differences. However, total cost
showed 4-fold difference. This indicates CLUSTERPLANNER
appropriately reflects trade-off relationship between cost and
time to recommend cost-effective combinations.

D. Analysis of Caching System

To validate our approach, we compared REMOTEGNN’s
caching system with Ginex’s disk-based GNN training cache
implementation, with Figure 10 illustrating the resulting cache
hit rates measured across various cache sizes. Ginex shows
linear increase trend. This is because it guarantees caching
of certain number of feature vectors according to Belady
algorithm. In this case, about 50% of data must be cached
to achieve 66.6% hit rate. However, this method doesn’t work
effectively in cases with limited memory like cloud. When
learning with memory that can cache about 30% of total
dataset, hit rate falls short of 50%. Meanwhile, REMOTEGNN
prioritizes caching features of nodes with high degrees among
all features. This results in better cache hit rates. Similarly, to
achieve 66.6% hit rate, REMOTEGNN only needs to cache
about 30% of the dataset. This indicates REMOTEGNN’s
caching system is operating effectively.

VIII. RELATED WORK

Graph Processing Systems. Even before GNN became
promising, system research for processing large-scale graph
data [15, 16, 17, 18] was actively conducted. GraphChi [15]
enabled large-scale graph processing on a single personal
computer (PC) through parallel sliding window method. X-
stream [16] minimized disk access through edge-centric ap-
proach. FlashGraph [17] and MOSAIC [18] improved graph
processing performance by introducing SSD-optimized data
structures.
GNN Training Framework Systems. Efficient learning of
large-scale graph data emerged as a major challenge as GNN
became an established deep learning model, prompting various
system solutions. Distributed system methods [19, 20, 21]
propose utilizing resources of multiple machines for large-
scale graph processing. ROC [19] proposed distributed multi-
GPU framework applying memory management and graph
partitioning. NeuGraph [20] successfully processed large-scale
graphs that couldn’t be processed on an existing single GPU.
DistDGL [21] extended existing DGL library to distributed
systems. Disk-based GNN frameworks proposed performance



improvement techniques, including Belady algorithm-based
caching [10], optimized data structures and pipeline optimiza-
tion [11], and GPU-initiated asynchronous I/O [12, 13].
Caching Systems. Several caching strategies [10, 22, 23,
24, 25] were proposed to prevent repeated I/O operations,
enhancing data movement and processing efficiency for im-
proved GNN training performance. GRASP [22] proposed
caching based on node degree, while Graphfire [23] managed
cache by learning access patterns. P-OPT [24] implemented
near-optimal caching using adjacency matrix transposition,
PaGraph [25] utilized GPU resources in single-server multi-
GPU environments, and Ginex [10] developed more advanced
caching systems. However, these methods couldn’t achieve
performance equal to their target architectures as they didn’t
consider cloud characteristics.
Resource Optimization Research. Resource optimization
research [26, 27, 28, 29, 30] explored cost-effective cloud
environment usage. H. Wang et al. [26] and S. Deochake [27]
analyzed cloud pricing systems and cost reduction methods. P.
Kokkinos et al. [28] proposed utilization and cost-based cluster
configuration. E. M. Malta et al. [29] presented methodology
for selecting cost-effective instances for DL applications.
DeepVM [30] proposed a practical clustering using Spot VMs
for image tasks. However, these studies have limitations in not
achieving practical clustering or specifically verifying other
tasks including GNN.

IX. CONCLUSION

We proposed MEMORYBRIDGE, which can effectively
accelerate GNN training in cloud environments. MEMO-
RYBRIDGE recommends cost-effective cluster configurations
considering various cloud characteristics, predefined support,
slow storage I/O speeds, price efficiency, and enables training
on these clusters. To our knowledge, MEMORYBRIDGE is the
first solution considering GNN in cloud environments. MEM-
ORYBRIDGE achieved the maximum cost efficiency compared
to existing methods and effectively accelerated training.
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