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Abstract—Stream-based retrieval augmented generation
(RAG) systems integrate stream processing engines (SPEs) with
real-time document retrieval to support dynamic indexing and
search over unstructured datasets. However, efficiently executing
queries in these systems is challenging, as seamless coordination
between SPEs and vector databases is essential for maintaining
low latency and high throughput. The lack of mutual awareness
between these components results in two major performance
bottlenecks. First, SPEs are unaware of ongoing indexing
operations in vector databases, leading to metadata lock
contention when indexing and search operations overlap, which
increases query latency. Second, vector databases lack visibility
into query traffic from SPEs and rely solely on internal metrics
for scaling. As a result, they respond reactively to traffic
spikes, often leading to instance overload and delayed query
processing. To address these issues, we propose STREAMRAG,
a lock-aware and traffic-aware query coordination mechanism
that facilitates real-time exchange of metadata lock statuses
and query traffic metrics between SPEs and vector databases.
By optimizing query routing and enabling proactive instance
scaling, STREAMRAG enhances the performance and scalability
of real-time RAG systems. Experimental results demonstrate
that STREAMRAG reduces tail latency by up to 4× at the 99th
percentile and significantly improves overall system performance
under varying traffic conditions.

Index Terms—RAG System, Stream Processing Engine, Query
Coordinator, Burst Traffic

I. INTRODUCTION

To improve accuracy in scenarios where large language
models (LLMs) generate hallucinated answers [1] due to
missing training data, retrieval augmented generation (RAG)
systems have emerged [2]. RAG enhances original queries
by incorporating relevant information from domain-specific
knowledge bases. To achieve this, RAG systems convert raw
data (e.g., documents, images, corpora) into multidimensional
vector embeddings offline and store them in vector databases.

In today’s digital landscape, new information is continu-
ously generated from various sources, such as online retail
markets, web browsers, and chatbot services. As a result,
users increasingly demand fresh content and more relevant
results. For instance, Amazon leverages RAG to analyze recent
purchase patterns and deliver product recommendations [3].

However, indexing newly generated data in real-time while
performing vector searches presents two key challenges. First,
much of the newly generated data is unstructured, making it
difficult to extract meaningful features. Preprocessing tasks,

†S. Park is the corresponding author.

such as tokenization and metadata enrichment, are required
to create vector embeddings but can be time-consuming.
Second, RAG systems must support scalable vector search to
effectively handle continuous and high query loads.

To address these challenges, stream processing engines
(SPEs) [4]–[7] have recently been integrated into RAG sys-
tems [8]–[10], resulting in stream-based RAG systems. In
these systems, SPEs convert in-flight unstructured data into
high-dimensional vector embeddings, which are stored in a
vector database. The SPEs then query the database to perform
vector searches. Plugin-based connectors [11], [12] allow users
to easily integrate real-time indexing and vector search with
minimal code changes.

However, the weak coupling between SPEs and vector
databases causes performance bottlenecks due to limited visi-
bility between the two engines. Our preliminary studies iden-
tify two key issues where this lack of coordination negatively
impacts the performance of the RAG system:
Metadata lock contention. SPEs are unaware of real-time
indexing operations in the vector database when issuing vector
search requests. For example, while metadata is being updated
during document indexing, vector searches also rely on meta-
data for retrieval. If a search is made while the metadata file
is locked, the request is delayed, which increases tail latency.
Reactive scaling for burst traffic. The vector database
lacks visibility into query traffic from SPEs. While it can
scale horizontally based on internal metrics, this scaling is
reactive. This often leads to traffic bursts being directed to a
single instance, resulting in overloaded instances and increased
search latency.

In this paper, we propose STREAMRAG, a lock-aware
and traffic-aware query coordination mechanism designed to
address these challenges. The core idea is to deploy an agent
process on each node where the engines run, allowing them
to seamlessly exchange metadata lock statuses and traffic
information. When the vector database updates its index (e.g.,
adding new vectors or reorganizing data), the database agent
launches an additional instance with a replica of the index and
communicates this to the SPEs. The SPEs then dynamically
route queries to the new instance, preventing delays due to
metadata lock contention.

Furthermore, STREAMRAG monitors real-time query traf-
fic, including both current and past query volumes. This data
is sent to the database agent, which detects traffic bursts using
a smoothed Z-score algorithm [13] and preemptively launches
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additional instances. Once this information is communicated
back to the SPEs, they distribute queries to the new instances,
ensuring efficient handling of burst traffic.

We implemented STREAMRAG on Apache Spark [4] and
ChromaDB [14], and developed an agent layer to facilitate
communication between the two engines using gRPC [15].
To evaluate its effectiveness, we created three traffic scenarios
with varying query arrival and indexing rates. In all scenarios,
STREAMRAG significantly improved overall performance,
reducing tail latency by up to 4× at the 99th percentile.

In summary, this paper makes the following key contribu-
tions:

• We demonstrate that query routing without effective
coordination between the SPE and the vector database
results in suboptimal performance.

• STREAMRAG introduces lock-aware and traffic-aware
query coordination modules, which reduce vector search
latency in real-time RAG systems.

• We implemented a working system on Apache Spark and
demonstrated its effectiveness in handling burst traffic
scenarios.

II. BACKGROUND AND RELATED WORK

This section provides an overview of vector databases and
stream-based RAG systems, along with a review of related
works relevant to STREAMRAG.

A. Vector Database

Recently, RAG systems have incorporated vector
databases [14], [16], [17] to enable efficient retrieval. Before
the retrieval process, the vector database prepares vectors
through several steps. First, domain-specific documents are
converted into multi-dimensional vectors using embedding
models (e.g., BERT [18], GPT [19], LLaMA [20]). These
models encode textual or multi-modal content into dense
vector representations that capture the semantic meaning of
the documents. The vectors are then stored alongside metadata
such as document IDs, timestamps, and labels, allowing for
context-aware searches. The metadata is dynamically updated
to reflect changes such as vector insertions, deletions, and
modifications, ensuring search consistency and accuracy.

As the metadata and the number of vectors grow, vector
search can become computationally intensive. To improve
search efficiency, modern vector databases utilize various
indexing algorithms, including quantization-based methods
(i.e., IVFPQ [21]), graph-based methods (i.e., HNSW [22],
SCANN [23], VStore [24]), and tree-based methods (i.e.,
rpForest [25]).

Once indexing is complete, user queries are transformed
into multi-dimensional vectors and sent to the vector database
for similarity search. Given a query vector, the search process
identifies the nearest vectors in the index based on distance
functions such as cosine similarity or Euclidean distance. The
retrieved vectors, along with their associated metadata are then
returned to the users.

Fig. 1: Overview of a stream-based RAG system.

B. Stream-Based RAG System

A stream-based RAG system is an advanced architecture
that integrates SPEs with RAG models to enable real-time
data processing.

In a stream-based RAG system, newly arriving data must be
indexed while real-time vector searches are performed, ensur-
ing that the latest documents are always available for retrieval
and minimizing outdated responses. In real-time scenarios, the
volume of user queries can fluctuate significantly, with the
system occasionally handling thousands of queries in a short
time. Moreover, newly generated documents often contain
irrelevant content, such as markdown tags and meta characters,
which complicates their conversion into a structured format
suitable for embedding vector generation. To address these
challenges, SPEs are being integrated into real-time RAG sys-
tems [8]–[10]. These SPE engines provide scalable processing
by parallelizing tasks like documents parsing and handling
vector search requests.

Figure 1 illustrates the workflow of a stream-based RAG
system. In the indexing phase, documents from various data
sources are sent to the SPE ①. These documents are parsed
into a structured format and then transformed into embedding
vectors through parallel processing. The SPE then sends the
generated embedding vectors to the vector database ②. Upon
arrival, the embedding vectors are temporarily stored in the
embedding queue. They are periodically saved to a write-
ahead log (WAL) file to ensure the safe storage of the
vector insertions ③. Afterward, the vector database updates the
embedded metadata engine ④ and rebuilds the index structure
to incorporate the newly inserted vectors ⑤.

When documents are prepared in the vector database, the
RAG system can retrieve relevant contents in response to
user queries. As users submit multiple queries (i.e., questions,
images, device information), these queries are buffered in
message queues ❶. The SPE periodically retrieves queries
from the message queues and generates embedding vectors ❷.
The query vectors are then sent to vector database ❸. Before
traversing the index structure, the vector database first filters
metadata from each query to extract search conditions, such as
timestamps and the number of results for the top-k search ❹.
Using this filtered information, the database retrieves vectors
closest to each query vector ❺, continuing the search until all
query vectors have been processed.
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C. Related Work
Vector databases have become essential for managing and

querying high-dimensional data, with various systems offer-
ing tailored solutions to meet performance and scalability
demands.

Milvus [16] introduces a high-performance vector database
designed to efficiently manage large-scale, high-dimensional
vector data. It offers a unified platform for handling diverse
vector data types and supports multiple indexing methods.
Manu [26] presents a cloud-native vector database that com-
bines log-based architecture, multi-version concurrency con-
trol, and tunable consistency to handle dynamic workloads.
SPFresch [27] focuses on efficient in-place updates for large-
scale vector search indices, implementing a lightweight rebal-
ancing protocol for partition splits and vector reassignment.
Recent vector databases are increasingly built on serverless
platforms. Mosaic [28], for example, provides a scalable
solution for embedding storage and retrieval within existing
data intelligence platforms [10]. It supports real-time vector
search through a serverless architecture and offers auto-sync
capabilities to accommodate underlying data updates.

While these systems excel in performance and scalability,
they have notable limitations, especially in integrating with
stream processing engines. In real-time scenarios, concurrent
document insertion and query searches compete for shared
resources, leading to lock contention. Additionally, vector
databases struggle to detect high query volumes during contin-
uous data ingestion, preventing them from adapting proactively
to burst traffic. As a result, performance degrades under such
conditions. To address these challenges, we propose a lock-
aware and traffic-aware query coordinator to improve system
efficiency and performance.

III. MOTIVATION

The lack of coordination between the SPE and the vector
database can lead to significant performance degradation in
query execution. In our preliminary studies, we identified key
issues that arise when these systems operate without awareness
of each other’s state. For our experiment, we utilized the
Wikipedia dataset [29] along with a synthetic traffic distribu-
tion. We chose Apache Spark [4] as the SPE, ChromaDB [14]
as the vector database, and Apache Kafka [30] as the message
queue framework. Our findings highlighted two primary issues
that caused high tail latency during system interactions. A
detailed analysis of these problems is presented below.
Problem 1. Metadata lock contention. In a stream-based
RAG system, document indexing and vector search occur
simultaneously. Before these operations, the vector database
retrieves embedded metadata, which includes auxiliary infor-
mation such as document IDs, labels and tags associated with
the embedding vectors. During the vector search, the database
reduces the search space by applying distance functions along
with additional filters, such as document categories or times-
tamps, based on metadata lookups.

However, accessing metadata introduces a complex locking
process to maintain data consistency, placing a significant
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Fig. 2: Search latency and the cumulative distribution function
(CDF) of search tail latency across three scenarios involving
interactions between the SPE and vector database.

burden on users to manage these operations manually. To
simplify metadata management, modern vector databases in-
corporate embedded storage engines such as SQLite [31] and
PostgreSQL [32], which allow SQL-based manipulation of
metadata for scalable and efficient query execution. These
engines ensure data integrity through database-level locking
mechanisms. However, this locking process introduces latency,
as transactions that perform metadata lookups must wait for
concurrent metadata modification transactions to complete.

We conducted a synthetic experiment to evaluate vector
search performance in a stream-based RAG system where
coarse-grained lock states are not shared between the SPE and
vector database. To simulate query arrival and insert traffic,
we defined three scenarios: search without indexing, search
with event indexing, and search with batch indexing. In the
search without indexing scenario, no indexing occurs when the
SPE requests a vector search. In contrast, in the search with
indexing scenarios, vector searches overlap with the indexing
phase. We generated synthetic insert traffic as described in
Section VI-A. Simultaneously, our query generator sends 100
Wikipedia queries per second (QPS) to the message queue.
The SPE retrieves accumulated queries from the message
queue, distributes them across multiple threads, and converts
them into embedding vectors. It then sends similarity search
requests to a vector database instance pre-indexed with 10,000
Wikipedia documents. The top-k similarity search is config-
ured with a k value of 5.

Figure 2 (a) shows the time-series search latency. The
search without indexing maintains stable latency, while both
indexing scenarios exhibit significant latency fluctuations. In
these cases, latency spikes occur, with batch indexing showing
higher spikes compared to event-based insertion. This is due
to metadata access being locked during high-volume indexing,
causing vector searches to be temporarily queued. As shown in
Figure 2 (b), the 99th percentile tail latency for searches with
batch indexing is around 16.3 seconds, approximately 1.64
times higher than the latency observed with event indexing at
the 99th percentile. This suggests that issuing vector searches
from the SPEs without recognizing metadata lock contention
during indexing in the vector database leads to high search tail
latency.
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Fig. 3: The relationship between # of queries, search latency,
and # of instances. An additional instance is launched when
the query count exceeds the threshold of 1500. In the graph
above, the bar graph represents the number of queries, while
the line graph represents search latency.

Problem 2. Reactive scaling for burst traffic. The query
arrival rate fluctuates based on user demand [33], [34], causing
the SPE to send varying numbers of query requests to the
vector database. As expected, search latency increases as the
query volume rises. To address this, modern vector databases
implement scaling policies [16], [35]. These databases scale
out by launching additional instances that replicate metadata,
indexes, and associated data from the original instance. Incom-
ing queries are then distributed across all available instances.

However, instance scaling is typically reactive, triggered
by predefined conditions such as query quota limits or CPU
utilization thresholds. Due to the lack of coordination between
the SPE and the vector database, the database cannot detect the
actual number of incoming queries in real time. As a result,
during sudden traffic surges, the system experiences increased
search latency before scaling mechanisms can take effect.

We conducted a synthetic experiment to evaluate query
latency without proactive scaling. Using the synthetic traffic
from Section VI-A, we analyzed query performance under
varying loads and implemented a scale-out policy triggered
when processed queries exceed a threshold.

Figure 3 illustrates how the number of instances, search
latency, and query volume evolve over time based on the
implemented scaling policy. We identify two distinct periods
with significant latency spikes. In both cases, the system
maintained only one instance, even when the query volume
surpassed the predefined threshold (e.g., 1500 queries). For
instance, at 59 seconds, instance scaling was not triggered
despite exceeding the threshold, causing search latency to
spike to 6.29 seconds as a single vector database instance
handled all incoming queries.

To analyze the impact of the lack of proactive scaling, we
focus on the period from 57 to 62 seconds, as shown in
Figure 4. As query processing slowed, the backlog of waiting
queries in the message queue grew rapidly. The increasing
latency further delayed queries in the message queue, leading
the SPE to issue even more search requests. Consequently,
search latency peaked at 12.4 seconds, which is 5.27 times
higher than the latency under idle load conditions.
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Fig. 4: Breakdown of total latency during peak load periods
(57-62). Total latency includes both search latency and wait
latency.

Our Observations. The lack of coordination between the SPE
and the vector database, which operate independently without
sharing internal state, leads to two key performance issues
in query search. First, issuing query search requests without
awareness of metadata lock contention during document in-
dexing results in high tail latency. Second, reactive scaling of
vector database instances, which fails to account for incoming
query volumes, causes latency spikes during burst traffic.

To overcome these challenges, a lock-aware and traffic-
aware query coordinator is essential to mitigate performance
bottlenecks and improve query efficiency.

IV. DESIGN

A. Overall Architecture

STREAMRAG is an adaptive query routing strategy im-
plemented at the SPE for vector search in stream-based
RAG systems. STREAMRAG has two modules: (i) Lock-
aware query routing module and (ii) Traffic-aware proactive
database instance provision module. Our mechanism centers
on two key designs:

• The lock acquisition status in the vector database can be
predicted in advance, helping to prevent high tail latency
when the SPE issues vector search requests.

• The SPE is aware of offset information, which indicates
the number of queries to fetch before retrieval, allowing
the system to proactively provision a vector database
instance.

Figure 5 illustrates the architecture of STREAMRAG. To en-
able communication between the SPE and vector database, we
have designed an agent layer that interacts with both systems.
The agent layer consists of two agents: the lock agent and the
traffic agent. These two agents operate concurrently across the
two layers without interfering with the system’s operations.
Additionally, the agent layer in the vector database includes
a provision manager, responsible for scaling instances and
notifying the DB agent of any changes in instance information.
The detailed communication steps for each agent are described
in Sections IV-B and IV-C.

Retrieving information for each engine in the SPE agent and
DB agent layers often delays the vector search at runtime,
reducing overall performance. To alleviate this issue, we
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Fig. 5: An overview of STREAMRAG.

employ lazy evaluation [36], a strategy widely adopted in
SPEs [4], [5]. Lazy evaluation defers computations until their
results are required. In Apache Spark [4], for instance, query
execution occurs only when specific functions (e.g., trigger,
count) are invoked. To execute the query with lazy evaluation,
the SPE constructs a query execution plan that defines the
sequence of tasks [37]. Once established, the SPE executes all
functions sequentially according to the query plan. Exploiting
this property, we pipeline the exchange process in the agent
layer with task execution, ensuring that the task of fetching
queries from the message queue is completed before the vector
search is performed.

B. Lock-aware Query Routing Module

Figure 6 illustrates a workflow of the lock-aware query
routing module. The SPE agent begins when the SPE initial-
izes a query and make query execution plan. At this time,
the SPE sets necessary metadata to access vector database
such as database IP address, port number, and collection name
where the vector index is stored. Then, the SPE forwards the
metadata to the SPE lock agent. Finally, the SPE lock agent
forwards the metadata to the DB lock agent.

When lazy evaluation is triggered, the SPE starts to fetch
queries from the message queue while the DB lock agent
checks the metadata lock status for the collection. If the lock
is held, the provision manager in DB layer replicates the
original instance and returns information of the new instance
including port number per provisioned instance. Occasionally,
task which fetches the queries from the message queue may
complete before it receives the updated instance information
from the DB lock agent, potentially causing the search to run
with outdated information.

To prevent this, we integrate the await function provided
in Future interface [38], which ensures that updated instance
information is retrieved prior to the query search. Before
performing a vector search, the SPE checks the lock status
updated by the SPE lock agent. Finally, the SPE routes
the queries to the provisioned instances instead of original
instance. To optimize resource utilization, the module termi-
nates the provisioned instances when the metadata file lock is
released during subsequent vector searches.

Fig. 6: A workflow of lock-aware query routing module.

C. Traffic-aware Proactive Instance Provision Module

During burst traffic, an effective solution is to pre-provision
additional instances and route queries to these pre-launched
instances. To detect burst traffic, we use a smoothed Z-score
algorithm [13].

This algorithm utilizes a sliding window to analyze a dataset
that contains historical and current data, smoothing out short-
term fluctuations. It calculates a moving average at time t,
denoted as Mt, using a window size w and the datasets within
the window x. Based on Mt, the standard deviation σt is
calculated. Both equations are presented as Equation 1 and
Equation 2.

Mt =
1

w

t∑
i=t−w+1

xi (1)

σt =

√√√√ 1

w

t∑
i=t−w+1

(xi −Mt)2 (2)

Using Mt and σt, the algorithm calculates Z-score Zt as
shown in Equation 3. Zt measures the deviation of the current
data point from the moving average, expressed in terms of
standard deviations. We compare Zt to a predefined threshold
α, and if Zt exceeds this threshold, burst traffic is detected.

Zt =
xt −Mt

σt
(3)

While detecting abnormal traffic is essential, determining
the appropriate number of additional instances to launch is
equally important. The SPE fetches queries from the message
queue immediately after completing previous vector search. If
the vector search shows a stable search latency, it indicates that
the current instance has sufficient processing capacity. Based
on this fact, we define the maximum processing capacity of a
single vector database instance as certain number of queries.
A lower threshold reflects higher sensitivity to search latency.
The parameter β controls this sensitivity and is configurable
by the user. A detailed analysis of β’s impact on search latency
is presented in Section VI-E.

As explained in Section IV-B, the SPE constructs a query
execution plan and configures several metadata to facilitate
task executions. For example, the SPE sets the metadata
including offset information that records the last-read position
in the message queue. By utilizing the offset information,
the SPE fetches messages accumulated since the last-read
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position to determine the current query volume. Based on the
current query volume, DB provision manager calculates the
required number of additional instances, N new

t , by dividing the
number of incoming queries at time t, Qcur

t , by the predefined
processing capacity per instance, β. The number of additional
instances, N add

t , is then obtained by subtracting the number of
current active instances, N cur

t , from N new
t . The corresponding

equations are presented in Equation 4.

Nnew =
Qcurrent

t

β
, Nadd = max(0, ⌈N new

t −N cur
t ⌉) (4)

Algorithm 1 presents a pseudo-code that outlines the work-
flow for proactive traffic-aware scaling of vector database
instances. Before performing vector search, the SPE checks
whether new instances have been provisioned. At this stage,
the SPE collects traffic information including the number of
incoming queries and historical query volume. Then, the SPE
sends traffic information to SPE traffic agent. Hereafter, the
SPE traffic agent forwards this information to the DB traffic
agent. Upon receiving the data, the DB traffic agent calculates
Z-score and sends the computed value along with the current
query volume to the DB provision manager. The provision
manager then evaluates whether the current query volume
indicates burst traffic based on pre-computed Z-score. If burst
traffic is detected, the DB provision manager determines
the number of additional instances using Equation 4 and
launches new instances. Information regarding provisioned
instances is forwarded to the DB traffic agent. Also, the DB
traffic agent sends the information to the SPE traffic agent.
Finally, the SPE traffic agent receives the information about
the newly provisioned instances. Based on the knowledge,
the SPE distributes vector search requests across all active
instances. This seamless exchange of information between
both systems reduces search latency by preventing a single
vector database instance from becoming a bottleneck, instead
leveraging multiple instances for parallel processing.

V. IMPLEMENTATION

STREAMRAG introduces a cross-layer design to facili-
tate information sharing between the SPE and the vector
database, enhancing vector search performance in real-time
RAG systems. We implemented a prototype of STREAMRAG
using Apache Spark [4] v3.5.1 and ChromaDB [14] v0.5.20.
To exchange information between both systems, we used
gRPC [15] to enable communication between them. The agent
on node hosting the SPE, co-located with Spark executor
responsible for processing tasks, operates as a gRPC client,
while the DB agent functions as a gRPC server. To compute
the Z-score for values within a sliding window, including the
mean and standard deviation, we leveraged the Z-score library
provided by SciPy [39]. We integrated lock-aware and traffic-
aware query coordination into User-defined Function (UDF) of
Spark. The hint and user-defined parameters are incorporated
by the UDF to optimize query routing.

Algorithm 1: Traffic-aware proactive database instance
provision algorithm
Input: Traffic Information: Qcur

t , {xt−w+1, · · · , xt}
1 Function SPEVectorSearch(Traffic Information):
2 // Send traffic information
3 instance ← SPETrafficAgent(Qcur

t ,
{xt−w+1, · · · , xt})

4 if instancecount ≥ 2 then
5 Route ⌈ Qcur

t

instancecount
⌉ to each instance;

6 else
7 Route Qcur

t to single instance;

Input: Traffic Information: Qcur
t , {xt−w+1, · · · , xt}

8 Function SPETrafficAgent(Traffic Information):
9 instance ← DBTrafficAgent(Qcur

t ,
{xt−w+1, · · · , xt})

10 Return instance;

Input: Traffic Information: Qcur
t , {xt−w+1, · · · , xt}

11 Function DBTrafficAgent(Traffic Information):
12 // Calculate values for Z-score

13 Mt ← 1
w

t∑
i=t−w+1

xi

14 σt ←
√

1
w

∑t
i=t−w+1(xi −Mt)2

15 Zt ← xt−Mt

σt

16 // Send Z-score and current query volume
17 instance ← DBProvisionManager(Zt, Qcur

t )
18 Return instance;

Input: Z-score: Zt, Current Traffic: Qcur
t

19 Function DBProvisionManager(Zt, Qcur
t ):

20 // Detect burst traffic
21 if Zt ≥ α then
22 Nnew ← Qcur

t

β

23 Nadd ← max(0,⌈ N new
t - N cur

t ⌉)
24 // Provision Nadd instances
25 Return new instance information;

26 else
27 Return ∅;

VI. EVALUATION

A. Experimental Setup

Configuration. We conducted a series of experiments using
Spark cluster consisting of one master node and two worker
nodes. Each worker node ran a Spark executor with 8 CPU
cores and 48GB of memory, using 8 data partitions to en-
able parallel processing. We used ChromaDB [14] as vector
database. In vector database configurations, we chose index
algorithm as HNSW [22], which is a state-of-the-art algorithm
for approximate nearest neighbor search. Additionally, we set
the number of top-k neighbors for each user query to 5.
The vector database instance is running on master node and
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Fig. 7: Time-series search latency in three traffic scenarios.

additional replicated instances are provisioned on master node
when the query burst is detected. To detect burst traffic, we
used a Z-score threshold of 0.5 and set β to 800 to determine
the number of vector database instances to launch. We used
Apache Kafka 3.2.3 [30] as the message queue and Apache
Spark [4] 3.2.3 as the stream processing engine. Default values
were used for detailed hardware specifications can be found
in Table I. All experiments include a one-minute warm-up
phase to ensure the stabilization of system components such
as caches and buffers.

TABLE I: Testbed specification.

CPU AMD Ryzen 9 3900X 12-core 2.80 GHz
Memory DDR4, 64 GB
Storage Samsung SSD 970 EVO NVMe SSD
Ethernet 1 Gbps

Workloads. For representing an online scenario with docu-
ment indexing and vector search, we implemented two ap-
plications that store and search embedding vectors on the
vector database, respectively. One is to extract wikipedia [29]
summaries from narrativeQA [40] dataset and transform the
wikipedia document to embedding vectors using pre-trained
embedding model (i.e., all-MiniLM-L6-v2 [41]). The other is
to transform questions from narrativeQA to embedding vectors
and requests vector search.

Traffic. To simulate a burst query traffic, we made query
generator to follow Poisson distribution. In addition, document
indexing patterns can vary depending on application require-
ments, document indexing patterns can vary. We considered
two representative indexing types: event indexing and batch
indexing. Those types are reflecting fluctuated traffic distribu-
tion. Query and insert traffic types are described as below.

• Query traffic: In the Poisson distribution, we set the query
arrival rate (λprob) to ensure that the average query arrival
rate remains within 10,000 messages per minute [42].
Specifically, a fraction of queries, determined by λprob,
arrives within the first 10 seconds, while the rest are
distributed over the remaining time. This configuration
reproduces query bursts at specific points in time.

• Batch insert: the generator inserts 5,000 documents at
once every 30 seconds.

• Event insert: the generator inserts 5,000 documents ran-
domly within 30 seconds.

Based on the traffic patterns of query and insert, we de-
signed three traffic scenarios that mix query traffic and insert
traffic. Three scenarios are provided in Table II.

TABLE II: Traffic scenarios.

Low event insert, λprob=1000
Medium batch insert, λprob=3000

High batch insert, λprob=5000

Comparison Targets. We evaluate vector search latency of
STREAMRAG under conditions where queries are ingested
in bursts and documents are indexed concurrently. In Spark,
our selected SPE, queries are processed in batches rather than
individually. To align with the SPE, we measured vector search
latency as the time from batch submission to completion.

Throughout the experiment, we refer to vector search la-
tency as search latency. The baseline system routes the queries
without considering metadata lock contention. Moreover, it
reactively adds an additional instance when the number of
current queries exceeds data size threshold. We call the
baseline system as PASSIVERAG that performs vector search
without considering metadata lock contention and fluctuated
query traffic in RAG system.

B. Search Latency

Figure 7 presents the time-series search latency across three
traffic scenarios. Overall, our proposed mechanism outper-
forms PASSIVERAG in all cases. In Figure 7 (a), two peaks
in search latency are observed, with latency reaching up to
10 seconds from 39 to 42 seconds. Notably, STREAMRAG
maintains a stable search latency below 3 seconds. As traffic
fluctuations intensify, the performance gap between STREAM-
RAG and PASSIVERAG becomes more pronounced.

In Figure 7 (c), five peaks in search latency are observed.
Compared to low-traffic scenario, STREAMRAG exhibits a
slight increase in latency. Still, the latency at peak period is
4.52 seconds, which is 4.9 times lower than the baseline. This
significant reduction during burst traffic is attributed to our
core components: the lock-aware and traffic-aware modules.
STREAMRAG mitigates performance degradation caused by
the lack of coordination between the two engines through
transparent and seamless coordination. The effectiveness of
both modules is demonstrated in following sections.
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Fig. 8: Comparison of tail latency (CDF) under low and high
traffic scenarios.

C. Effectiveness of Lock-aware Query Routing

Figure 8 shows tail latency in low and high traffic scenarios.
Regardless of the traffic scenarios, median latency is nearly
same in both systems. It indicates that idle traffic and vector
search without indexing do not contribute to latency increases.

Before the 95th percentile, search latency remains similar in
both systems, staying within 3.3 seconds. However, beyond the
95th percentile, tail latency sharply increases. For instance, in
Figure 8 (a), the 99th percentile latency for STREAMRAG is
3.3 seconds. Whereas, the 99th tail latency in PASSIVERAG
reaches 8.8 seconds, which is 2.6 times higher than that of
STREAMRAG. The disparity in tail latency becomes more
pronounced as the traffic rate increases. Under the worst-
case latency (e.g., 100th percentile) in a high-traffic scenario,
PASSIVERAG reaches 22.69 seconds, which is 4.72 times
higher than STREAMRAG.

Figure 9 presents time-series the number of queries and
search latency in low traffic scenario. Generally, large requests
lead to increased search latency due to higher computation. For
example, at 41 seconds, the number of queries is almost 1400.
As expected, the search latency is also increased to 10 seconds
due to higher query volume. However, the search latency
increases significantly despite a moderate number of incoming
queries at 72 seconds. It indicates vector search is delayed
until the metadata access in indexing phase is completed.
As a result, the search latency is increased regardless of
query volume. As we explained in Section IV-B, the SPE
and vector database exchanges information regarding metadata
lock status and profile of newly added database instance.
Through transparent communication, the SPE becomes aware
of metadata locks and reroutes queries to alternative instances.
Consequently, it avoids lock contention as much as possible
during vector searches and significantly reduces tail latency.

D. Effectiveness of Traffic-aware Proactive Instance Provision

Figure 10 illustrates how the number of vector database
instance is adjusted in response to sudden increases in query
volume. As discussed in Section III, PASSIVERAG relies on
reactive scaling and does not effectively respond to burst
traffic. Consequently, noticeable latency spikes occur when
vector database instance scaling is not triggered in a timely
manner. In Figure 4, the search delay spikes to 12.4 seconds,

StreamRAG

0
2.5
5
7.5
10

0

500

1000

1500

2000

Time	(sec)
20 30 40 50 60 70 80

Lock
PassiveRAG

L
at
en
cy
	(s
ec
)

0
2.5
5
7.5
10

N
um
be
r	
of
	q
ue
ri
es

0

500

1000

1500

2000

Fig. 9: Analysis of how vector search interacts with metadata
locking during indexing.
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Fig. 10: Effectiveness of traffic-aware instance scaling in
handling fluctuating query volumes. Bars indicate the number
of queries, line shows search latency, and numbers on bars
represent the number of instances.

a significant increase compared to the idle traffic scenario,
where the search delay remains below 1 second.

In contrast, traffic-aware proactive scaling mechanism miti-
gates the latency spikes at burst traffic. From 20 to 21 seconds,
queries more than 4000 are arrived. This is, on average,
3.5 times higher than the traffic generated during idle peri-
ods. STREAMRAG rapidly provisions four instances within
21 seconds, effectively minimizing latency increases. This
latency reduction during burst traffic results from effective
coordination between underlying systems. As explained in
Section IV-C, SPE in STREAMRAG tracks the number of
previously processed query volume. For instance, the SPE
calculates the number of incoming queries using offset in-
formation from message queue in query planning phase. After
combining volumes of past and current incoming queries, the
SPE send them to DB agent.

The DB agent calculates the Z-score and checks whether
it exceeds a predefined threshold. Upon detecting abnormal
traffic (e.g., burst traffic), the DB agent determines the number
of additional instances using β to launch proactively and
sends their information to the SPE. As a result, the SPE in
STREAMRAG becomes aware of the newly added instances.
Leveraging this information, the SPE can distribute burst query
traffic across multiple instances, which reduces computation
burden in single instance. By the way, search latency remains
similar despite a lower query volume during burst traffic at 19
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Fig. 11: Time-series search latency trend according to β. The bar graph represents the number of queries, while the line graph
represents search latency. Number on each bar indicates the number of instances.
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the line graph represents search latency. Number on each bar indicates the number of instances.

seconds. In mixed traffic scenarios, document indexing can
be overlap with vector search. Despite significant efforts of
STREAMRAG to avoid lock contention, the wait for lock status
updates at runtime slightly increases search latency.

E. Sensitivity of β

β is a parameter used to determine the number of additional
vector database instances in proactive scaling. To examine how
β affects search latency, we conducted experiments under a
high-traffic scenario. From Figure 11 (a) to (c), the effective-
ness of proactive scaling in reducing latency diminishes as
β increases. In Figure 11 (a) and (c), the maximum search
latency reaches 2 seconds, whereas in Figure 11 (b), it peaks
at 9 seconds. These results suggest that a lower β enables
the system to respond more effectively to burst traffic, main-
taining lower search latency. However, provisioning additional
instances increases memory consumption. In STREAMRAG,
we set an upper limit of 12 instances. The β parameter is user-
defined, making it crucial to balance memory consumption and
performance when determining its value.

F. Sensitivity of Z-score

To scale vector database instance proactively, we adopted Z-
score to detect as burst traffic. Since the Z-score threshold is
a user-defined parameter, sensitivity of scaling instance varies
based on its configuration. We conducted an experiment under
a high-traffic scenario to examine the trend of the number of
instances and search latency across Z-score thresholds.

As shown in Figure 12 (a), when the Z-score threshold
is set to 0.5 (e.g., used in our experiments), the number of
instances is effectively adapted to query volume fluctuations.

As the Z-score threshold increases to 1.5, the instance scaling
becomes more erratic. For example, at the 32 and 34 seconds,
the number of instances drops to 1, despite the query volume
being more than 4 times that of idle traffic. Consequently, the
search latency spikes to 3.91 and 4.57 seconds, respectively.
When abnormal traffic is detected, our traffic-aware proactive
instance provision module activates. However, in this case, the
query volume is misclassified as normal traffic. When the Z-
score threshold is set to 2.5, the number of instances remains
unchanged regardless of query volume. As we discussed with
Figure 4 in Section III, long search latency causes queries
to accumulate in message queue, leading to a surge in query
volume and further increasing search latency. A higher Z-score
threshold makes detection more conservative, identifying only
very extreme spikes and reducing false positives. Therefore,
users should consider the traffic patterns when setting Z-score
thresholds to optimize the vector database instance scaling and
achieve performance gains.

VII. CONCLUSION

This paper identifies performance bottlenecks in stream-
based RAG systems, highlighting how the lack of mutual
awareness between stream processing engines and vector
databases degrades performance. We propose STREAMRAG, a
lock-aware and traffic-aware query coordinator that optimizes
communication between these systems, significantly reducing
search latency. However, challenges remain, including real-
time lock contention detection and efficient query routing un-
der locking conditions. Future work will focus on dynamically
tuning user parameters to enhance performance in resource-
constrained environments.
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