
EQUILIBRIA : Co-Optimizing Energy and Latency
in Online ML-based Stream Processing Systems

Sejeong Oh, Soyang Baek, Gordon Euhyun Moon and Sungyong Park∗
Sogang University, Seoul, Republic of Korea
{sjoh2, goryne, ehmoon, parksy}@sogang.ac.kr

Abstract—An Online machine learning (ML)-based streaming
processing system (SPS) combines real-time stream processing
with continuous, incremental learning through simultaneous
model training and inference. This system processes large,
dynamic, high-velocity data streams while adapting its models
to improve performance over time. However, balancing the
tradeoff between latency and energy efficiency remains a critical
challenge, which has not been adequately addressed in prior
research. This paper introduces EQUILIBRIA, a novel framework
designed to co-optimize power consumption and latency in
Online ML-based SPS. EQUILIBRIA integrates dynamic volt-
age and frequency scaling (DVFS) with two innovative energy
optimization strategies. First, a Pareto-based clock frequency
adjustment mechanism dynamically tunes both core and memory
clock frequencies to reduce latency while minimizing energy
consumption. Second, a two-tier threshold training management
technique optimizes energy use by periodically pausing and
resuming model training once accuracy requirements are met, all
while preserving latency. Experimental evaluations across various
queries and traffic scenarios demonstrate that EQUILIBRIA
achieves up to 58% energy savings without compromising latency,
making a significant step forwards in energy-efficient, high-
performance streaming analytics for modern, rapidly evolving
data environments.

Index Terms—energy efficiency, stream processing systems,
machine learning, dynamic optimization, dynamic voltage and
frequency scaling

I. INTRODUCTION

Modern computing infrastructures must increasingly handle
massive real-time data streams to derive instantaneous insights.
Applications such as IoT sensors, social media platforms,
autonomous vehicles, and large-scale online services gener-
ate diverse and enormous volumes of data at unparalleled
speeds [1], [2]. To effectively optimize systems in such dy-
namic environments, continuous adaptation to fluctuations in
input characteristics and usage patterns is essential. Traditional
static or offline management techniques, however, struggle to
keep up with these ever-changing dynamics.

Online machine learning (ML) has emerged as a crucial
solution to meet these adaptive system requirements [3]. By
continuously learning from real-time data through simulta-
neous model inference (predictions) and updates (training),
Online ML enables rapid adaptation to dynamic performance
demands [4], [5]. This capability is particularly vital for stream
processing systems (SPS) [6], where real-time optimization
must process continuous data streams with a responsiveness

∗Corresponding author.

and flexibility that surpass traditional post-hoc tuning or
heuristic-based methods.

In Online ML-based SPS, latency is a key performance met-
ric, as processing bottlenecks can disrupt the entire execution
cycle, undermining real-time adaptability. GPUs, with their
parallel processing capabilities, are essential for accelerating
both inference and training tasks. However, GPU acceleration,
while effective at reducing latency, often leads to higher power
consumption due to increased utilization.

Despite this, prior research [6], [7], [8], [9], [10] has primar-
ily focused on either minimizing latency in GPU-accelerated
environments [6], [8], [10] or reducing power consumption in
CPU-based SPS environments [7], [9], leaving less attention
on achieving both real-time processing and energy efficiency
simultaneously. As a result, there is a clear need for an end-
to-end optimization strategy that addresses the entire Online
ML-based SPS pipeline, one that reduces the high energy
consumption caused by GPU acceleration while maintaining
the low latency essential for real-time analytics.

In this paper, we propose EQUILIBRIA, a novel frame-
work for Online ML-based SPS that co-optimizes energy
and latency. Through two key innovations described below,
EQUILIBRIA achieves low latency and low power consumption
in complex dynamic streaming environments.
Dynamic Adjustment of Clock Frequencies. To minimize
energy waste, EQUILIBRIA employs a Pareto optima algorithm
with dual objectives—latency and power consumption—to
dynamically adjust the GPU’s core clock frequency (CCF)
and memory clock frequency (MCF) via dynamic voltage and
frequency scaling (DVFS). DVFS reduces power consumption
during runtime by dynamically adjusting device voltage and
clock frequency while ensuring that performance remains
within acceptable limits. Our approach selects optimal clock
frequencies from the Pareto front, based on a normalized
distance-based method, to meet user-defined performance
requirements. This method dynamically adapts to runtime
changes in user conditions by reselecting optimal frequencies
from the set as needed.
Two-Tier Threshold Training Management. EQUILIBRIA
employs a two-tier threshold management technique to op-
timize GPU utilization for energy efficiency during model
training. This method continuously monitors the model’s real-
time accuracy and compares it to a moving average, using
predefined thresholds to decide when to pause or resume
training. When training is paused, the GPU enters a low-

33

2025 IEEE 25th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

2993-2114/25/$31.00 ©2025 IEEE
DOI 10.1109/CCGRID64434.2025.00061

Model
Train

Model
Inference

ML Model

SELECT…
GROUPBY…
AGGREGATE…
FILTER…

Query

Input
Stream

Query Planner

Output
Stream

Plan Optimizer

Stream Processing Engine

❶ Generate excutable plans. ❷ Select best plan
based on predictions.

❸ Execute query plan
❹ Training the model by Online

Query Executor

Fig. 1: An overview of Online ML-based SPS.

power idle state, remaining there until training resumes. This
cycle repeats until the accuracy reaches the stop threshold once
more.

By leveraging these two innovative approaches, EQUILIB-
RIA achieves energy efficiency while maintaining low latency.
Experimental evaluations across various queries and traffic
scenarios demonstrate that our EQUILIBRIA enhances energy
efficiency by up to 58% without sacrificing latency.

In summary, this paper presents the following contributions:
• We propose a novel management framework that employs

a Pareto optima approach to simultaneously optimize
latency and energy efficiency in SPS environments.

• We introduce a two-tier threshold training management
strategy to enable energy-efficient use of ML models.

• We implement a novel Pareto optimization algorithm
specifically designed for the SPS environment and GPU
DVFS, deploying it on a real system and evaluating its
performance with real-world workloads.

• Beyond its application in Online ML-based SPS, the
Pareto optima approach can be readily adapted to tra-
ditional GPU-based SPS, enhancing overall system effi-
ciency.

II. BACKGROUND AND MOTIVATION

A. Online ML-based SPS

In recent years, Online ML has gained significant atten-
tion across diverse application domains due to its ability to
continuously update and utilize models for inference with
real-time data streams [3]. Unlike traditional offline learning
methods, Online ML rapidly adapts to dynamic environments,
such as changes in data distribution or sudden traffic spikes,
ensuring consistent model performance over time. Integrating
Online ML with SPS enables real-time optimization of large-
scale streaming data by performing both inference and model
training as new data arrives.

Fig. 1 illustrates the workflow of an Online ML-based
SPS. The system processes an input stream according to a
given query through several stages. First, it generates multiple
executable plans capable of addressing the query 1 . Next,
it selects the optimal plan by leveraging an ML model that
predicts the real-world performance of each candidate 2 .
After selecting the best plan, the system executes it 3 ,
continuously refining the ML model in real time by learning
from log data generated during execution 4 . This iterative
process enables the Online ML-based SPS to identify and
execute plans with significantly higher accuracy and efficiency

than traditional approaches, such as heuristic or cost-based
methods, thus improving overall system performance.

B. GPU Energy Efficiency

With the rapid advancements in GPU performance, vari-
ous strategies have been developed to optimize GPU power
consumption [11]. One prominent technique, DVFS, balances
power consumption and performance by dynamically adjust-
ing voltage and frequency to align computational resources
with workload demands [12]. For instance, GPU-based DVFS
techniques typically focus on tuning the GPU’s CCF and MCF
during tasks such as deep neural network (DNN) training [13].
Increasing CCF enhances the speed of instruction execution,
while higher MCF improves data transfer rates. However, both
adjustments lead to higher power consumption. Conversely,
when computational demand is low, reducing CCF and MCF
minimizes unnecessary energy usage. In scenarios requiring
high performance, scaling up these frequencies maximizes
computational throughput.

This flexible adjustment mechanism is particularly benefi-
cial in power-constrained environments and is widely applied
in energy-critical systems, such as data centers and mobile
platforms [14], [15]. By dynamically aligning performance
with demand, DVFS helps achieve a more efficient use of
energy resources.

C. Pareto Optima Algorithms

Pareto optima is a cornerstone of multi-objective opti-
mization, designed to identify the optimal tradeoffs between
conflicting objectives. Unlike single-solution optimization, it
generates a Pareto front—a collection of solutions where
improving one objective is only possible by compromising
another. These Pareto optima solutions represent balanced
tradeoffs, ensuring no objective can be enhanced without
adversely affecting others.

Recently, Pareto optima has been widely adopted in research
to determine optimal solutions across multiple performance
metrics [16], [17]. In the context of SPS, latency and power
consumption are two critical yet conflicting metrics. Achiev-
ing lower latency often requires operating GPUs at higher
clock speeds, which leads to increased power consumption.
Conversely, reducing GPU clock speeds to conserve power
typically results in higher latency. By applying Pareto optima
to this tradeoff, it becomes possible to identify frequency
configurations that strike an effective balance between these
competing objectives.

To effectively identify the Pareto front, various algorithms
such as NSGA-II [18], MOEA/D [19], MOPSO [20], and
PEA [21] have been developed, leveraging evolutionary algo-
rithms and particle swarm optimization (PSO) techniques. Tra-
ditional approaches, like convex hull methods, become com-
putationally infeasible as the number of objectives increases
[22]. Moreover, complex tradeoffs—where improvements in
one objective require significant sacrifices in another—can
lead to non-convex Pareto front. In such cases, convex hull

34

methods fail to fully explore the Pareto front, limiting their
applicability [23].

D. Related Work

Latency-aware Approach. Fast data processing in SPS is
critical for delivering high-quality service to users, making the
reduction of end-to-end latency a primary focus of prior re-
search [24]. To achieve this, many approaches have integrated
GPUs with SPS to enhance overall latency performance [8],
[25], [26], [6], [10].

For example, the state-of-the-art Online ML-based SPS,
DYNO [6], leverages a gradient boosting tree (GBT) to
learn, in real time, detailed information about queries, traffic,
and devices without requiring prior knowledge. Specifically,
DYNO dynamically generates optimal device mapping plans.
Unlike earlier methods that relied on approximate, cost-based
comparisons, DYNO employs an ML model to accurately
predict execution times at the operator level. This enables
precise end-to-end latency predictions, setting a new standard
for latency optimization in SPS environments.
Energy-aware Approach. In recent years, efforts toward
sustainable computing have increased, drawing significant
attention to energy-efficient design [24]. In SPS, which must
continuously process data in real-time, sustained energy con-
sumption accumulates over time, significantly impacting over-
all power usage. As hardware-level improvements in power
efficiency approach their limits, enhancing energy efficiency
at the software level has become increasingly critical [27].
This challenge is equally relevant in the IoT domain, where
energy consumption directly affects system liveness [28].

To tackle this challenge, numerous studies have introduced
adaptation strategies that prioritize energy consumption as a
core metric [29], [30], [7], [9]. For instance, STROME [7]
achieved significant energy savings in SPS environments by
utilizing application performance data to dynamically adjust
power caps while maintaining peak throughput. This method
effectively surpasses the traditional constraints of DVFS, rep-
resenting a major leap forward in energy-efficient computing.
Limitation of Previous Studies. Existing studies on latency-
aware and energy-aware optimization encounter inherent lim-
itations. Latency-focused approaches in SPS, which increas-
ingly utilize GPUs for their high computational power, often
lead to substantially higher energy consumption than CPU-
based systems. This is attributed to the inherently power-
intensive nature of GPUs. Therefore, effective latency opti-
mization requires the incorporation of energy efficiency strate-
gies tailored to the unique characteristics of GPUs. For exam-
ple, while DYNO achieved significant latency improvements
through Online ML-based techniques that accurately predict
the latency of candidate plans and generate optimal ones, it did
not account for the increased energy consumption associated
with GPU usage during training or the energy efficiency of
the generated plans. This oversight underscores the need for
approaches that simultaneously optimize latency and energy
efficiency in GPU-accelerated SPS environments.

(a) End-to-End Latency (b) Power Consumption

Fig. 2: Latency (ms) and power consumption (W) based on CCF and
MCF. We used a 3D plot to intuitively show correlations between
CCF, MCF and the target metric.

0 50 100 150 200
Epochs

0.05

0.10

0.15

0.20

0.25

Lo
ss

 (
RM

SE
)

25

30

35

40

45

50

Po
w

er
 (

W
)

Model Loss Power Consumption

(a) Continuous Training

Stop Training

(b) Stop Training (epoch = 30)

Fig. 3: Model loss (RMSE) and power consumption (W) by epochs.
We compared the patterns of loss and power consumption between
continuous training and stopped training.

Energy-aware approaches have predominantly focused on
enhancing energy efficiency in conventional CPU-based SPS
environments. However, with the growing reliance of SPS
systems on GPUs, there is a pressing need for energy-efficient
designs specifically optimized for GPU-based environments.
For instance, while STROME achieved significant energy sav-
ings with minimal impact on throughput, it was designed for
CPU-based SPS and did not address the unique challenges
associated with GPU-accelerated systems.

Moreover, in real-world SPS deployments, managing both
latency and energy constraints simultaneously is often re-
quired. Therefore, there is a clear need for solutions that
consider both factors and dynamically adapt their strategies
based on the current context, rather than prioritizing only one
aspect.

E. Motivation

To demonstrate the motivation for our work, we conducted
two experiments using a general SPS with GPUs and a GBT
model implemented in a state-of-the-art framework [6]. For
the experiments, we used Spark [31] as the SPS and the
Linear Road Benchmark [32] as the input data. The machine
configurations used in these experiments are identical to those
described in Section IV.
Excessive Energy Usage. To explore the relationship between
end-to-end latency and power consumption in Online ML-
based SPS, we conducted a series of experiments using an
NVIDIA RTX-3070 GPU. As shown in Fig. 2, these experi-
ments evaluated all possible combinations of two clock speeds:

35

CCF and MCF. Since NVIDIA limits the modifiable values
of CCF and MCF, we used these constraints to define the
combinations. Fig. 2 presents the experimental results in a
3D graph. As shown in Fig. 2a, the general trend indicates
that higher CCF and MCF values result in lower latency,
and vice versa. However, the relationship between latency and
CCF/MCF is non-monotonic, exhibiting fluctuations instead
of a consistent pattern. In contrast, Fig. 2b shows that power
consumption trends are monotonic, with higher CCF and
MCF values leading to increased power usage, occasionally
exceeding a twofold difference.

In general, latency and energy are typically considered to
have a trade-off relationship. However, our experiments reveal
that this trade-off is not monotonic, indicating that it is possible
to achieve the same latency with lower power consumption, or
vice versa. Additionally, MCF, which has been less explored in
traditional GPU-based DVFS studies, significantly influences
power consumption. Existing approaches that focus solely on
CCF are insufficient for fully optimizing energy efficiency.

Therefore, as the relationship between latency and power
consumption is non-monotonic, it is required to define ob-
jective functions that accurately model latency and power
consumption as functions of CCF and MCF. Moreover, the
creation and inference of these objective functions must be
carefully designed to avoid negatively impacting the perfor-
mance of the existing system. As low latency is critical in
SPS, it is essential to quickly and accurately determine the
optimal clock frequency solution during runtime. Hence, our
goal is to efficiently and precisely identify the optimal solution
among hundreds of possible CCF and MCF combinations
using specialized algorithms designed specifically for the
SPS environment, rather than conventional batch processing
systems.
Gradually Decreasing Accuracy. In SPS, the need to handle
dynamic and unpredictable traffic in real-time requires contin-
uous adaptation to maintain high accuracy in execution time
prediction models. Numerous previous studies have utilized
runtime adaptation techniques to address this requirement [33],
[6]. However, the constant training and adaptation to real-
time conditions during runtime result in significant energy
consumption. Fig. 3 illustrates the variations in loss and power
consumption when training is stopped at different epochs. As
shown in Fig. 3a, the continuous training approach effectively
minimizes loss but results in high power consumption. In
contrast, Fig. 3b demonstrates the impact of halting training
at a specific epoch: power consumption decreases significantly
once training is stopped, but the loss gradually increases over
time. Thus, a new energy-efficient algorithm is required to
dynamically adjust the training process, improving energy
efficiency while minimizing the impact on model accuracy.

III. DESIGN AND IMPLEMENTATION

In this section, we begin by providing a high-level overview
of our EQUILIBRIA system. We then describe the detailed
explanations of how the Pareto optima approach for SPS is
applied to GPU DVFS to optimize both latency and energy

Online ML-based SPS
Infinite Output

Stream
Infinite Input

Stream

GPU Controller

Energy-Latency
Module

Equilibria Core
➌

➍

➋➎

Pareto Finder

User Configurations
(latency, power constraint)

Threshold
Finder

Accuracy-Latency
Module

Training
Controller

Metric Monitor
➊ ➀

➂

➃

➁➄
Query
Executor

Devices (CPUs, GPUs)

Model
Inference

Model Train

Stream Processing Engine

Fig. 4: An overview of EQUILIBRIA. EQUILIBRIA is composed of
two modules and a core. A line shown as a white circle rather than an
arrow indicates that information is passed in that direction whenever
an event occurs, regardless of the flow. The order of each module’s
actions is indicated by the number of circles.

efficiency, along with the methodology for managing the
training of the model. Finally, we highlights the integration
of these techniques within the SPS environment to achieve
low latency and high energy efficiency.

A. Overview of EQUILIBRIA

Fig. 4 illustrates the overall workflow of EQUILIBRIA, high-
lighting Equilibria Core and two key modules. The Equilibria
Core receives latency and power constraints from the user,
controlling the operation of the two modules to align with the
specified goals. Simultaneously, it processes metrics related to
latency, model accuracy, and power consumption collected by
the metric monitor and provides the processed data to the re-
spective modules. The Energy-Latency Module and Accuracy-
Latency Module modules work collaboratively to identify the
optimal configuration under the given constraints, adjusting the
GPU frequency and model training time accordingly. During
the initialization phase, these modules operate sequentially;
afterward, they function concurrently when user constraints
are modified.

The Energy-Latency Module applies a Pareto optima tech-
nique to determine the optimal combination of GPU CCF and
MCF that balances latency and power consumption under the
given constraints. For example, 1 When the Equilibria Core
receives notification of the model’s initial training completion,
it sends all permissible combinations of CCF and MCF to
the GPU Frequency Controller in a sequential manner over
time. 2 The GPU Frequency Controller adjusts the GPU’s
frequency based on the provided CCF and MCF combinations.
3 The Equilibria Core collects the average latency and power

consumption metrics for each combination and forwards them
along with the constraints to the Pareto Finder. The Pareto
Finder applies the Pareto optima technique to identify the
Pareto front and determines the optimal solution for CCF and
MCF that satisfies the constraints. 4 The determined solution
is sent back to the GPU Frequency Controller. 5 The GPU

36

Metric Monitor

Equilibria Core

GPU Frequency Controller

Data Queue CCF MCF Latency Power
210 405 380 25
210 5000 340 35
… … … …

1890 6800 300 50

Distance-based Selection of in

nvidia-smi
 ➜ Memory clock :
 ➜ Core clock :

Training Controller
Stop

Training Restart
Training

Energy-Latency
Module

Accuracy-Latency
Module

Stop
TrainingRate of Change

Limit

Add in

Update

Continuous
Pareto Algorithm

Data Queue Latency
380
381
…
390

Loss
0.031
0.034
…

0.061

Time Stamp
00:07:58
00:07:59

…
00:09:10

Add Threshold
Finder

Register Thresholds in Training Controller

Fig. 5: Overall workflow of Energy-Latency Module (red dashed
line) and Accuracy-Latency Module (blue dashed line) in Equilibria
Core. This figure shows how steps 3 through 5, as described in Fig. 4,
operate within each module.

Frequency Controller adjusts the GPU clock frequencies to
match the optimal solution.

The Accuracy-Latency Module uses a two-tier threshold
technique to dynamically adjust model training while main-
taining accuracy at a level that does not impact latency. For ex-
ample, 1 Once Energy-Latency Module completes the optimal
adjustment of GPU CCF and MCF, the Equilibria Core notifies
the Training Controller. 2 The Training Controller pauses the
training of the model. 3 The Equilibria Core collects average
latency and model accuracy metrics over time and forwards
them, along with the latency constraints, to the Threshold
Finder. Based on the changes in average latency relative to
accuracy, the Threshold Finder sets the two-tier thresholds.
4 These thresholds are sent to the Training Controller. 5

The Training Controller adjusts the model training process
according to the determined thresholds.

These two modules dynamically adapt during runtime to
accommodate changes in user-defined constraints. If only the
power constraint is modified or added, the Energy-Latency
Module re-executes. If the latency constraint is modified or
added, the Accuracy-Latency Module additionally re-executes.
This modular and adaptive design ensures that EQUILIBRIA
responds effectively to evolving runtime requirements while
maintaining optimal system performance.

B. Pareto Optima Technique for GPU DVFS

The left-hand side of Fig. 5 illustrates the process within
Energy-Latency Module for determining the optimal clock
frequencies (e.g., CCF and MCF) based on metrics received
from the Equilibria Core. First, the metrics are processed to
create objective functions representing latency and power as
functions of CCF and MCF. Instead of using learning- or
regression-based methods, these objective functions are im-
plemented using a table-based approach. Table-based method
is effective for two key reasons. One is that the number of

Compare only
with

Add
to Update

New Pareto Front
Pareto

Improvement

Fig. 6: Pareto optima algorithm of EQUILIBRIA. The red dots are
Pareto front. The blue dot is new data point (pm,n). The red lines
represents PS . After Pareto improvement, we marked the deleted
points in PS with green X marker.

combinations of MCF and CCF on a GPU for DVFS tuning
is typically limited to a small number of states. For small
size of set, it is relatively easy to directly measure or profile
the latency on a real system for each state, so the average
latency at each frequency condition can be pre-measured and
stored in a table. This avoids the additional complexity and
computational resources required to build and train a separate
latency objective function(fL) such as a regression or DNNs.
The other is the relationship between clock frequencies and
power consumption is monotonic. One notable characteristic
of GPU DVFS is the restricted range of configurable MCF and
CCF values. Given the monotonic relationship between clock
frequencies and power consumption, a table-based method
provides a fast and accurate alternative to developing a com-
plex regression-based power objective function(fP).

Minimize (fL(p), fP (p))
s.t. p ∈ PAll, fL(p) ≤ CL, fP (p) ≤ CP

(1)

Eq. 1 formulates the Pareto optima problem that Energy-
Latency Module must solve, highlighting the need to minimize
both the latency and power consumption objective functions
while satisfying the given constraints. To address this multi-
objective optimization challenge in the SPS environment,
EQUILIBRIA applies a Pareto optima technique to identify the
constrained Pareto front(PS) of the optimal frequencies.

To find the solution of Eq. 1, the system first identifies
the Pareto front from PAll that satisfies the Pareto optima
condition. Specifically, for a point p∗ to belong to the Pareto
front, it must satisfy the condition defined in Eq. 2.

∀p ∈ PAll, R(p) ⇒ S(p)
s.t. R : fL(p) ≤ fL(p

∗) ∧ fP (p) ≤ fP (p
∗)

S : fL(p) = fL(p
∗) ∧ fP (p) = fP (p

∗)
(2)

Previously, evolutionary algorithms or PSO methods were
commonly used to identify points satisfying Eq. 2 efficiently.
These approaches are suitable because the objective space is
typically high-dimensional, and the objective functions are
complex, making brute force methods inefficient. However,
these conventional approaches often require several seconds
to execute, rendering them unsuitable for SPS environments,
where processing occurs within hundreds of milliseconds.

To achieve low latency, EQUILIBRIA applies a Pareto optima
algorithm optimized for the SPS environment. Algorithm 1
and Fig. 6 show how the Pareto optima algorithm for SPS

37

TABLE I: Descriptions of symbols in figures & equations.

Symbol Description

fP Power Objective Function
fL Latency Objective Function
CP User-defined Power Constraint
CL User-defined Latency Constraint
PS Set of Constrained Pareto Front
PAll Set of every Power-Latency pairs

MCFm mth possible Memory Clock Frequency
CCFn nth possible Core Clock Frequency
pm,n Elements in PAll, m and n denotes index of

each frequency. If m and n are omitted, then
it represents a general element.

p∗ The elements in Pareto Front
p̂∗ The element selected in Pareto Front
N Number of points to be searched
l Window size of Moving Average

Lstop Threshold of stop training
Lrestart Threshold of restart training

α Supremum of Latency Increase Rate
ηT
obj Energy Efficiency of objective method, T means

Type of power(e.g. Dynamic, Total).
NX,obj Normalize value of Xobj . X means measured

metric (e.g. Latency, Power Consumption).

Algorithm 1 Pareto Optima Algorithm for SPS
Input : A Continuously added data point, pm,n

Output : Pareto Front, PS

global finishF lag

1: procedure FINDPARETOFRONT
2: initialize PAll ← {}
3: while not finishF lag do
4: get pm,n from Equilibria Core
5: add pm,n to PAll

6: for every p∗ in PS do
7: if pm,n dominates p∗ then
8: delete p∗ from PS

9: if pm,n not in PS then
10: add pm,n to PS

11: end if
12: end if
13: end for
14: end while
15: return PS

16: end procedure

in EQUILIBRIA works. Equilibria Core monitors the required
data from each device and system, and passes it to Accuracy-
Latency Module for preprocessing as pm,n whenever data is
collected. The new PS is updated by a Pareto improvement
process that only compares preprocessed pm,n to the existing
PS . This enables fast exploration by comparing it to PS , which
is typically much smaller than PAll, the set of all points,
and can actually reduce the time spent on exploration by
overlapping the exploration time by operating simultaneously
with the processing of data in SPS. As a result, the process of
finding Pareto front is quickly and effectively integrated into
SPS.

After the Pareto front (PS) are found, Accuracy-Latency
Module selects a point in PS that satisfies the given conditions.
There are three cases in total. In each case, we’ll explain how
we choose the final point (p̂∗).
Case 1 : No Constraints on CL and CP . If no constraints are
given from the user, Accuracy-Latency Module will choose p̂∗

by distance-based selection between the Ideal Point and each
p∗.

Ideal Point(pI) = (fmin
P , fmin

L) (3)

Eq. 3 shows the definition of Ideal Point, where fmin
P and fmin

L

are the minimum value of fP and fL in PAll, respectively.
Distance-based selection selects the closest point in PS based
on its distance from pI . Since fL and fP have different ranges
of values, they are subjected to min-max normalization in
Eq. 4.

f̃P (p) =
fP (p)− fmin

P

fmax
P − fmin

P

, f̃L(p) =
fL(p)− fmin

L

fmax
L − fmin

L

(4)

Eq. 5 is an expression that defines D(p), the distance between
pI and p based on the normalized values. Since the value of
pI is the same as Eq. 3, the values of f̃P (pI) and f̃L(pI) are
zero, which finally simplifies to Eq. 5.

D(p) =
√
(f̃P (p)− f̃P (pI))2 + (f̃L(p)− f̃L(pI))2

=
√
f̃P (p)2 + f̃L(p)2 (∵ f̃P (pI), f̃L(pI) = 0)

(5)

p̂∗ = argmin
p∗∈PS

D(p∗) (6)

The Energy-Latency Module selects p∗ as the final solution
(p̂∗) that has a minimum over the elements of PS with respect
to D(p) as shown in Eq. 6 and pass it to the GPU Frequency
Controller to regulate the clock frequency of the GPU.
Case 2 : Either CL or CP Exists. Given only one constraint
between CL and CP , Energy-Latency Module finds the p∗ that
minimizes the metric of the other while satisfying the given
constraint according to Eq. 7 and set it to p̂∗.

min
p∗∈PS

{
fP (p

∗) if CL is given and fL(p
∗) ≤ CL,

fL(p
∗) if CP is given and fP (p

∗) ≤ CP .
(7)

Case 3 : Both CL and CP Exists. Given both CL and CP ,
Energy-Latency Module constructs a new P ′

S with p∗ points
in PS that satisfy both constraints according to Eq. 8. The
process is then the same as in Case 1, computing Eq. 6 to
find p̂∗.

P ′
S = {p∗ ∈ PS | CL(p

∗) ≤ Cmax
L and CP (p

∗) ≤ Cmax
P } (8)

C. Two-tier Threshold Training Management

The right-hand side of Fig. 5 illustrates how Accuracy-
Latency Module performs two-tier threshold training man-
agement, corresponding to steps 3 through 5 in Fig. 4.
First, after the model’s training is stopped by the Equilibria
Core, the Equilibria Core collects data on loss and latency
over time. Based on the constructed table, Accuracy-Latency
Module dynamically generates the two-tier thresholds, Lstop

and Lrestart, at runtime without prior knowledge.

38

(latencyMA
t , lossMA

t) = 1
N

t∑
k=t−l+1

(latencyk, lossk) (9)

Loss of Stop (Lstop). Lstop threshold is determined by
monitoring the loss after training is paused. Since the loss at
which the model converges varies based on factors such as the
query type [6], runtime determination is necessary for accurate
threshold setting. When the model’s loss stabilizes (i.e., no
further reduction), it is appropriate to pause training at this
point. However, the model’s loss typically oscillates slightly
around the convergence value. To address this, Accuracy-
Latency Module applies a moving average method, as shown
Eq. 9, to minimize the errors caused by these oscillations.
Loss of Restart (Lrestart). Lrestart threshold is selected by
analyzing how the model’s accuracy affects overall latency.
The threshold is based on the loss value at which the latency
impact exceeds a defined limit.

Lrestart = lossMA
t if rt > α, rt =

latencyMA
t −latencyMA

t−1

latencyMA
t−1

(10)

Eq. 10 indicates how Lrestart is determined. rt represents
the rate of change of the moving average of latency over
time, and α is the user-set threshold for the rate of increase.
The Accuracy-Latency Module continuously monitors real-
time latency changes and adjusts the Lrestart value based on
a comparison with α. This approach is effective because the
loss of a model that ceases training during the threshold setting
process tends to increase gradually, as shown in Fig. 3.

As a result, the model gradually loses the ability to accu-
rately predict the execution time of the query, which leads to
the generation of non-optimal plans, which in turn leads to an
increase in latency. Accuracy-Latency Module recognizes the
tendency by monitoring the growth rate of latency. When the
growth rate of latency exceeds a set limit (α), it determines that
the model’s loss (lossMA

t) at that point has become inaccurate
enough to exceed the range of latency growth rates set by the
user, and sets the threshold to restart training, Lrestart.

Through this process, as depicted in the Training Controller
section of Fig. 5, the model’s loss fluctuates between Lstop and
Lrestart. Training is paused between Lstop and Lrestart, sig-
nificantly reducing the GPU’s power consumption for training
while maintaining efficiency.

IV. EVALUATION

A. Evaluation Setup

Configurations. All of our experiments were conducted on
a single machine equipped with one Intel i7-13700F 16-core
2.1GHz CPU with 32GB memory and two NVIDIA RTX 3070
GPUs, each with 8GB of GPU device memory and 220W as
thermal design power (TDP). We used one master and two
workers, each running a single executor. Apache Kafka [34]
was configured as the message broker, and Spark version 3.2.3
was used as the stream processing engine. The experiments
aimed to validate the superiority of EQUILIBRIA in scenarios
with minimal nodes, where maximizing energy efficiency, as

TABLE II: Query details of real-world streaming workloads.

Query Description

Q1 SELECT L.timestamp, L.vehicle, L.speed, L.highway, L.lane,
L.direction, L.segment FROM SegSpeedStr (range 30 slide 1)
as A, SegSpeedStr as L WHERE (A.vehicle == L.vehicle)

Q2 SELECT timestamp, highway, direction, segment, AVG(speed)
as avgSpeed FROM SegSpeedStr (range 300 slide
1) GROUPBY (highway, direction, segment) HAVING
(avgSpeed ≤ 40.0)

Q3 SELECT timestamp, highway, direction, segment,
COUNT(vehicle) as numVehicle FROM SegSpeedStr
(range 30 slide 1) GROUPBY (highway, direction, segment)

often done in other comparative studies, was the primary focus.
Default values were used for the Spark settings.
Comparisons. We evaluated the latency and energy efficiency
of RAPIDS (baseline) [35], DYNO, and EQUILIBRIA in vari-
ous scenarios. The baseline represents a GPU library running
on Spark, utilizing a single GPU to process input data. DYNO,
a state-of-the-art Online ML-based SPS, minimizes latency
in SPS leveraging GPUs by generating optimal plans using
Online ML and operates with two GPUs. We compared the
performance of EQUILIBRIA against these methods in terms
of latency and power consumption. To rigorously validate
EQUILIBRIA’s superiority, we ensured identical experimental
setups, using no additional devices beyond the configurations
employed by DYNO.
Workloads and Stream Traffic Types. For these experiments,
we utilized the linear road benchmark (LRB) [32], a real-world
streaming workload commonly used in recent studies to evalu-
ate SPS performance [6], [8]. LRB is suitable for performance
evaluation in realistic environments and includes a variety of
query operations such as join, projection, aggregate, group-by,
and selection. To compare performance with DYNO, we used
the same set of queries employed in their study. Each query
corresponds to Q1, Q2, and Q3 as labeled in Table II.

In real-world scenarios, input traffic is typically fluctuating
rather than constant. To demonstrate that EQUILIBRIA operates
effectively under realistic traffic conditions, we tested each
query under various traffic scenarios within the manageable
range of the system’s default configuration and experimental
settings. Details of the traffic configurations are presented
in Table III. We also conducted experiments as shown in
Sec. IV-B and Sec. IV-C, focusing on the conditions described
for Case 1 and Case 2 in Sec. III-B. Although Case 3 requires
updating the existing Pareto front to a new one based on user
constraints, the remaining process mirrors that of Case 1. To
highlight the superior performance of EQUILIBRIA, we chose
Case 1 and Case 2 as representative scenarios.

B. Overall Performance Analysis

Fig. 7 presents normalized graphs of latency and power
consumption for DYNO and EQUILIBRIA, using RAPIDS with
a single GPU as the reference. The graph combines the power
consumption of all GPUs used in the system. We categorized
power consumption into two distinct types: total and dynamic.

39

Q1 Q2 Q3
Query

0.0

0.5

1.0

N
or

m
al

iz
ed

 L
at

en
cy 0.9

0.0

0.5

1.0

1.5

2.0

2.5

N
orm

alized
Pow

er Consum
ption

Baseline DynO Equilbria

(a) Low Traffic

Q1 Q2 Q3
Query

0.0

0.5

1.0

N
or

m
al

iz
ed

 L
at

en
cy 0.9

0.0

0.5

1.0

1.5

2.0

2.5

N
orm

alized
Pow

er Consum
ption

Baseline DynO Equilbria

(b) Mid Traffic

Q1 Q2 Q3
Query

0.0

0.5

1.0

N
or

m
al

iz
ed

 L
at

en
cy 0.9

0.0

0.5

1.0

1.5

2.0

2.5
N

orm
alized

Pow
er Consum

ption

Baseline DynO Equilbria

(c) High Traffic

Fig. 7: The graph shows latency and power consumption, normalized relative to the baseline values for each query. Latency is represented
by the bar graph, while power consumption is illustrated using a dotted line graph. Triangle markers indicate total power consumption, and
circle markers represent dynamic power consumption.

TABLE III: Query types and traffics. Each second, a random number
of data tuples is generated, following a normal distribution with the
average value serving as the mean. Each tuple has a fixed data size
of approximately 0.1 KB.

Query Q1 Q2, Q3

Traffics (Low, Mid, High) 10, 50, 100 100, 500, 1000

TABLE IV: Comparison of energy efficiency. Energy efficiency
is determined by multiplying the normalized latency and power
consumption, relative to the baseline, with the energy efficiency
metric defined in Eq. 11. A lower value signifies greater energy
efficiency.

Cases Energy Efficiency (ηTotal
obj /η

Dynamic
obj)

Traffic Query Baseline DYNO EQUILIBRIA

Low
Q1 1.0 / 1.0 2.16 / 1.84 1.12 / 0.45
Q2 1.0 / 1.0 1.68 / 1.43 0.97 / 0.52
Q3 1.0 / 1.0 1.44 / 1.23 0.84 / 0.42

Mid
Q1 1.0 / 1.0 2.28 / 1.94 1.17 / 0.63
Q2 1.0 / 1.0 1.75 / 1.49 0.99 / 0.54
Q3 1.0 / 1.0 1.44 / 1.23 0.78 / 0.42

High
Q1 1.0 / 1.0 2.19 / 1.93 1.17 / 0.68
Q2 1.0 / 1.0 1.73 / 1.54 0.91 / 0.56
Q3 1.0 / 1.0 1.38 / 1.23 0.78 / 0.45

Total power consumption consists of both the static and
dynamic components. Here, static power consumption refers
to the energy used when the device is idle, performing no
work. In contrast, dynamic power consumption represents the
additional energy drawn when the device is actively carrying
out tasks. Across all queries, the results clearly demonstrate
EQUILIBRIA’s superior performance in balancing latency and
energy efficiency compared to both the baseline and DYNO.

By selecting appropriate Pareto front to adjust the GPU’s
MCF and CCF, EQUILIBRIA achieves latency that is either
lower than or comparable to DYNO’s while reducing power
consumption by up to 70%. Even compared to the Baseline,
which uses only one GPU, EQUILIBRIA improves latency by
up to 50% while reducing 30% dynamic power consumption.
While EQUILIBRIA’s latency improvements vary depending on
the query characteristics, its power consumption consistently
decreases significantly regardless of query type.

ηTobj =
ET

obj

ET
Base

=
Lobj ∗ PT

obj

LBase ∗ PT
Base

= NL,obj ∗NT
P,obj (11)

Table IV shows the calculated energy efficiency for each
method. For all queries, EQUILIBRIA outperforms the other
two methods, improving energy efficiency by up to 58%
compared to Baseline, and 76% compared to DYNO. Al-
though DYNO achieves lower latency compared to the base-
line, its high power consumption—resulting from the use
of two GPUs—leads to lower energy efficiency. In contrast,
EQUILIBRIA, while also utilizing two GPUs, dynamically
adjusts clock frequencies and training operations, significantly
reducing power consumption and improving energy efficiency.

C. Performance under Various Constraints

0.5P0 0.75P0 0.9P0 P0
Power Constraint

720

740

760

Av
er

ag
e

La
te

nc
y

(m
s)

Baseline DYNO Equilibria

(a) Q1

0.5P0 0.75P0 0.9P0 P0
Power Constraint

400

425

450

475

500

Av
er

ag
e

La
te

nc
y

(m
s)

Baseline DYNO Equilibria

(b) Q2

0.5P0 0.75P0 0.9P0 P0
Power Constraint

1100

1150

1200

Av
er

ag
e

La
te

nc
y

(m
s)

Baseline DYNO Equilibria

(c) Q3

Fig. 8: The graph illustrates the variation in average latency for
each query when different power constraints are applied to the GPU
in EQUILIBRIA. Here, P0 denotes the baseline power consumption
for each query without any constraints.

Fig. 8 illustrates the average latency of different methods
under varying power constraints. Regardless of the method or
query type, the overall latency tends to increase as the power
constraint decreases. Notably, EQUILIBRIA maintains lower
latency compared to other methods, regardless of query type.
Furthermore, EQUILIBRIA consistently sustains low latency
even under stringent power constraints.

In Fig. 8a, the latency of DYNO increases sharply as the
power constraint tightens. This is attributed to the character-
istics of the queries, particularly Q1, which has higher GPU
core utilization compared to other queries. As the maximum
allowable power consumption decreases, the GPU usage for
the ML model has a relatively greater impact on overall query
processing, leading to a more pronounced increase in latency.

40

EQ EQ-W CH PEA MA/D
Method

0

20

40

60

80

100

120

140

160

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

(a) N = 10

EQ EQ-W CH PEA MA/D
Method

0

200

400

600

800

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

(b) N = 100

EQ EQ-W CH PEA MA/D
Method

0

1000

2000

3000

4000

5000

6000

7000

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

(c) N = 1000

Fig. 9: The graph compares the execution time of the Pareto
front algorithm applied in EQUILIBRIA. EQ represents the method
implemented in EQUILIBRIA, while EQ-W shows the execution time
under the worst-case scenario for EQUILIBRIA’s algorithm. CH and
MA/D denote the convex hull and MOEA/D methods, respectively.

Fig. 8b and Fig. 8c demonstrate that EQUILIBRIA achieves
similar or lower latency compared to DYNO. However, consid-
ering that EQUILIBRIA reduces the dynamic power consump-
tion of training GPUs by approximately 83% compared to
DYNO, it is evident that EQUILIBRIA operates very efficiently
across various query types and power constraint scenarios.
Additionally, while EQUILIBRIA exhibits dynamic power con-
sumption similar to the Baseline, it achieves significantly
superior latency performance compared to the Baseline.

D. Comparison with Other Pareto Optima Algorithms

We compared the execution time of EQUILIBRIA’s Pareto
front algorithm with other methods under GPU DVFS con-
straints, where the number of feasible CCF and MCF combi-
nations is limited. For practical performance comparison, we
measured the execution time to find the Pareto front from sets
of 10, 100, and 1000 points.

We set up three algorithms for comparison, which are con-
vex hull (CH), PEA, and MA/D (MOEA/D). PSO algorithm
was not compared because preliminary experiments showed
that it has a very long running time when N is 1000 or less
compared to other methods. EQ-W indicates the running time
in the worst case of the algorithm to find the Pareto front
of EQUILIBRIA. By worst case, we mean the case where all
the given N points satisfy the Pareto front. Fig. 9 shows that
the running time of EQ, the Pareto algorithm of EQUILIBRIA,
is very fast, on the order of µs. This does not change as the
number of points increases and is relatively very fast as the size
of N increases. This shows that the method of EQUILIBRIA,
which is to incrementally find the Pareto front during the
monitoring process, overlaps with each other and works very
well in the SPS environment.

We added and compared EQ-W to show that this approach
works better than other traditional Pareto front algorithms even
in the worst case. Since our method incrementally updates the
Pareto front and only compares newly added points to the
Pareto front rather than all points, the worst case is when all
points are Pareto front, which requires the most comparisons
to be performed. However, as shown in Fig. 9c, it still shows
fast performance when N is 1000 or less. This is significant
considering that there are less than 1000 possible combinations
of CCF and MCF on GPUs. In other words, we show very

0 200 400 600 800
Time(s)

0

5

10

15

20

25

30

Po
w

er
 (

W
)

Equilibria Average DYNO

(a) α = 0.001

0 200 400 600 800
Time(s)

0

5

10

15

20

25

30

Po
w

er
 (

W
)

Equilibria Average DYNO

(b) α = 0.003

0 200 400 600 800
Time(s)

0

5

10

15

20

25

30

Po
w

er
 (

W
)

Equilibria Average DYNO

(c) α = 0.01

Fig. 10: The graph illustrates the dynamic power consumption of the
training GPU in EQUILIBRIA as a function of α. The green dashed
line represents the average power consumption in EQUILIBRIA, while
the gray dashed line indicates the average power consumption in
DYNO.

fast performance independent of the size of N in the general
case, and significantly faster performance compared to other
algorithms even in the worst case.

E. Training GPU Power Consumption

Fig. 10 shows the dynamic power consumption of GPUs
based on α, a parameter used to determine Lrestart, one of
the two-tier thresholds. α reflects the tolerance for latency
increases caused by inaccurate query execution plans due
to rising model loss. For example, an α of 0.01 indicates
tolerance for a 1% latency increase. A higher α increases
Lrestart, widening the interval between Lstop and Lrestart.
This interval represents the period during which the GPU
remains idle and the training resumes to reduce the increased
loss.

Experimental results show that as α increases, average
power consumption decreases, and the frequency and duration
of training intervals reduce. This is because the wider interval
between Lstop and Lrestart enhances the effect of keeping the
GPU idle. The model’s loss decreases faster during training
restarts than it increases during pauses, resulting in overall
lower power consumption.

As shown in Fig. 10c for α = 0.01, the dynamic power con-
sumption of the training GPU in EQUILIBRIA averages only
5W, a remarkably low level. EQUILIBRIA selects α = 0.01
because further increasing α does not yield sufficient reduc-
tions in power consumption to offset the latency increases.
Specifically, while higher α values may slightly reduce average
power consumption, as shown in Fig. 10, the degree of
reduction diminishes and converges to a certain point, making
additional latency increases unjustifiable.

V. CONCLUSION

In this paper, we propose EQUILIBRIA, a novel framework
designed to simultaneously optimize energy efficiency and
latency performance in Online ML-based SPS environments.
We develop EQUILIBRIA to suit Online ML-based SPS,
accommodating diverse performance improvement goals by
utilizing DVFS and Pareto optima algorithm specialized for
SPS environments to reduce latency and improve energy
efficiency. Furthermore, EQUILIBRIA dynamically manages
the ML training process by monitoring model loss in real-time.

41

Our co-optimization technique is applicable to a wide range
of SPSs, including but not limited to GPU-based and Online
ML-based SPS. Through extensive evaluations from multiple
perspectives, we demonstrate that by properly configuring the
GPU’s CCF and MCF using DVFS techniques and managing
ML model training, the performance and sustainability of
Online ML-based SPS can be enhanced, achieving both low
latency and low power consumption.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MSIT) (RS-2024-00453929) (RS-2024-00416666).

REFERENCES

[1] E. Mehmood and T. Anees, “Challenges and solutions for processing
real-time big data stream: a systematic literature review,” IEEE Access,
vol. 8, pp. 119123–119143, 2020.

[2] Y. Sasaki, “A survey on iot big data analytic systems: Current and
future,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1024–1036,
2021.

[3] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A compre-
hensive survey,” Neurocomputing, vol. 459, pp. 249–289, 2021.

[4] Y. Liu, A. Andhare, and K.-D. Kang, “Corun: Concurrent inference and
continuous training at the edge for cost-efficient ai-based mobile image
sensing,” Sensors, vol. 24, no. 16, p. 5262, 2024.

[5] P. Han, S. Wang, Y. Jiao, and J. Huang, “Federated learning while pro-
viding model as a service: Joint training and inference optimization,” in
IEEE INFOCOM 2024-IEEE Conference on Computer Communications,
pp. 631–640, IEEE, 2024.

[6] S. Oh, G. E. Moon, and S. Park, “Ml-based dynamic operator-level query
mapping for stream processing systems in heterogeneous computing
environments,” in 2024 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 226–237, 2024.

[7] C. Eibel, C. Gulden, W. Schröder-Preikschat, and T. Distler, “S trome:
Energy-aware data-stream processing,” in Distributed Applications and
Interoperable Systems: 18th IFIP WG 6.1 International Conference,
DAIS 2018, Held as Part of the 13th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain,
June 18-21, 2018, Proceedings 18, pp. 40–57, Springer, 2018.

[8] F. Zhang, L. Yang, S. Zhang, B. He, W. Lu, and X. Du, “Finestream
: Fine-grained window-based stream processing on cpu-gpu integrated
architectures,” in 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pp. 633–647, 2020.

[9] X. Wei, L. Li, X. Li, X. Wang, S. Gao, and H. Li, “Pec: Proactive
elastic collaborative resource scheduling in data stream processing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 7,
pp. 1628–1642, 2019.

[10] G. Jung, Y. Jeong, K. Park, D. Lee, H. Byun, S. Lee, and S. Park,
“dstream: An online-based dynamic operator-level query mapping
scheme on discrete cpu-gpu architectures,” IEEE Access, vol. 13,
pp. 8239–8256, 2025.

[11] F. Magoulès, A.-K. C. Ahamed, A. Desmaison, J. C. Léchenet, F. Mayer,
H. B. Salem, and T. Zhu, “Power consumption analysis of parallel
algorithms on gpus,” in 2014 IEEE Intl Conf on High Performance Com-
puting and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software
and Syst (HPCC, CSS, ICESS), pp. 304–311, IEEE, 2014.

[12] X. Liu and R. Buyya, “Resource management and scheduling in
distributed stream processing systems: a taxonomy, review, and future
directions,” ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–41,
2020.

[13] Z. Tang, Y. Wang, Q. Wang, and X. Chu, “The impact of gpu dvfs
on the energy and performance of deep learning: An empirical study,”
in Proceedings of the Tenth ACM International Conference on Future
Energy Systems, pp. 315–325, 2019.

[14] P. J. Kuehn and M. Mashaly, “Dvfs-power management and performance
engineering of data center server clusters,” in 2019 15th annual con-
ference on wireless on-demand network systems and services (WONS),
pp. 91–98, IEEE, 2019.

[15] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen,
“Energy-performance trade-offs on energy-constrained devices with
multi-component dvfs,” in 2015 IEEE International Symposium on
Workload Characterization, pp. 34–43, IEEE, 2015.

[16] H. Zhang, L. Jia, L. Wang, X. Xu, and F. Dou, “Energy-efficient
timetable optimization empowered by time-energy pareto solution under
actual line conditions,” IEEE Transactions on Intelligent Transportation
Systems, 2024.

[17] A. K. Kakolyris, D. Masouros, S. Xydis, and D. Soudris, “Slo-aware
gpu dvfs for energy-efficient llm inference serving,” IEEE Computer
Architecture Letters, 2024.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[19] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[20] C. C. Coello and M. S. Lechuga, “Mopso: A proposal for multiple
objective particle swarm optimization,” in Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),
vol. 2, pp. 1051–1056, IEEE, 2002.

[21] D. W. Corne, J. D. Knowles, and M. J. Oates, “The pareto envelope-
based selection algorithm for multiobjective optimization,” in Interna-
tional conference on parallel problem solving from nature, pp. 839–848,
Springer, 2000.

[22] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in 2008 IEEE congress on
evolutionary computation (IEEE world congress on computational in-
telligence), pp. 2419–2426, IEEE, 2008.

[23] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multicriteria
optimization problems,” Structural optimization, vol. 14, pp. 63–69,
1997.

[24] V. Cardellini, F. Lo Presti, M. Nardelli, and G. R. Russo, “Runtime
adaptation of data stream processing systems: The state of the art,” ACM
Computing Surveys, vol. 54, no. 11s, pp. 1–36, 2022.

[25] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa,
and P. Pietzuch, “Saber: Window-based hybrid stream processing for
heterogeneous architectures,” in Proceedings of the 2016 International
Conference on Management of Data, pp. 555–569, 2016.

[26] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, “Gflink: An in-memory
computing architecture on heterogeneous cpu-gpu clusters for big data,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 6,
pp. 1275–1288, 2018.

[27] G. Kp, G. Pierre, and R. Rouvoy, “Studying the energy consumption
of stream processing engines in the cloud,” in 2023 IEEE International
Conference on Cloud Engineering (IC2E), pp. 99–106, 2023.

[28] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Low-cost adaptive monitor-
ing techniques for the internet of things,” IEEE Transactions on Services
Computing, vol. 14, no. 2, pp. 487–501, 2018.

[29] M. Chao, C. Yang, Y. Zeng, and R. Stoleru, “F-mstorm: Feedback-
based online distributed mobile stream processing,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pp. 273–285, IEEE, 2018.

[30] T. De Matteis and G. Mencagli, “Elastic scaling for distributed latency-
sensitive data stream operators,” in 2017 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing
(PDP), pp. 61–68, IEEE, 2017.

[31] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[32] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvk-
ina, M. Stonebraker, and R. Tibbetts, “Linear road: a stream data
management benchmark,” in Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pp. 480–491, 2004.

[33] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Making learned query optimization practical,” in Proceedings of
the 2021 International Conference on Management of Data, pp. 1275–
1288, 2021.

[34] K. M. M. Thein, “Apache kafka: Next generation distributed messaging
system,” International Journal of Scientific Engineering and Technology
Research, vol. 3, no. 47, pp. 9478–9483, 2014.

[35] NVIDIA. https://github.com/NVIDIA/spark-rapids, 2021.

42

