
ECO-KVS: Energy-aware Compaction Offloading
Mechanism for LSM-tree based Key-Value Stores in

Edge Federation

Jeeseob Kim1∗, Hongsu Byun1∗, Seungjae Lee1, Myoungjoon Kim1, Youngjae Kim1, Zaipeng Xie2, Sungyong Park1†
1Sogang University, Seoul, Republic of Korea, 2Hohai University, Nanjing, China

{jeeseob, byhs, ctaaone, audwns0820, youkim, parksy}@sogang.ac.kr, {zaipengxie}@hhu.edu.cn

Abstract—In recent years, the rise in energy consumption
across infrastructure has highlighted the need for more energy-
efficient technologies. This is particularly critical in edge comput-
ing environments, where resources and power are limited. Con-
sequently, there is increasing interest in improving the energy ef-
ficiency of resource-intensive tasks on edge servers. Edge servers
commonly use Log-Structured Merge-tree-based Key-Value Store
(LSM-KVS), to manage continuous data streams from edge
devices. A key operation in LSM-KVS, known as compaction,
merges key-value pairs in a CPU-intensive and energy-demanding
process. Additionally, delays during compaction can cause write
stalls, blocking I/O operations and degrading performance. This
creates a significant challenge in balancing energy consumption
and system performance. To address these challenges, we propose
ECO-KVS, a solution that improves both energy efficiency and
performance in LSM-KVS by offloading compaction tasks across
edge servers in an edge federation. ECO-KVS leverages a real-
time learning model to predict compaction time and energy
consumption, reducing write stalls and enhancing overall energy
efficiency. Implemented on RocksDB, ECO-KVS achieves up to
21% higher throughput compared to the baseline RocksDB and
improves the performance-to-energy efficiency ratio by up to
18% compared to EdgePilot, a state-of-the-art solution for edge
environments.

Index Terms—Edge Computing, Edge Federation, Energy-
efficiency, Key-Value Store, Log-Structured Merge-Tree.

I. INTRODUCTION

The rapid growth of IT infrastructure in recent years
has resulted in a significant rise in energy consumption.
According to the International Energy Agency (IEA), data
centers worldwide consumed approximately 460 Terawatt-
Hours (TWh) of electricity in 2022, representing around 2
percent of global electricity demand [1]. This consumption is
projected to increase even more dramatically, surpassing 1,000
TWh by 2026, highlighting the urgent need for energy-efficient
technologies.

In this context, the importance of Green IT [2] is becoming
more prominent. Green IT refers to technologies and strategies
aimed at enhancing the energy efficiency of IT systems while
minimizing their environmental impact, playing a crucial role
in building a sustainable IT ecosystem.

Edge computing [3] is becoming a crucial technology in
advancing Green IT. By processing data closer to the user,

∗These authors are first co-authors and have contributed equally.
†S. Park is the corresponding author.

edge computing reduces energy consumption associated with
network transmission. This not only enhances energy effi-
ciency but also provides low-latency performance compared to
cloud computing. As a result, edge computing is increasingly
being applied in various fields, including Internet of Things
(IoT) devices, autonomous vehicles, and smart factories [4].

Building upon the advantages of edge computing, edge
federation [5] extends its capabilities by enabling cooperative
task and resource sharing among edge servers. Edge federation
addresses the limitations of individual servers by distributing
workloads and scaling resources dynamically, making it par-
ticularly effective for large-scale data processing in edge envi-
ronments. By combining the benefits of edge computing and
federation, edge federation not only improves performance and
scalability but also supports energy efficiency in distributed
systems.

Meanwhile, various software applications are running on
edge servers, with databases being crucial for the rapid storage
and processing of constantly generated data [6]. One such
technology, the Log-Structured Merge-tree-based Key-Value
Store (LSM-KVS), is widely adopted. LSM-KVS achieves
high write performance through an append-only method and
ensures efficient read performance via compaction, which
removes and organizes duplicate key-value pairs. However,
delayed compaction can negatively impact read performance
and cause write stalls, blocking I/O operations. Consequently,
enhancing compaction in LSM-KVS continues to be a critical
focus of ongoing research.

Compaction is a CPU-intensive operation that involves
merge sorting, and various approaches have been proposed
to improve it, often by using accelerators like FPGAs [7],
[8] or disaggregating resources [9], [10]. However, these
methods are challenging to implement in edge servers, where
hardware limitations hinder improvements in energy efficiency.
To address this, the state-of-the-art solution EdgePilot [11]
was introduced, which enhances LSM-KVS performance by
offloading compaction tasks to other edge servers. While
EdgePilot boosts LSM-KVS performance and system effi-
ciency by accelerating compaction, as discussed in Section IV,
it suffers from energy consumption amplification. This issue
arises from compaction offloading over-provisioning, where
excessive resources are allocated to prevent write stalls, ul-

570

2025 IEEE 25th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

2993-2114/25/$31.00 ©2025 IEEE
DOI 10.1109/CCGRID64434.2025.00060

timately increasing energy consumption.
The problem of compaction offloading over-provisioning

underscores the trade-off between performance and energy
efficiency in edge federation environments. Although using
powerful server for compaction offloading minimizes the risk
of write stalls, it leads to unnecessary energy waste when
compaction demands are over-provisioned. Addressing this
issue requires a more adaptive and energy-aware compaction
strategy. By reducing over-provisioning, it is possible to mit-
igate energy consumption amplification while preserving the
performance benefits of compaction offloading.

In this paper, we introduce ECO-KVS to enhance both
performance and energy efficiency of LSM-KVS in edge
federations. To the best of our knowledge, this is the first
work to simultaneously address both performance and energy
efficiency challenges of LSM-KVS in edge environments.
We analyze the energy amplification caused by compaction
offloading over-provisioning in edge settings and, based on
this analysis, propose an energy-aware compaction offloading
mechanism. This mechanism aims to prevent write stalls and
reduce energy consumption by leveraging real-time, model-
based predictions of compaction time and energy usage. We
believe ECO-KVS can significantly improve energy efficiency
and sustainability in edge environments, contributing to the
progress of Green IT.

The contributions of our work are as follows.

• We propose ECO-KVS, an energy-aware compaction of-
floading mechanism designed to enhance energy efficiency
in edge federations.

• We mitigate energy amplification caused by compaction
offloading over-provisioning in ECO-KVS by predicting
compaction processing time and energy usage through a
real-time learning model, effectively alleviating write stalls.

• We implemented ECO-KVS on RocksDB v8.3.2, a widely
used LSM-KVS. In representative experiments, ECO-KVS
demonstrated a 21% increase in throughput compared to
RocksDB and an 18% improvement in the performance-to-
energy efficiency ratio over EdgePilot, the state-of-the-art
solution in edge federation.

II. BACKGROUND

In this section, we discuss the edge computing and the
edge federation. Subsequently, we describe the Log-Structured
Merge-tree, a representative data structure used in NoSQL
databases employed within edge computing.

A. Edge Environments

Edge Computing. As depicted in the edge computing of Fig-
ure 1 (pink area), edge computing [3] is a technology that pro-
cesses data at edge servers that are physically close to the edge
devices where the data is generated. In contrast to centralized
cloud computing, edge computing reduces bandwidth usage
and latency, thereby being utilized in various applications that
require real-time data processing, ranging from the Internet
of Things (IoT), mobility, to machine learning. As described
in Figure 1 (gray area), which illustrates the database and

Edge Device

Edge Server

Data Center

Edge Computing

Data Generation
Data

High Resource
High Latency

Low Resource
Low Latency

Data Data

Database and Streaming/
Analysis Framework

Store and
Computation

Data

Data
Data

Sharing Task and Resource

Edge Federation

Resource

Task

Edge Cluster

Edge Server Layer
Cloud Layer

Edge Device Layer

Data

High
Latency

Fig. 1: Overview of edge computing and federation environments.

framework of edge computing, data streaming and analytical
frameworks are employed to effectively process continuously
generated data. To ensure low latency, databases are hosted on
local storage within edge servers rather than in the cloud [6].
Limitations of Edge Computing and Edge Federation. The
edge devices or edge servers that compose an edge envi-
ronment have limited resources and lower computing power
compared to the cloud infrastructures. Due to these constraints,
edge computing encounters limitations when performing large-
scale data processing or complex computations. To overcome
the limitations of edge computing, an edge federation has
emerged, which shares resources and distributes tasks among
edge servers, as illustrated in the edge federation (green area)
of Figure 1 [5]. Edge federation improves the scalability of
edge computing and the overall performance of the system.
Importance of Energy Management in Edge Server. The
limited resources of edge servers include not only lower
computational power but also available energy. Therefore,
it is essential to manage the constrained power efficiently
on edge servers [12]. However, in an edge federation, task
offloading and resource sharing to improve overall system
performance increases the resource utilization of edge servers,
which increases energy consumption [13]. An increase in en-
ergy consumption consequently leads to stability issues such as
rising operational costs, server overheating, and reduced lifes-
pan, thereby undermining the sustainability of edge federation
systems [14]. Therefore, power consumption management in
edge computing and federations is essential for long-term
operational stability [15].

B. Log-Structured Merge-Tree

Component and Structure. The Log-Structured Merge-tree
(LSM-tree) [16] is a data structure used as the engine for key-
value stores, which are representative NoSQL databases such
as RocksDB and LevelDB. Figure 2 illustrates the structure
of an LSM-tree. The LSM-tree consists of two main compo-
nents: the Memory Component and the Storage Component.
Write requests are stored in the MemTable of the memory
component in an append-only manner, which provides fast
write performance. MemTable transitions into an Immutable
MemTable once its size reaches a predefined threshold, than
flushed to persistent storage as a Sorted String Table (SST)

571

Immutable
MemtableMemtable

Memory
Storage

SST SST

SST SSTL1

L0

I/O
(Write)

Compaction Write-
Ahead

Log
(WAL) SST

…

…

…

Flush

Fig. 2: An architecture of LSM tree.

file. At this point, the SST file is stored in level 0 (L0). When
the size of L0 reaches a threshold, compaction is triggered.
This process removes duplicate keys from multiple SST files,
performs merge sort on them, and generates new SST files at
the next level (L1).
Compaction and Write Stall. The LSM-tree ensures read
performance by sorting the appended key-value pairs through
compaction. However, since the key ranges of L0 SST files
overlap with one another, if compaction is delayed, the number
of SST files increases, leading to a degradation of read perfor-
mance. If the input ratio is extremely high, causing SST files
generated by flush operations to continue increasing despite
ongoing compaction, the size of L0 may eventually reach
the Write Stall Threshold (WST). At this point, a write stall
occurs, blocking I/O operations until delayed compaction is
completed to prevent further degradation of read performance.
Write stalls degrade latency and throughput, making them a
critical challenge for LSM-KVS. The causes of write stalls
can be categorized into three types, including the L0 write
stall, which occurs when L0 reaches the WST. In this paper,
we focus exclusively on L0 write stalls, identified as the most
critical cause [17], and the term write stall specifically refers
to L0 write stalls throughout this study.

III. RELATED WORKS

In this section, before introducing our approach that ad-
dresses both performance and energy efficiency improvements
for LSM-KVS in edge environments, we describe related
works. These include (i) energy optimization in edge envi-
ronments, (ii) compaction enhancements in LSM-KVS, and
(iii) state-of-the-art approaches for optimizing LSM-KVS per-
formance in edge environments.

A. Energy Optimization in Edge Environment

Energy optimization in edge servers is crucial in edge com-
puting as it addresses high power consumption and overheat-
ing issues, thereby reducing operational costs and improving
system reliability. Furthermore, with the growing emphasis on
Green IT aimed at fostering a sustainable IT environment,
energy optimization has become a key challenge in achieving
both technological advancement and environmental conserva-
tion [2]. Research of energy optimization in edge computing
can be categorized into hardware improvements and software
optimizations [12]. Hardware improvements primarily focus
on reducing overheating and decreasing energy consumption,

while software optimization emphasizes enhancing the effi-
ciency of systems and applications running on edge servers
to minimize energy usage. For example, improving workload
scheduling algorithms can optimize server resource utilization,
thereby reducing unnecessary power consumption [18]. Addi-
tionally, efficient resource management and data processing
optimization of databases and streaming systems ensure high
performance while maintaining low energy consumption [19].
Research on energy optimization through software-based ap-
proaches supports Green IT goals while contributing to the
sustainability and operational efficiency of edge computing.

B. Compaction Optimization in LSM-KVS

To improve compaction performance, two representative
approaches include: (i) offloading compaction tasks to ac-
celerators such as FPGAs and (ii) disaggregating computing
resources used for compaction. (i) In the accelerator-based
offloading approach, Sun et al. integrated FPGA compression
offloading through software-hardware codesign [7]. Lim et
al. proposed to utilize in-storage processing (ISP) in the
compression process to reduce the amount of data move-
ment required for FPGA acceleration [8]. (ii) As a resource
disaggregation method, Nova-LSM [9] uses Remote Direct
Memory Access (RDMA) to separate the storage and pro-
cessing components in the cloud environment. Nova-LSM
offloads compaction tasks to the storage component and dy-
namically adjusts the parallelism of compaction operations.
ROCKSMASH [10] disaggregated metadata from local storage
to cloud storage, performing compaction tasks in the cloud
to reduce the compaction overhead on local storage servers.
The aforementioned studies focus on reducing compaction
execution time using accelerators or mitigating write stalls
caused by compaction tasks via resource tiering. However, in
edge computing environments, deploying accelerators such as
FPGAs on heterogeneous and low-performance servers is chal-
lenging. Furthermore, centralized offloading to specific low-
performance servers can degrade overall system performance.

C. State-of-the-art of LSM-KVS for Edge Federation

To enhance the performance of LSM-KVS in edge federa-
tions, the state-of-the-art approach EdgePilot [11] has been
proposed. EdgePilot improves compaction processing time
by offloading compaction tasks across heterogeneous edge
servers. To achieve this, it compares the estimated local
compaction execution time (Tlocal) on the server running the
LSM-KVS with the time required to offload and execute
compaction on another edge server (Toffload) and if Toffload is
shorter than Tlocal, offloading is performed. In this process,
among the edge servers comprising the edge federation, the
target server with the fastest Toffload is identified, considering
the availability of resources.

IV. PRELIMINARY STUDY AND MOTIVATION

This section addresses the issue of increased energy con-
sumption resulting from compaction offloading in edge feder-
ations and explores the underlying reasons, thereby explaining

572

LSM-KVS

Request compaction offloading Server QServer P
1

2
Access LSM-KVS over shared file systems and perform compaction

3
Send a compaction completion signal

Fig. 3: Flow of compaction offloading between two servers.

the motivation of this study. To clarify the terminology related
to compaction offloading, we assume the presence of two
servers, P and Q, and categorize compaction as follows.

• Local Compaction: Compaction offloading is not per-
formed, each server handles the compaction tasks that occur
locally on its own.

• P → Q Compaction Offloading : Compaction tasks
generated on P are offloaded to Q, and Q processes P ’s
compaction. During this time, Q also can perform its local
compaction tasks.

Figure 3 shows the flow of performing compaction offloading
from P to Q. 1 Request compaction offloading from P to
Q. 2 Q accesses the LSM-KVS of P through the shared file
system and performs the requested compaction offloading from
P . 3 When the compaction is complete, it sends a completion
signal to P and terminates.
Trade-off between Performance and Energy Consumption.
First, we conducted a comparative analysis of the relationship
between performance and energy consumption during com-
paction offloading. To compare energy usage, we measured
energy consumption based on CPU utilization. Since com-
paction is a CPU-intensive operation, the energy difference
resulting from compaction offloading primarily depends on
CPU utilization, while energy differences caused by network
and memory usage are negligible [20].

Figure 4 shows the throughput and energy results of com-
paction offloading when running LSM-KVS on two servers
with different computing power (Low and High). We used the
FillRandom workload provided by RocksDB’s db Bench. The
experimental settings are detailed in Section VII-A, and the
server specifications are presented in Table I. On the x-axis,
Local indicates that both servers perform local compaction
independently, while Offload indicates compaction offloading
from the Low server to the High server.

First, Figure 4(a) shows the throughput results. When com-
paction offloading was performed, the throughput of the Low
server improved by 20%, as compaction offloading allevi-
ated write stalls. In contrast, the High server showed almost
no change, indicating that handling additional compaction
tasks from the Low server did not degrade its performance.
Figure 4(b) presents the energy measurement results. While
the energy consumption of the Low server remained nearly
unchanged, that of the High server increased by 12% due to the
additional energy required for compaction offloading. We refer
to this phenomenon as Energy Consumption Amplification
caused by compaction offloading.
Metric Definition: Energy / Operation. We have shown that
while compaction offloading can enhance the performance of

Low High Low High
0

50
100
150
200

Th
ro

ug
hp

ut
(M

op
s)

Local Offload

(a) Throughput

Low High Low High
0K

10K
20K
30K
40K
50K

En
er

gy
 (J

)

Local Offload

(b) Energy

Local Offload
0

50
100
150
200
250

En
er

gy
 (J

/M
op

s)

Local Offload

(c) Energy/Ops

Fig. 4: Performance and energy consumption trade-off analysis of
compaction offloading (a) Throughput, (b) Energy consumption, and
(c) Energy/Ops. On the x-axis, Local indicates the Low and High
servers perform local compaction, while Offload indicates Low →
High compaction offloading, with the High server performing its local
compaction.

LSM-KVS, it introduces the issue of energy consumption am-
plification. Therefore, it is essential to consider what is critical
for evaluating energy efficiency in LSM-KVS. We propose
a metric called Energy per Operation (EpO). It represents
the energy consumed per operation processed by LSM-KVS,
where a lower value indicates better energy efficiency.

Figure 4(c) shows the EpO results for compaction offload-
ing. The Offload has a 5% higher EpO than Local. While
compaction offloading improves throughput, it results in a
decrease in energy efficiency. Therefore, to achieve better
energy efficiency relative to throughput, it is necessary to
improve the EpO metric.
Compaction Offloading Over-Provisioning. Excessive en-
ergy consumption caused by over-provisioning in infrastruc-
ture poses significant constraints on operations [21]. This issue
is no exception in edge environments, and we address over-
provisioning in the context of compaction offloading.

Offloading compaction tasks to a server with higher com-
puting power accelerates compaction and alleviates write
stalls, which can improve throughput. Theoretically, according
to Amdahl’s law, compaction acceleration improves as the
computing power of the offloading server increases, up to
the point where acceleration limits are reached. However,
as shown in Figures 4(b) and (c), higher computing power
leads to energy consumption amplification, creating a trade-
off between performance and energy efficiency.

To reduce write stalls, as mentioned in Section II-B, it is
sufficient to ensure that the size of L0 does not reach the
write stall threshold. Based on this, we hypothesized that there
exists an optimal server with computing power that minimizes
energy amplification while effectively reducing write stalls.
Therefore, we analyzed the correlation between write stalls
and the computing power of the offloading server during
compaction offloading.

Figure 5 presents the results for the Low server when
compaction tasks are offloaded to Medium and High servers,
denoted as Low→Medium and Low→High. The experimental
setup is identical to that in Figure 4. For convenience of expla-
nation, we use ’L’, ’M’, and ’H’ to represent Low, Medium,
and High servers, when using the → notation. Figure 5(a)
illustrates the throughput and write stall duration. In both
L→M and L→H scenarios, the write stall on the Low server
was completely eliminated, leading to identical improvements
in throughput. This indicates that offloading compaction to a

573

Local L M L H0

10

20

30

40

Th
ro

ug
hp

ut
 (M

op
s)

test

0

10

20

30

40

St
al

l D
ur

at
io

n
(%

)Throughput Stall

(a) Throughput & Stall

0 5 10 15 20
Number of SST (#)

0%

25%

50%

75%

100%

C
D

F
(%

)

WST

Local L M L H

(b) Level 0 CDF

Local L M L H0.0K

2.5K

5.0K

7.5K

10.0K

En
er

gy
 (J

)

test

Local Offloading

(c) Energy

Fig. 5: Analysis of performance and energy consumption based on
the compaction offloading server: (a) Throughput, (b) Write stall
duration, and (c) Energy consumption. On the x-axis of (a) and (c),
’Local’ indicates local compaction on the Low server, while ’L→M’
and ’L→H’ represent compaction offloading from Low to Medium
and Low to High servers. In (b), circular markers indicate the point
where the CDF reaches 100%.

Medium server is sufficient to avoid write stalls on the Low
server.

To analyze the occurrence of write stalls in more detail,
Figure 5(b) presents the CDF results for Level 0 of the
Low server based on the compaction offloading server. While
L→M shows an average of approximately 3 more files than
L→H, both remain entirely below the WST (20). Figure 5(c)
presents the energy consumption results, showing that energy
amplification in L→H increased by 32% compared to L→M.

As a result, when compaction is offloaded from the Low
server, both Medium and High servers effectively eliminate
write stalls. However, due to the greater energy amplification
observed in High server, Medium server is more suitable.
Offloading to a High server results in performance-based over-
provisioning for compaction offloading.
Motivation. Theoretically, for the same amount of work,
higher CPU clock speeds result in higher voltage consump-
tion [22], leading to increased energy consumption according
to E = 1

2CV 2 [23], where C is capacitance and V is
CPU voltage. In other words, offloading compaction to a
server with higher computing power to accelerate compaction
inevitably leads to energy consumption amplification. How-
ever, we confirmed that avoiding compaction offloading over-
provisioning can reduce this amplification. Therefore, when
performing compaction offloading, the key to minimizing
energy consumption amplification lies in offloading to a server
that can mitigate write stalls while consuming less energy.

V. PROBLEM DEFINITION

In this section, we define the problem definition of miti-
gating write stalls and minimizing energy consumption am-
plification in LSM-KVS compaction offloading within edge
federations, based on preliminary experimental results and
motivation. The problem is defined under the following condi-
tions: (i) To reduce the total energy consumption amplification
caused by compaction offloading across all edge servers, it is
essential to minimize the number of compaction offloading on
each edge server. (ii) Compaction offloading should target edge
servers where compaction can be accelerated to prevent write
stalls on source servers, while avoiding over-provisioning of
compaction tasks on the target servers.

To achieve this, we first identify the compaction offloading
servers capable of avoiding write stalls. Since a write stall

occurs when the L0 size reaches the write stall threshold
(WST) before compaction is complete, it is dependent on the
L0 size and compaction processing time. Therefore, we set the
L0 size caused by compaction on each server.

Let N be the total set of edge server nodes, and let T cpt.-local
i

be the time to perform local compaction when compaction
occurs on a particular edge server node Ni.
Compaction Triggering Write Stall. The size of L0 after
T cpt.-local
i (SL0

i) is the sum of the current (Scurr
i) and the input

size (Sin
i) during T cpt.-local

i . We set Sin
i as a function of T cpt.

i

because it is workload-dependent. Si is defined as follows:

SL0
i (T cpt.-local

i) = Scurr
i + Sin

i (T
cpt.-local
i) (1)

If Si(T
cpt.local
i) reaches the write stall threshold size (SWST

i)
of Ni, a write stall will occur. The conditions for a write stall
to occur are as follows.

SL0
i (T cpt.-local

i) = Scurr
i + Sin

i (T
cpt.-local
i) ≥ SWST

i (2)

Offloading Candidate Server. To identify a compaction
offloading server that can prevent write stalls, we assume that
all servers are capable of compaction offloading and define
T cpt.-offload as the set of compaction offloading times. Since
T cpt.-offload depends on the computing power and resources of
each server, it can be expressed as a function of N . Thus,
foffload-time : N → T cpt.-offload. At this point, the subset of
servers, Nno-stall, that satisfy the conditions to prevent write
stalls is defined as follows.

Nno-stall =
{
Ni ∈ N,

∣∣ Tj ∈ T cpt.-offload, i ̸= j,

Scurr
i + Sin

i (Tj) < Swst
i

} (3)

Minimize Energy Consumption Amplification. Since the
energy consumption of compaction offloading is also depen-
dent on each server, let the set of compaction offloading
energy consumptions be denoted as Ecpt.-offload. Similarly,
Ecpt.-offload can be expressed as a one-to-one mapping function
foffload-energy : N → Ecpt.-offload with respect to N . The
compaction offloading target server, Ntarget, which consumes
the least energy, is defined as follows.

Ntarget = argmin
Ni

foffload-energy(Ni) (4)

For compactions occurring on each server (Ni), compaction
offloading to Ntarget satisfying the Equation 4 can minimize
the energy consumption amplification and reduce the energy
consumption of all servers.

VI. DESIGN OF ECO-KVS

A. Design Goals

The design goals of ECO-KVS are as follows, to reduce
write stalls and minimize energy consumption amplification
through an energy-aware compaction offloading mechanism.
Prevention of Compaction Offloading Over-Provisioning.
The ultimate goal of compaction offloading is to mitigate
write stalls by accelerating compaction. However, compaction

574

offloading involves energy consumption amplification, and
compaction offloading over-provisioning increases energy con-
sumption amplification. Therefore, avoiding compaction of-
floading over-provisioning reduces the energy consumption
amplification, which in turn reduces the overall energy con-
sumption of the edge cluster.
Prediction of Write Stall. Compaction offloading over-
provisioning occurs when a target server for offloading is
selected from the set Nno-stall, which satisfies Equation 3, but
the selected server has excessively high computing power. In
other words, to prevent over-provisioning, a server that can
accelerate compaction such that SL0 does not reach SWST after
the compaction offloading is completed should be chosen. To
achieve this, it is essential to predict when a write stall will oc-
cur based on the time point at which compaction is triggered.
This prediction allows for the identification of T cpt.-offload that
satisfies the conditions of Nno-stall. Therefore, by predicting
the timing of write stall occurrences, compaction offloading
can be directed to a server with appropriate computing power,
thereby avoiding compaction offloading over-provisioning.
Prediction of Compaction Time and Energy Consumption.
The acceleration of compaction through compaction offloading
is fundamentally based on the assumption that it can reduce
compaction processing time. In other words, to determine
whether compaction time is reduced and by how much through
compaction offloading, it is necessary to know the com-
paction time. Additionally, to assess the increase in energy
consumption caused by compaction offloading, it is essential
to predict the energy consumed during compaction. To address
this, ECO-KVS introduces a model that learns in real-time
based on data from each server, enabling the prediction of
compaction processing time and energy consumption.

B. ECO-KVS Architecture
Figure 6 illustrates the architecture of ECO-KVS. ECO-

KVS is designed with a Local System and a Global System to
globally manage compactions occurring locally on each edge
server. The Local System operates independently on every
edge server, while the Global System runs on the master
server, which acts as the coordinator among all edge servers.
The master server operates both the Global System and the
Local System. The Local System and Global System follow
a Producer-Consumer Model, functioning as the Producer and
Consumer, respectively.

1) Local System: The core function of the Local System is
to identify whether Equation 2 is satisfied and to determine
whether to perform compaction offloading. To achieve this, the
Local System is composed of three modules: Monitor, Local
Predictor, and Offloader, as shown in the gray area on the
right side of Figure 6. As explained in Section II-B, L0 write
stalls are influenced solely by the size of L0. Therefore, the
Local System considers only L0 compaction.
Local Predictor. The Local System needs to determine
T cpt.-local, the compaction processing time represented by Equa-
tion 1, whenever a compaction occurs1. To achieve this, the

1Hereafter, the index notation i is omitted.

Local System introduces a Local Predictor, which predicts
the compaction processing time based on the compaction size
included in the compaction log generated by the Local System.
The compaction model used in the Local Predictor is based on
our evaluation results and employs linear regression to express
the processing time as y = ax + b with respect to the com-
paction size. Here, a and b depend on the server’s computing
power and resources. Detailed reasoning and results supporting
this model configuration are provided in Section VII. Thus, the
Local System uses the Local Predictor to estimate T cpt.-local

based on the compaction size.
Monitor. Additionally, the Local System must ultimately
determine whether compaction offloading is necessary by
identifying whether Equation 2 is satisfied after the T cpt.-local

predicted by the Local Predictor. To achieve this, it is essential
to calculate Sin(T cpt.-local), which depends on Sin. The Local
System introduces a monitor that uses an exponential moving
average to analyze the trend of input ratios based on historical
input ratio values and determine Sin. Therefore, the Local
System identifies whether Equation 2 is satisfied by combining
the T cpt.-local predicted by the Local Predictor and the Sin

determined by the monitor.
Offloader. When it is determined by the Local Predictor
and Monitor that compaction offloading is required, the Of-
floader is responsible for requesting and executing compaction
ofloading to the Global System. When requesting compaction
offloading to the Global System, the Offloader passes as
parameters the size of the compaction and T cpt.-offload, that time
to avoid write stall using the Equation 2. Then, if the Global
System is given a suitable server that can avoid a write stall,
it will run compaction offloading to that server.

2) Global System: The Global System of ECO-KVS,
shown in the gray area on the left in Figure 6, is responsible
for finding target servers that minimize energy amplification
while avoiding write stalls for compaction offloading received
from the Local System. The Global System consists of three
modules: Scheduler, Global Predictor, and Tracker.
Scheduler. First, the Scheduler manages the compaction of-
floading requests received from the Local System as a request
queue. Since it can receive requests from multiple Local
Systems at the same time, it serializes them in the form of
a message queue and processes them in order. The Scheduler
manages the request queue to avoid concurrency problems,
but note that the time it takes for the Global System to find
a target server for compaction offloading is negligible, so the
request queue does not fill up to the size that processing is
delayed.
Tracker. The Tracker in the Global System performs the
following two functions to identify an appropriate target server
for the Local System: (i) It collects compaction data logs
from the Local System and forwards the data, including the
processing time and energy consumption for each server based
on compaction size, to the Global Predictor. The Global
Predictor uses the data provided by the Tracker to train the
compaction model and energy model. (ii) It monitors CPU
and network usage, which can affect compaction processing

575

Ntarget
= Server C

Local System

A
F

B
F

C
T

..

..
Server Table

Binary
Decision

Request Queue

Scheduler

Learning

B

Server A (Master)

Nno-stall

Tracker

Compaction Data
Server /

Compaction Size /
Energy Consumption

B/32MB/
1s/2W

D/96MB/
3s/8WC/64MB/

2s/3W

Update

Global System

Server C

Server N

…

Exec. Cpt. Offload

Collecting Compaction Data

Local Predictor

Compaction
ModelTcpt.-local = 3

Scurr+Sin(3) >

SWST

Tcpt.-offload ≤ 2 Monitor

Offloader

Sin(x)

Cpt. Size
: 64MB

Send Server : B
Cpt. Size : 64MB

Req. Time : 2sCompaction
Model

Energy Model

Server B

Global Predictor

4

5

6
Send Server : B

Cpt. Size : 64MB
Req. Time : 2s7

Server C

82

1

3

Fig. 6: An architecture of ECO-KVS. ECO-KVS consists of a Global System and a Local System.

time in the Local System, to manage a binary Server Table
that identifies whether compaction offloading is feasible. Only
servers with a True value in the Server Table can be selected
as target servers for compaction offloading.
Global Predictor. The Global System uses the Global Predic-
tor to find Nno-stall and Ntarget. The Global Predictor uses the
data from the Tracker to train the Compaction model and the
Energy model. Like the Local Model, it uses a linear regression
model and the detailed results are discussed in Section VII.

C. System Scenario

The operation scenario of ECO-KVS is explained using
Figure 6. Consider a situation where Server A is the master
among the edge servers and Server B requests compaction
offloading. 1 For the compaction size (64MB) that occurred
on Server B, use the Local Predictor to predict the com-
paction processing time T cpt.-local = 3. Also, use Monitor
to calculate Sin based on an exponential moving average.
If Scurr + Sin(T cpt.-local) ≥ SWST, a write stall occurs, so
compaction offloading is required to avoid write stalls. The
minimum time T cpt.-offload = 2 that a write stall can be avoided
is given by the Equation 2. 2 The T cpt.-offload is sent to the
Offloader, and 3 the Offloader sends a signal to the Global
System, including the compaction size and T cpt.-offload. 4 The
Global System’s Scheduler manages the requests from the
Local System in a request queue, and invokes the requests
dequeued when it is time to process them. 5 For the invoked
request, the Global Predictor is used to identify Nno-stall, a set
of servers capable of avoiding write stalls. 6 Among Nno-stall,
the target server Ntarget = Server C is selected to minimize
energy consumption amplification. 7 The Scheduler then
sends Ntarget to the Offloader in the Local System. 8 Finally,
the Offloader performs compaction offloading to the target
server. Following this ECO-KVS design scenario, each Local
System can minimize energy amplification while avoiding
write stalls. Consequently, the overall LSM-KVS performance
of the edge servers is improved, and energy consumption
amplification is reduced.

D. Implementation

ECO-KVS is implemented based on RocksDB v8.3.2.
Compaction offloading was implemented using StartV2() and
WaitForCompleteV2() provided for RocksDB’s Remote Com-
paction. Global and Local Systems are embedded in RocksDB
instances. On the Local System, Monitor uses GetProperty()

API of RocksDB to detect the MemTable size changes ev-
ery time window and calculate the input ratio based on
the exponential moving average. The time window is set
to 1 seconds. The Tracker in the Global System collects
ROCKS LOG INFO(), a compaction log generated in the
Local System upon the completion of a compaction. The
ROCKS LOG INFO() includes the compaction size and pro-
cessing time.

VII. EVALUATION

A. Experimental Setup

Setup. A heterogeneous server environment was configured
for the experiments, with servers classified into three tiers
(High, Medium, Low) based on their specifications. To sim-
ulate performance levels similar to edge servers, the number
of cores was limited. Detailed experimental specifications of
the servers are provided in Table I. Each server is connected
via a 10 Gbps network, enabling access to the storage of other
servers over the network. Also, perf was used to measure the
energy consumption of the CPU.

We evaluated the performance of three systems, one of
which is ECO-KVS.

• RocksDB: As the baseline, we used the widely adopted
LSM-KVS, RocksDB [24], version 8.3.2. RocksDB per-
forms only local compaction without compaction offloading.

• EdgePilot [11]: A state-of-the-art system designed to en-
hance LSM-KVS performance in edge federations through
compaction offloading. It is implemented using RocksDB
version 8.3.2.

• ECO-KVS: Our proposed system, implemented using
RocksDB version 8.3.2 to ensure a fair comparison with
the baseline and EdgePilot.

TABLE I: Server specifications. The number of cores refers
to the number of active cores.

Server CPU Memory Storage

High-1 Ryzen 9 7950X @ 4.5GHz
Enable 8 Cores

32 GB
(DDR 5)

Samsung 970 EVO
1 TB

High-2 Ryzen 9 7950X @ 4.5GHz
Enable 8 Cores

32 GB
(DDR 5)

Samsung 970 EVO
1 TB

Medium-1 Ryzen 5 2600 @ 3.4 GHz,
Enable 6 Cores

16 GB
(DDR4)

Samsung 970 EVO
512 GB

Medium-2 Ryzen 5 2600 @ 3.4 GHz
Enable 6 Cores

16 GB
(DDR4)

Samsung 970 EVO
512 GB

Low-1 Ryzen 7 1700 @ 1.5 GHz (downclocked)
Enable 4 Cores

8 GB
(DDR4)

Samsung 970 EVO
250 GB

Low-2 i7-6700 @ 1.5 GHz (downclocked)
Enable 4 Cores

8 GB
(DDR4)

Samsung PM981
512 GB

576

High
1

High
2

M
ed

ium
1

M
ed

ium
2

Low
1

Low
2

To
tal

0.0

0.5

1.0

1.5

N
or

m
.T

hr
ou

gh
pu

t

1.
08 1.
13

1.
09 1.
16

1.
15 1.
21

1.
09 1.
13

1.
00 1.
07 1.
10

RocksDB EdgePilot ECO-KVS

(a) Throughput

High
1

High
2

M
ed

ium
1

M
ed

ium
2

Low
1

Low
2

To
tal

0.0

0.5

1.0

1.5

N
or

m
.S

ta
ll

D
ur

at
io

n

0.
20

0.
15 0.

33
0.

19

0.
00

0.
00

0.
00

0.
00

1.
00

0.
34

0.
30

RocksDB EdgePilot ECO-KVS

(b) Stall Duration

High
1

High
2

M
ed

ium
1

M
ed

ium
2

Low
1

Low
2

To
tal

0.0

0.5

1.0

1.5

N
or

m
.E

ne
rg

y/
O

ps

1.
21

1.
15 1.

25
1.

18

0.
95

0.
91 1.

09
0.

91

0.
87

0.
89

0.
90

0.
88 1.

00 1.
04

0.
99

RocksDB EdgePilot ECO-KVS

(c) Energy/Ops

Fig. 7: FillRandom evaluation results: (a) Throughput, (b) Stall Duration, and (c) Energy per Operation.

High
1

High
2

M
ed

ium
1

M
ed

ium
2

Low
1

Low
2

To
tal

0.0

0.5

1.0

1.5

N
or

m
.T

hr
ou

gh
pu

t

1.
07 1.
13

1.
11 1.
16

1.
17 1.
22

1.
13 1.
16

1.
00 1.
09 1.
13

RocksDB EdgePilot ECO-KVS

(a) Throughput (Write)

High
1

High
2

M
ed

ium
1

M
ed

ium
2

Low
1

Low
2

To
tal

0.0
0.5
1.0
1.5
2.0
2.5

N
or

m
.T

hr
ou

gh
pu

t

1.
06

1.
08

1.
09

1.
08

2.
22

1.
34

2.
19

1.
25

1.
00 1.

41
1.

12

RocksDB EdgePilot ECO-KVS

(b) Throughput (Read)

High
1

High
2

M
ed

ium
1

M
ed

ium
2

Low
1

Low
2

To
tal

0.0

0.5

1.0

1.5

N
or

m
.E

ne
rg

y/
O

ps

1.
19

1.
08 1.

18
1.

09

0.
96

0.
90

0.
81

0.
72 0.

84
0.

85

0.
87

0.
86 1.

00
0.

98
0.

92

RocksDB EdgePilot ECO-KVS

(c) Energy/Ops

Fig. 8: ReadWhileWriting evaluation results: (a) Write Throughput, (b) Read Throughput, and (c) Energy per Operation.

Workload. For the evaluation, we executed the following three
workloads from db bench of RocksDB for 600 seconds each.
The key size was 16B, and the value size was 1000B.

• FillRandom : A 100% write workload.
• ReadWhileWriting : A workload consisting of 100% writes

and 100% reads, with writes and reads performed simulta-
neously by separate threads.

• MixGraph [25] : A workload designed to reflect real-world
characteristics of key-value stores, consisting of Put (25%),
Get (50%), and Seek (25%) operations. The value size
follows a Generalized Pareto distribution with a mean of
1000B.

B. Analysis of Performance and Energy Efficiency

FillRandom. Figure 7 shows the results of evaluating each
system with the FillRandom workload, normalized to the
baseline (RocksDB). Figure 7(a) shows the throughput, where
ECO-KVS achieved the highest throughput on both Medium
and Low servers. Specifically, on the Low-1, ECO-KVS
achieved a 21% improvement compared to RocksDB and a
6% improvement compared to EdgePilot. The total normal-
ized throughput value of ECO-KVS showed a 10% increase
compared to RocksDB and a 3% increase compared to EdgePi-
lot. ECO-KVS demonstrated higher performance compared
to EdgePilot, as it prevents over-provisioning of computing
resources used for compaction. This approach ensures a more
balanced distribution of compaction tasks and reduces the
number of offloading operations, which reduces compaction
offloading overhead and results in higher throughput compared
to EdgePilot.

Figure 7(b) shows the write stall duration normalized to
RocksDB. Across all servers, ECO-KVS consistently exhibits
the lowest stall duration. Notably, on the Low servers, no
write stalls occurred, and on the Medium-1, stall duration was
reduced by up to 85%.

Figure 7(c) presents the EpO for each system. For High
servers, both ECO-KVS and EdgePilot show higher EpO
compared to RocksDB, as they only perform additional com-
paction without offloading. However, for Medium and Low
servers, the EpO significantly decreased. ECO-KVS signifi-
cantly reduced EpO on Medium and Low servers, especially
on Medium-2 by up to 18% compared to EdgePilot. On
High servers, both ECO-KVS and EdgePilot increased EpO
due to additional computation offloading, but in total, ECO-
KVS was 5% lower than EdgePilot and lower than RocksDB.
EdgePilot over-provisions compaction, increasing compaction
offloading to high and medium servers with high computing
power, which increases EpO.
ReadWhileWriting. Figure 8 shows the performance of each
system under the ReadWhileWriting workload. Figure 8(a)
shows the write throughput of each system. The throughput
trends for each server are similar to those observed in the
FillRandom workload for the same reasons.

Figure 8(b) shows the read throughput of each system.
Both ECO-KVS and EdgePilot outperformed RocksDB on
all servers, especially on Low-1 showing a 34% and 122%
improvement compared to RocksDB, respectively. EdgePilot
has a higher read throughput than ECO-KVS because ECO-
KVS minimizes compaction over-provisioning to a level that
avoids write stalls, while EdgePilot only aims to maximize
compaction acceleration. However, this difference is most
pronounced on Low servers. Given that LSM-KVS is primarily
used in workloads with heavy write operations, the increase
in write performance and reduction in energy consumption
offered by ECO-KVS are of substantial value, even when
accounting for the slight decrease in read performance.

Figure 8(c) illustrates the normalized EpO for each sys-
tem under the ReadWhileWriting workload. Compared to
RocksDB, ECO-KVS achieved a reduction in EpO on
Medium and Low servers, with a maximum decrease of 28%
on Medium servers. Compared to EdgePilot, ECO-KVS also

577

High
1

High
2

M
ed

ium
1

M
ed

ium
2
Low

1
Low

2
To

tal
0.0

0.5

1.0

1.5

N
or

m
.T

hr
ou

gh
pu

t
RocksDB EdgePilot ECO-KVS

(a) Throughput

High
1

High
2

M
ed

ium
1

M
ed

ium
2
Low

1
Low

2
To

tal
0.0

0.5

1.0

1.5

N
or

m
.E

ne
rg

y/
O

ps

1.
03

1.
01 1.

11
0.

91 1.
06

1.
01

1.
02

0.
91 1.
00 1.
05

0.
99

RocksDB EdgePilot ECO-KVS

(b) Energy/Ops

Fig. 9: MixGraph evaluation results: (a) Throughput and (b) Energy
per Operation.

Compaction Size (GB)
0 0.5 1 1.5 2 2.5 3

D
ur

at
io

n
(s

)

0

10

20

30

40

50

(a)

Compaction Size (GB)
0 0.5 1 1.5 2 2.5 3En

er
gy

 C
on

su
m

pt
io

n(
kJ

)

0

2

4

6

(b)

0 25 50 75 100
Number of Compaction (#)

0

50

100

Er
ro

r R
at

e
(%

)

(c)

0 25 50 75 100
Number of Compaction (#)

0

50

100

Er
ro

r R
at

e
(%

)

(d)

Fig. 10: Distribution by compaction size for (a) execution time and
(b) energy consumption. Tracking the error rate changes in linear
regression model for (c) execution time and (d) energy consumption.

reduced energy consumption on High and Medium servers,
with a maximum reduction of 11% on High servers. The
total normalized EpO of ECO-KVS decreased by 8% and
6% compared to RocksDB and EdgePilot.
MixGraph. Figure 9 presents the evaluation results for the
MixGraph workload. Figure 9(a) shows the throughput of
each system. Since MixGraph is not a workload where write
stalls occur frequently, the performance differences among
the systems are minimal. Figure 9(b) presents the EpO for
each system. Compared to RocksDB, ECO-KVS reduced
energy consumption by up to 9% on Medium and Low
servers. Compared to EdgePilot, ECO-KVS achieved up to an
20% reduction in energy consumption on Medium and Low
servers. In total, ECO-KVS reduced total energy consumption
by 6% compared to EdgePilot. In a workload where write
stalls are infrequent, EdgePilot showed unnecessary energy
consumption amplification without performance improvement,
while ECO-KVS effectively avoided such energy consump-
tion amplification.

C. Analysis of Prediction Model

Lightweight Prediction Models. The architecture of ECO-
KVS includes two prediction modules: the Local Predictor and
the Global Predictor. The Local Predictor uses a compaction
execution time prediction model to determine whether to
perform compaction offloading. The Global Predictor utilizes
both a compaction execution time prediction model and a
compaction energy consumption prediction model to select the
target server for compaction offloading.

Before selecting the prediction models for compaction ex-
ecution time and energy consumption, we prioritized models
with minimal execution time. This is because the prediction
models are part of the critical path in the compaction offload-
ing process of ECO-KVS. Figure 10(a) and (b) illustrate the
changes in compaction time and energy consumption, as a
function of compaction size during L0 compaction. From Fig-

Actual Input Rate Predicted Input Rate

Time (s)0 50 100 150 200 250In
pu

t R
at

e
(k

IO
PS

)

0

20

40

60

(a) Actual input rate and predicted input rate

Time (s)0 50 100 150 200 250Er
ro

r R
at

e
(%

)

0

100

200

(b) Error rate of predicted input rate

Fig. 11: Tracking the input rate predict model: (a) Actual input rate
and predicted input rate (b) Error rate of the predicted input rate.

ure 10, we confirmed that both compaction execution time and
energy consumption increase proportionally with compaction
size. Based on this observation, we adopted linear regression
as the prediction method, as it is a simple model with the
lowest energy consumption and latency during prediction.
Accuracy of Prediction Model. Figure 10(c) and (d) illus-
trates the change in error rate for each model as the number of
training iterations increases. Figure 10(c) shows the error rate
of the compaction execution time prediction model. The model
was after 20 iterations, achieving an average error rate of 3.9%.
Figure 10(d) presents the error rate of the compaction energy
consumption prediction model, which exhibited an average er-
ror rate of 4.2% after the model was adapted. With only a small
amount of compaction data, the prediction model stabilized,
enabling highly accurate predictions of compaction time. As a
result, the time and cost required to apply ECO-KVS to newly
added servers in the edge federation are reduced, contributing
to the high scalability and low architectural complexity of
ECO-KVS.

D. Analysis of Input Rate Prediction

The Monitor in the Local System must predict the remaining
time until a write stall occurs to support the Local Predictor’s
assessment of write stall occurrence. To achieve this, the
Monitor employs a moving average, a method commonly used
for forecasting irregular real-time data, to predict the input rate
generated by edge devices.

Figure 11(a) shows the actual input rate and the input
rate predicted using the moving average method. Additionally,
Figure 11(b) presents the error rate between the actual values
and the predicted values. In this evaluation, we set the window
size to 3 seconds and the interval to 1 second for calculating
the moving average. These values are configurations and can
be adjusted based on the characteristics of the workload. When
the actual input rate changes, the predicted input rate converges
to the actual input rate within a short period of 3-5 seconds.
During this time, the error rate spikes significantly but quickly
decreases, stabilizing at an average error rate of approximately
3.6%. This scenario is a synthetic workload and the input rate
prediction shows high robustness to rapid input ratio changes,
so it should perform well in real-world workloads.

578

High
1

High
2

M
ed

ium
1

M
ed

ium
2
Low

1
Low

2
To

tal
0.0

0.5

1.0

1.5

N
or

m
.T

hr
ou

gh
pu

t

1.
04

1.
00 1.
04

1.
06

1.
02 1.
06

1.
05

1.
02 1.
05

1.
00

0.
98 1.
03

1.
00 1.
03

1.
01 1.
03

EdgePilot
ECO-KVS(Local)

ECO-KVS(Global)
ECO-KVS

(a) Throughput

High
1

High
2

M
ed

ium
1

M
ed

ium
2
Low

1
Low

2
To

tal
0.0

0.5

1.0

1.5

N
or

m
.E

ne
rg

y/
O

ps

0.
94

0.
92 0.
96

0.
95

0.
93

0.
84 1.

02
0.

99 1.
02

1.
02

1.
01

0.
98

1.
00

0.
97

0.
98

0.
95

EdgePilot
ECO-KVS(Local)

ECO-KVS(Global)
ECO-KVS

(b) Energy/Ops

Fig. 12: Effectiveness of Global System and Local System in ECO-
KVS: (a) Throughput and (b) Energy per Operation.

E. Analysis of the Impact of ECO-KVS Features

Figure 12 demonstrates the effectiveness of the approaches
proposed in ECO-KVS. ECO-KVS(Local) applies only the
Local System of ECO-KVS, while ECO-KVS(Global) ap-
plies only the Global System of ECO-KVS. The experiment
was conducted using the FillRandom workload.

Figure 12(a) illustrates the differences in throughput among
the systems. Compared to EdgePilot, ECO-KVS(Local),
ECO-KVS(Global), and ECO-KVS all maintained differ-
ences within the margin of error for High servers. For Medium
and Low servers, both ECO-KVS(Local) and ECO-KVS
demonstrated a 5% performance improvement. The selective
compaction offloading of the Local System reduces the load
on high-performance servers handling offloaded compactions,
significantly contributing to reduced write delays and increased
throughput. Figure 12(b) shows the EpO. While the differences
across individual servers vary slightly depending on the com-
paction offloading mechanism, in terms of total energy con-
sumption across the cluster, ECO-KVS(Local) achieved a 3%
reduction, ECO-KVS(Global) achieved a 2% reduction, and
ECO-KVS achieved a 5% reduction compared to EdgePilot.
Each system applied in ECO-KVS demonstrated a significant
effect on reducing energy consumption.

VIII. CONCLUSION AND FUTURE WORK

We proposed ECO-KVS, an energy-aware compaction
offloading mechanism for LSM-KVS in edge federations.
ECO-KVS optimizes compaction offloading by mitigating
energy consumption through selective decisions at the Local
and Global System. The Local System offloads compaction
when write stalls are anticipated, while the Global System
selects servers that minimize energy consumption and avoid
write stalls. ECO-KVS improves throughput by up to 21%
compared to RocksDB and enhances EpO by up to 18% over
EdgePilot with minimal overhead.

Our approach, although designed for edge federations, has
the potential to extend beyond edge environments. By lever-
aging its adaptive and energy-aware compaction strategies,
ECO-KVS can be applied to diverse infrastructures such as
data centers and cloud where LSM-KVS is widely utilized.
This opens opportunities for broader performance improve-
ments and energy optimization in various systems.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MSIT) (RS-2024-00453929) (RS-2024-00416666).

REFERENCES
[1] International Energy Agency (IEA), “Electricity 2024.” https://www.iea.

org/reports/electricity-2024, 2024.
[2] M. Vitali and B. Pernici, “A survey on energy efficiency in information

systems,” International Journal of Cooperative Information Systems,
vol. 23, no. 03, p. 1450001, 2014.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[4] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019.

[5] X. Cao, G. Tang, D. Guo, Y. Li, and W. Zhang, “Edge federation:
Towards an integrated service provisioning model,” IEEE/ACM Trans.
Netw., vol. 28, p. 1116–1129, jun 2020.

[6] Y. Yang, Q. Cao, and H. Jiang, “Edgedb: An efficient time-series
database for edge computing,” IEEE Access, vol. 7, pp. 142295–142307,
2019.

[7] X. Sun, J. Yu, Z. Zhou, and C. J. Xue, “Fpga-based compaction
engine for accelerating lsm-tree key-value stores,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pp. 1261–1272,
2020.

[8] M. Lim, J. Jung, and D. Shin, “Lsm-tree compaction acceleration
using in-storage processing,” in 2021 IEEE International Conference
on Consumer Electronics-Asia (ICCE-Asia), pp. 1–3, 2021.

[9] H. Huang and S. Ghandeharizadeh, “Nova-lsm: A distributed,
component-based lsm-tree key-value store,” in Proceedings of the 2021
International Conference on Management of Data, SIGMOD ’21,
p. 749–763, Association for Computing Machinery, 2021.

[10] P. Xu, N. Zhao, J. Wan, W. Liu, S. Chen, Y. Zhou, H. Albahar, H. Liu,
L. Tang, and C. Xie, “Building a fast and efficient lsm-tree store by
integrating local storage with cloud storage,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 125–134, 2021.

[11] J. Kim, H. Yoo, S. Lee, H. Byun, and S. Park, “Coordinating compaction
between lsm-tree based key-value stores for edge federation,” in 2024
IEEE 17th International Conference on Cloud Computing (CLOUD),
pp. 419–429, 2024.

[12] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy
aware edge computing: A survey,” Computer Communications, vol. 151,
pp. 556–580, 2020.

[13] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in 2013 Proceedings Ieee Infocom, pp. 1285–1293, IEEE, 2013.

[14] K. Haghshenas, B. Setz, Y. Blosch, and M. Aiello, “Enough hot air:
the role of immersion cooling,” Energy Informatics, vol. 6, no. 1, p. 14,
2023.

[15] W. E. Gnibga, A. Blavette, and A.-C. Orgerie, “Latency, energy and
carbon aware collaborative resource allocation with consolidation and
qos degradation strategies in edge computing,” in 2023 IEEE 29th
International Conference on Parallel and Distributed Systems (ICPADS),
pp. 2630–2639, IEEE, 2023.

[16] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The Log-Structured
Merge-Tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[17] J. Yu, S. H. Noh, Y. ri Choi, and C. J. Xue, “ADOC: Automatically
harmonizing dataflow between components in Log-Structured Key-Value
stores for improved performance,” in 21st USENIX Conference on File
and Storage Technologies (FAST 23), (Santa Clara, CA), pp. 65–80,
USENIX Association, Feb. 2023.

[18] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai, “Energy efficient
task allocation and energy scheduling in green energy powered edge
computing,” Future Generation Computer Systems, vol. 95, pp. 89–99,
2019.

[19] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1–17, 2018.

[20] G. Liao, X. Zhu, S. Larsen, L. Bhuyan, and R. Huggahalli, “Understand-
ing power efficiency of tcp/ip packet processing over 10gbe,” in 2010
18th IEEE Symposium on High Performance Interconnects, pp. 32–39,
2010.

[21] V. Villebonnet, G. Da Costa, L. Lefèvre, J.-M. Pierson, and P. Stolf,
“Energy aware dynamic provisioning for heterogeneous data centers,”
in 2016 28th international symposium on computer architecture and
high performance computing (SBAC-PAD), pp. 206–213, IEEE, 2016.

[22] I. Takouna, W. Dawoud, and C. Meinel, “Accurate mutlicore processor
power models for power-aware resource management,” in 2011 IEEE
Ninth International Conference on Dependable, Autonomic and Secure
Computing, pp. 419–426, IEEE, 2011.

[23] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power
cmos digital design,” IEICE Transactions on Electronics, vol. 75, no. 4,
pp. 371–382, 1992.

[24] Facebook, “Rocksdb: A persistent key-value store for fast storage
environment.” https://rocksdb.org, 2012.

[25] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in 18th
USENIX Conference on File and Storage Technologies (FAST 20),
pp. 209–223, 2020.

579

