
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 24, NO. 1, FEBRUARY, 2024 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2024.24.1.8 ISSN(Online) 2233-4866

Manuscript received Jun. 12, 2023; reviewed Oct. 4, 2023;

accepted Oct. 16, 2023
1Dept. of Computer Science and Engineering, Sogang University,

Seoul, Korea, 04107
2Smart Data Research Section, ETRI, Daejeon, Korea, 34129
3GlueSys & Anyang University, Seoul, Korea, 34129

E-mail : youkim@sogang.ac.kr (Corresponding author)

Provisioning CSD-based Storage Systems with
Erasure-coding Offloaded to the CSD

Hongsu Byun1, Safdar Jamil1, Junghyun Ryu1, Sungyong Park1, Myungcheol Lee2,
Sung-Soon Park3, and Youngjae Kim1

Abstract—While commercially available

Computational Storage Drives (CSD) have appeared,

it is challenging to build a CSD array-based storage

system due to the lack of storage provisioning tools

determining the performance and cost-effectiveness of

a storage system with CSDs. Therefore, CSDPLAN, a

storage provisioning tool to find the number of

performance-efficient CSDs when building a storage

system with CSD, has been proposed. However, the

effectiveness of CSDPLAN has only been evaluated

using specific big data analysis workloads, which are

not computationally intensive. In this work, we extend

CSDPLAN to propose CSDPLAN-EC, a CSD

provisioning tool for building storage systems with

computationally intensive erasure coding offloaded to

CSDs. Our evaluation shows that the optimal number

of CSDs running erasure coding in a storage system is

5 and that it decreases to 1 when the computational

power of the CSDs is improved by a factor of 5.

Index Terms—Storage system, computational storage

drive, erasure coding, analytical modeling and

simulation

I. INTRODUCTION

Computational storage drives (CSDs) [1-10] have

gained attention due to their hardware and software

characteristics, such as high computational power and

near-data processing while significantly reducing data

movement costs. The storage architects can design

storage systems that take advantage of these

characteristics of CSDs to offload various computational

tasks and provide high-end storage systems. Therefore,

with the advent of computational storage devices (CSDs),

there have been attempts to build storage systems using

multiple CSDs [11-13]. However, there has been a lack

of research on storage provisioning tools that evaluate

the effectiveness when a storage system is built with

CSDs rather than when storage is built based on an

existing HDD/SSD.

Recently, when building a storage system with CSDs,

a storage provisioning planning tool, CSDPLAN [14], that

can evaluate the effectiveness of CSDs according to the

work-load type has been proposed. CSDPLAN finds the

optimal number of CSDs (break-even point) that is more

effective than building a system based on traditional

HDD/SSD when building a storage system with CSDs

through a combination of mathematical models and

experimental evaluation. Storage architects or system

administrators can use CSDPLAN to determine whether it

is cost-effective to build a storage system with CSD for a

given workload.

On the other hand, erasure coding has recently been

widely applied in various storage systems as an effective

technique for increasing the availability of storage

systems [15, 16]. In general, erasure coding is a

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 24, NO. 1, FEBRUARY, 2024 9

compute-intensive task. Therefore, performing erasure

coding using the powerful CPU of the host may be faster

than performing erasure coding in a CSD, which has

weak computing power. However, if multiple CSDs can

cooperate to process multiple erasure coding tasks in

parallel, utilizing CSDs can be more effective.

Therefore, in this work, we propose CSDPLAN-EC for

CSD efficiency provisioning when building storage

systems using devices where erasure coding is offloaded

to CSD. CSDPLAN-EC extends CSDPLAN to take into

account the kernel executing erasure coding. We

evaluated the effectiveness of building a storage system

with CSD by performing an evaluation to find the break-

even point (BEP) of CSD for workloads that perform

various erasure coding using the CSDPLAN-EC. Our

extensive evaluation showed that when the number of

encoding blocks increased from 12 to 48, the BEP

increased by a maximum of 2´ to 5´ . However, if the

computational power of CSD is increased by 5´ , the

BEP drops from 5 to 1.

II. BACKGROUND

1. Scalable, Reliable Storage with Erasure Coding

Distributed storage systems have traditionally adopted

data replication to ensure high availability and durability.

Data replication has the disadvantage of requiring

additional storage capacity equal to the number of

replicas. As the amount of stored data increases

exponentially [17, 18], erasure coding is being adopted to

use storage capacity more efficiently. For erasure coding,

Reed-Solomon (RS) [19] codes are widely used [20-23].

The (n, k) RS code, composed of two parameters, n and

k, encodes one data block into n data blocks and k parity

blocks, and even if up to k blocks are lost, the original

data block can be restored. Therefore, data storage

capacity can be drastically reduced compared to the data

replication method.

2. Storage Capacity Provisioning Tool

In the past decade, several storage provisioning studies

have been conducted that aimed to design cost-effective

storage systems using SSD instead of HDDs [14, 24-27].

Narayanan et al. [24] conducted a study on the

significance of Solid-State Drives (SSDs) within

enterprise-level computing systems by analyzing actual

data traces from data centers. They delved into the cost-

efficiency comparisons across diverse arrangements of

SSDs and Hard Disk Drives (HDDs). Kim et al. [25]

explored the challenge of determining the most efficient

storage configuration for computing systems that utilize

both SSDs and HDDs, ensuring they fulfill performance

criteria. Furthermore, they examined the strategy behind

the fluid allocation of workloads in hybrid storage setups.

On the other hand, Byun et al. [14] delved into the

complexities of evaluating the cost-efficiency of

establishing a storage system that incorporates

Computational Storage Devices (CSDs). Given the

intricacies of CSDs, which are significantly more

advanced than SSDs, pinpointing the design prerequisites,

including the number of CSDs necessary for a

computational node based on a CSD array, poses a

considerable challenge. They scrutinized the

computational prowess and input/output processing

capabilities of prevalent CSDs, finding that (i) CSDs

exhibit a wide range of performance capabilities, distinct

from SSDs, and (ii) there are noticeable disparities in

performance trends even among CSDs themselves.

3. CSDPLAN: Capacity Planning

This section provides a brief introduction to CSDPLAN.

More details can be found in the CSDPLAN paper [14].

1) System Modeling: CSDPLAN [14] is a software tool

that uses a mathematical analysis model to guide system

and storage designers in constructing storage systems.

CSDPLAN’s model requires the I/O and computation

performance parameters of CSDs for a given application

as input and produces the minimum number of CSDs that

are cost-effective when compared to a conventional SSD-

based storage system as output.

CSDPLAN considers the execution time of an analysis

kernel (W) on two systems as follows.

• SSD-array system (n) (TSSD(n)-array): A system with a

host with a block-based SSD array. It executes the

analytic kernel using the n cores and memory of the

host.

• CSD-array system (TCSD-array): A system with a CSD

array on the host. It executes the analytic kernel using

the memory and CPU of the CSDs.

10 HONGSU BYUN et al : PROVISIONING CSD-BASED STORAGE SYSTEMS WITH ERASURE-CODING OFFLOADED TO …

The kernel’s execution time in an SSD-array system is

modeled as data transfer time (TSSD-tx) and computation

time (TSSD(n)-comp.). If M SSDs are equipped, and the data

required to run the kernel is uniformly distributed, the

data transfer time is reduced to 1/ M . However, the

computation is not reduced because it is performed by

one host CPU. However, the computation is not reduced

because it is performed by a single host CPU. Therefore,

the model for an SSD-array system is as follows.

() ()SSD txSSD -array SSD -comp

1
n n

T T T
M

-= × + (1)

In an SSD-array system with an array of M SSDs, the

data transfer time can theoretically be reduced by 1/ M .

However, if the bus connection becomes a bottleneck

[28], the reduction is no longer possible. Therefore,

CSDPLAN defines the number of SSDs (M) at which the

bottleneck occurs in an SSD-array system as follows.

limit

limit

 if ()

 else

M M k
M

k

<ì
= í
î

(2)

The model of CSD-array system is more efficient than

the SSD-array system because each CSD is equipped

with computing power, reducing both computation and

data transfer time to 1/ M . Furthermore, without a

shared bus between CSDs, there are no bottlenecks as the

number of CSDs increases. To extend the model of CSD-

array system, the following steps are required.

CSD-array CSD tx CSD comp

1 1
T T T

M M
- -= × + × (3)

2) Solver: Finding the Break-Even Point: CSDPLAN

deploys a solver to find the BEP for the number of CSDs

in a CSD-array-based node. CSDPLAN’s solve takes the

CSD’s performance characteristics as an input and

returns an optimal number of CSDs as an output, which

represents the following BEP where the CSD-array is

more effective than the conventional compute node.

Therefore, the following model represents the formula

for TSSD(n)-array to exceed TCSD-array.

() CSD-arraySSD -arrayn
T T>

()SSD tx CSD tx CSD compSSD -comp.

1 1 1
n

T T T T
M M M

- - -Þ × + > × + ×

Solve the above inequality for M. We omit the details

of the theorem.

()

CSD-tx CSD-comp. SSD-tx

SSD -comp.n

T T T
M

T

+ -
>

Therefore, the BEP (M) function based on the internal

I/O bandwidth and computational power of the CSD is as

follows.

()
()

CSD-tx CSD-comp. SSD-tx

CSD-tx CSD-comp.

SSD -comp.

,
n

T T T
S T T

T

é ù+ -
= ê ú
ê úê ú

1 (4)

III. CSDPLAN-EC

CSDPLAN aims to provide CSD effectiveness

guidelines based on workload-specific processing time

(data transfer time and computation time). However,

workloads performing continuous erasure coding are

dominated by computation time with minimal data

transfer time. Therefore, it is necessary to modify the

mathematical analysis model to apply erasure coding into

CSDPLAN. In this section, we propose CSDPLAN-EC,

which provides CSD effectiveness guidelines when

performing erasure coding on a storage server.

1. Overview of CSDPLAN-EC

Fig. 1 depicts an overview of CSDPLAN-EC. Like

CSDPLAN, CSDPLAN-EC is a software tool that provides

storage architects with a break-even point (BEP).

CSDPLAN-EC is specifically extended to apply CSDPLAN

1 (⌈ ⌉) is least integer function

Fig. 1. An overview of CSDPLAN-EC.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 24, NO. 1, FEBRUARY, 2024 11

when building a storage server that runs erasure coding.

The storage architect inputs into CSDPLAN-EC the

computing power of the host CPU and the CSD.

CSDPLAN-EC provides a BEP using a specialized

analysis model based on CSDPLAN when executing

erasure coding, which the storage architect can use as a

guideline.

2. Extended of CSDPLAN for EC Offloading

We explain the CSDPLAN-EC, which is the

methodology for using CSDPLAN when performing

erasure coding. Fig. 2(a) and (b) depict the execution

time phase when performing erasure coding for M data

blocks in the SSD system and CSD system equipped with

M number of devices, respectively. In each figure,

erasure coding time (TSSD-ec, TCSD-ec) is (n, k) RS code

execution time once. In other words, it means that

erasure coding is executed M times in each system

equipped with M number of devices. In Addition, it is

assumed that block data transfer is possible

asynchronously with erasure coding.

Therefore, in order to apply CSDPLAN modeling, as

shown in Fig. 2(a), the execution time when erasure

coding is performed for M blocks in an SSD system with

M SSDs is as follows.

() ()SSD txSSD -array SSD -ec

1
n n

T T M T
M

-= × + × (5)

On the other hand, in the CSD system equipped with

M number of CSDs, as shown in Fig. 2(b), parallel

processing is performed in each CSD, as follows.

CSD array CSD tx CSD ecT T T- - -= + (6)

To find the BEP, we derive the mathematical model as

follows:

() CSD-arraySSD -arrayn
T T>

()SSD tx CSD tx CSD compSSD -ec

1
n

T M T T T
M

- - -Þ × + × > +

By assumption, data transfer time is only required

once for the first time, so it is ignored for simplicity of

the model. Then,

() CSD ecSSD -ecn
M T T -Þ × >

()

CSD ec

SSD n -ec

T
M

T
-

é ù
³ ê ú
ê úê ú

(7)

Therefore, BEP is affected by the computational power

of the host CPU and CSD, and BEP changes according to

this are as follows.

()()
()

CSD ec
ec CSD ec SSD n ec

SSD n -ec

,
T

S T T
T

-
- -

é ù
= ê ú
ê úê ú

(8)

IV. EVALUATION

Our evaluation consists of two parts: one focuses on

evaluating the performance of commercial CSDs, while

the other concentrates on evaluating the effectiveness of

CSDPLAN when erasure coding offloaded to CSD.

1. Evaluation of Commercial CSDs

We extensively evaluated the computing and I/O

performance of two notable commercial CSDs, namely

SmartSSD and Newport CSD. The evaluation was

conducted on a host server that had dual AMD EPYCTM

7352 CPUs, 256GB DRAM and was running CentOS 7.9.

The comprehensive specifications of the host server and

the CSDs can be found in Tables 1 and 2.

We employed various methodologies to evaluate the

performance of CSDs, depending on their unique

hardware designs. To evaluate computing performance,

we developed in-house big data analysis kernels2 such as

Count (4.8 GB), Vector Addition (4.8 GB), Array Merge

2 The data size in parentheses is the workload size.

Fig. 2. Comparison of erasure coding execution time between
SSD system and CSD system.

12 HONGSU BYUN et al : PROVISIONING CSD-BASED STORAGE SYSTEMS WITH ERASURE-CODING OFFLOADED TO …

(4.8 GB), and Page Rank (0.2 GB). In contrast, we used

the FIO benchmark [31] for the host and Newport CSD

to measure external and internal I/O bandwidth. For

SmartSSD, we used a bandwidth measurement kernel

program [32]. To set up the FIO benchmark, we chose

LibAIO 3 and selected the direct option while

configuring it for a 1MB request size, 64 queue depth,

and sequential pattern.

1) I/O Bandwidth Capability: In Fig. 4, we compare

the internal and external I/O bandwidth of the CSDs. The

internal I/O bandwidth pertains to the rate at which the

device’s kernel accesses data in the NAND flash,

whereas external I/O bandwidth refers to the speed at

which the host’s kernel accesses data in the NAND flash.

For SmartSSD, we observed that the external bandwidth

for reads is roughly 1.18 ´ higher than the internal

bandwidth. On the other hand, for writes, the internal

bandwidth is about 1.36 ´ higher than the external

bandwidth. We attribute these constraints to the PCIe bus

connecting the SSD and the FPGA, which limits the

maximum internal bandwidth.

In contrast, when testing the Newport CSD, we made

3 Linux-native Asynchronous I/O Access Library

an unexpected observation: the external bandwidth for

both read and write workloads was remarkably higher

than the internal bandwidth by a factor of 2.28 and 1.33,

respectively. This finding suggests that the internal

bandwidth of commercial CSDs may be lower than their

external I/O bandwidth. Therefore, kernels executed

within the device cannot always rely on having higher

I/O bandwidth.

2) Computational Capability: We evaluated the

computing power of an SSD system (1) using a single

core of the CPU in the host server and two CSD systems

using SmartSSD and Newport CSD’s processing engine

when running the analysis kernel. Fig. 3 shows the

execution times of the CSD systems for analysis kernel

workloads normalized to the SSD system (1). For the

convenience of description4, the CSD system equipped

with SmartSSD and Newport CSD and the SSD system

(1) are expressed as CSD-S, CSD-N, and SSD(1),

respectively. We conducted this experiment with the

assumption that all data required for kernel execution

was already loaded entirely in DRAM, thus eliminating

any I/O time involvement. To maximize the performance,

CSD-S used all FPGA optimization techniques [33-36],

such as local memory buffer, loop pipelining, and

multiple compute units, while CSD-N adopted

multithreading.

Overall, both CSD-S and CSD-N are slower than the

SSD (1) for compute-intensive workloads. In all analysis

kernels, CSD-S was 1.6 ´ , 4.6 ´ , 28.1 ´ , and 15.4 ´

slower than SSD(1), respectively, and CSD-N was 1.7´ ,

6.3´ , 2.8´ , and 1.3´ slower than SSD(1), respectively.

Therefore, the representative commercial CSDs have low

computing power, and naively offloading computation to

the device might not be as effective as expected.

4 Hereinafter, we use SSD system, CSD system, SSD(n), CSD-S, and

CSD-N interchangeably.

Table 1. Detailed specification of the host server

CPU
AMD EPYCTM 7352

24 Cores, 2.3 GHz (Up to 3.2 GHz)

Socket 2 NUMA Node

Memory 256 GB DRAM DDR4 3200 MHz

OS Centos 7.92.2009 (Core) / Linux Kernel 4.14

Table 2. Detailed specification of the CSD

SmartSSD [11] Newport CSD [13]

Xilinx Kintex
Ultrascale+ KU15P

ARM Cortex-A53
1.0 GHz, 4 Cores

DRAM : 4 GB DDR4 DRAM : 8 GB DDR4

In-Storage
Processing

Engine
Clock : 300 MHz OS : Linux Kernel 4.14

Fig. 4. Bandwidth evaluation of SmartSSD and Newport CSD.Fig. 3. Comparison of the computational power of SSD system
and CSD system.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 24, NO. 1, FEBRUARY, 2024 13

2. Evaluation of CSDPLAN for Erasure Coding

We evaluated CSDPLAN when erasure coding offloaded

to CSD through the change in break-even point (BEP)

according to the size and number of blocks and the

computational power of CSD. The block size means the

size of the data block to execute RS code, and the

number of blocks is the number of blocks created after

the completion of RS code execution. When (n, k) RS

code is executed, n + k blocks are created.

We evaluated erasure coding on both the SSD system

and the CSD system with a single device. When running

erasure coding, the SSD system uses the host CPU

single-threaded, whereas the CSD system uses multi-

threading. In addition, to use the same erasure coding

library [37] in the Linux environment for both the SSD

system and CSD system, the CSD system used Newport

CSD running operating system.

1) Impact of Block Size: Fig. 5(a) shows the execution

time of the SSD system and CSD system according to the

block size when encoding 24 blocks with (16, 8) RS code.

As the block size increases, SSD(1) has little change

from 3 to 4 seconds, while CSD-N slows down

significantly from 4 seconds to 10 seconds. This is

because CSD’s computational power is weaker than that

of the host CPU, so it is more affected by the block size.

Fig. 5(b) shows the BEP related to Fig. 5(a). When the

block size is 16 MB, the BEP is 2, and when the block

size is 128 MB, the BEP increases to 3. Compared to the

block size increase, the BEP increase is insignificant.

2) Impact of Number of Blocks: Fig. 6(a) shows the

execution time for encoding 64 MB data blocks from 12

to 48 blocks. In (n, k) RS code, n = 2k, i.e., (8, 4) RS

code when encoding with 12 blocks. When the number of

blocks increases from 12 to 48, SSD(1) shows little

change from 3 seconds to 4.8 seconds, while CSD-N

increases significantly from 3.8 seconds to 22.3 seconds.

Fig. 6(b) shows the BEP change of CSD-N related to Fig.

7. BEP more than doubles from 2 to 5. In erasure coding,

it can be seen that BEP is more affected by the number of

blocks than the size of blocks.

3) Impact of Computational Power: Fig. 7 shows the

BEP as a function of computational power when

executing the (32, 16) RS code with a 64 MB data block.

Fig. 7(a) shows the BEP as the computational power of

the CSD increases. It can be seen that the BEP decreases

to 1 when the computational power is increased by a

factor of 5. Through this, it is possible to know the

required degree of computational power improvement of

CSD to find an appropriate BEP. Fig. 7(b) shows the BEP

with increasing computational power of the CSD and

decreasing computational power of the host CPU. In Fig.

7(a), the BEP becomes 1 when the CSD computational

power is increased by 5´ , but the BEP becomes 1 when

the CSD computational power is increased by 2.3´ , and

Fig. 5. Changes of erasure coding execution time and break-
even point according to block size.

Fig. 6. Changes of erasure coding execution time and break-
even point according to the number of blocks.

Fig. 7. Change in break-even point with computational power:
(a) Increase in computational power of CSD; (b) Increase in
computational power of CSD and decrease in computational
power of host CPU.

14 HONGSU BYUN et al : PROVISIONING CSD-BASED STORAGE SYSTEMS WITH ERASURE-CODING OFFLOADED TO …

the host CPU computational power is decreased by 2.3´ .

This shows that the BEP can be found by combining the

host CPU and CSD.

V. CONCLUSION

In this paper, we proposed CSDPLAN-EC for

evaluating the effectiveness of building a storage system

that offloads erasure coding to CSD. CSDPLAN-EC finds

the break-even point (BEP), which is the number of

CSDs in the CSD system that outperforms the existing

SSD-based storage system according to the number and

size of blocks in erasure coding. In our extensive

evaluation of CSDPLAN, when the number of encoding

blocks increased from 12 to 48, the BEP increased by a

maximum of 2 ´ to 5 ´ , and at this time, when the

computational power of CSD increased by 5´ , the BEP

decreased from 5 to 1.

ACKNOWLEDGMENT

This work was supported by Institute for Information

& communications Technology Planning & Evaluation

(IITP) grants funded by the Korea government (MSIT)

(No. 2021-0-00136, Development of Big Blockchain

Data Highly Scalable Distributed Storage Technology for

Increased Applications in Various Industries) and the

Korea government (MSIT) (No. 2020-0-00104,

Development of Low-latency Storage Module for I/O

Intensive Edge Data Processing).

REFERENCES

[1] Z. Ruan, T. He, and J. Cong, “INSIDER: Designing

In-Storage computing system for emerging High-

Performance drive,” in 2019 USENIX Annual

Technical Conference (USENIX ATC 19). Renton,

WA: USENIX Association, Jul. 2019, pp. 379-394.

[Online]. Available: https://www.usenix.org/

conference/atc19/presentation/ruan

[2] S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa,

and H. Yoshino, “Column-oriented Database

Acceleration using FPGAs ,” in Proceedings of

2019 IEEE 35th International Conference on Data

Engineering (ICDE), 2019, pp. 686-697.

[3] S. Xu, T. Bourgeat, T. Huang, H. Koim, S. Lee,

and Arvind, “AQUOMAN: An Analytic-Query

Offloading Machine,” in Proceedings of the 2020

53rd Annual IEEE/ACM International Symposium

on Microarchitecture(MICRO), 2020, pp. 386-399.

[4] D. Kwon, D. Kim, J. Boo, W. Lee, and J. Kim, “A

Fast and Flexible Hardware-based Virtualization

Mechanism for Computational Storage Devices,” in

Proceedings of the 2019 USENIX Annual Technical

Conference (ATC), 2021, pp. 729-743.

[5] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park,

“Enabling Cost-effective Data Processing with

Smart SSD,” in Proceedings of the 29th Symposium

on Mass Storage Systems and Technologies (MSST).

IEEE, 2013, pp. 1-12.

[6] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon,

J.-U. Kang, M. Kwon, C. Yoon, S. Cho, J. Jeong,

and D. Chang, “Biscuit: A Framework for near-

Data Processing of Big Data Workloads,” in

Proceedings of the 43rd International Symposium

on Computer Architecture, ser. ISCA ’16, 2016, p.

153-165.

[7] G. Koo, K. K. Matam, T. I, H. V. K. G. Narra, J. Li,

H.-W. Tseng, S. Swanson, and M. Annavaram,

“Summarizer: Trading Communication with

Computing near Storage,” in Proceedings of the

50th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO-50 ’17, 2017, p.

219-231.

[8] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W.

Wu, L. Ouyang, P. Wang, Y. Wang, R. Kuan, Z.

Liu, F. Zhu, and T. Zhang, “Polardb meets

computational storage: Efficiently support

analytical workloads in cloudnative relational

database,” in Proceedings of the 18th USENIX

Conference on File and Storage Technologies, ser.

FAST’20. USA: USENIX Association, 2020, p. 29-

42.

[9] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X.

Li, “Cognitive SSD: A Deep Learning Engine for

In-Storage Data Retrieval,” in Proceedings of the

2019 USENIX Annual Technical Conference (ATC).

USENIX, 2019, p. 395-410.

[10] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M.

King, S. Xu, and Arvind, “BlueDBM: An Appliance

for Big Data Analytics,” in Proceedings of the 42nd

Annual International Symposium on Computer

Architecture (ISCA). ACM, 2015, p. 1-13.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 24, NO. 1, FEBRUARY, 2024 15

[11] Samsung Electronics, “SmartSSD.” [Online].

Available: https://semiconductor.samsung.com/ssd/

smart-ssd/

[12] (2022) Los alamos national laboratory and sk hynix

to demonstrate first-of-a-kind ordered key-value

store computational storage device. Last Accessed:

November 28, 2022. [Online]. Available: https:

//discover.lanl.gov/news/0728-storage-device

[13] NGD Systems, “Newport CSD.” [Online].

Available: https://www.ngdsystems.com/solutions#

NewportSection

[14] H. Byun, S. Jamil, J. Han, S. Park, M. Lee, C. Kim,

B. Choi, and Y. Kim, “An analytical model-based

capacity planning approach for building csd-based

storage systems,” ACM Trans. Embed. Comput.

Syst., sep 2023, just Accepted. [Online]. Available:

https://doi.org/10.1145/3623677

[15] S. B. Balaji, M. N. Krishnan, M. Vajha, V.

Ramkumar, B. Sasidharan, and P. V. Kumar,

“Erasure coding for distributed storage: An

overview,” 2018.

[16] A. A. Helal, A. A. Heddaya, and B. B. Bhargava,

Replication techniques in distributed systems.

Springer Science & Business Media, 2005, vol. 4.

[17] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and

T. T’so, “Disks for data centers,” 2016.

[18] S. Ben-Yair, “Updating google photos storage

policy to build for the future,” The Keyword

Google Blog, 2020.

[19] I. S. Reed and G. Solomon, “Polynomial codes

over certain finite fields,” Journal of the society for

industrial and applied mathematics, vol. 8, no. 2,

pp. 300-304, 1960.

[20] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W.

Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang et

al., “f4: Facebook’s warm blob storage system,” in

Proc. of USENIX OSDI, 2014, pp. 383-398.

[21] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A.

Truong, L. Barroso, C. Grimes, and S. Quinlan,

“Availability in globally distributed storage

systems,” 2010.

[22] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D.

Borthakur, and K. Ramchandran, “A solution to the

network challenges of data recovery in erasure-

coded distributed storage systems: A study on the

facebook warehouse cluster,” in Presented as part

of the 5th USENIX Workshop on Hot Topics in

Storage and File Systems, 2013.

[23] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,

and C. Maltzahn, “Ceph: A scalable, high-

performance distributed file system,” in

Proceedings of the 7th symposium on Operating

systems design and implementation, 2006, pp. 307-

320.

[24] D. Narayanan, E. Thereska, A. Donnelly, S.

Elnikety, and A. Rowstron, “Migrating server

storage to ssds: analysis of tradeoffs,” in

Proceedings of the fourth European Conference on

Computer Systems, ser. EuroSys ’20, 2009.

[25] Y. Kim, A. Gupta, B. U. and. Piotr Berman, and A.

Sivasubramaniam, “HybridStore: A Cost-Efficient,

High-Performance Storage System Combining

SSDs and HDDs,” in Proceedings of the 19th

International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommuni-

cation Systems (MASCOTS). IEEE, 2011, pp. 227-

236.

[26] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A.

Sivasubramaniam, “Hybridplan: a capacity

planning technique for projecting storage

requirements in hybrid storage systems,” The

Journal of Supercomputing, vol. 67, no. 1, pp. 277-

303, 2014.

[27] D. Boukhelef, J. Boukhobza, K. Boukhalfa, H.

Ouarnoughi, and L. Lemarchand, “Optimizing the

cost of dbaas object placement in hybrid storage

systems,” Future Generation Computer Systems,

vol. 93, pp. 176-187, 2019.

[28] K. Latecki and M. Wawryk, “SPDK NVMe BDEV

Performance Report Release 22.01,” pp. 11-12,

February 2022. [Online]. Available:

https://ci.spdk.io/download/performance-reports/

SPDK nvme bdev perf report 2201.pdf

[29] Axboe, J, “Github—axboe/fio: Flexible i/o tester,”

2021. [Online]. Available: https://github.com/

axboe/fio

[30] ARM Xilinx, “P2P bandwidth Example,” 2021.

[Online]. Available: https://github.com/Xilinx/Vitis

Accel Examples/tree/master/host/p2p bandwidth

[31] ARM Xilinx, “Vitis Accel Examples,” Mar. 30,

2023. [Online]. Available: https://github.com/

Xilinx/Vitis Accel Examples

[32] ARM Xilinx. (2022) UG1416-Vitis-Documentation.

[Online]. Available: https://docs.xilinx.com/v/u/en-

16 HONGSU BYUN et al : PROVISIONING CSD-BASED STORAGE SYSTEMS WITH ERASURE-CODING OFFLOADED TO …

US/ ug1416-vitis-documentation

[33] ARM Xilinx, “UG1399-Vitis-HLS,” Mar. 30, 2023.

[Online]. Available: https://docs.xilinx.com/r/en-

US/ ug1399-vitis-hls

[34] ARM Xilinx, “Vitis Unified Software Platform,”

Mar. 30, 2023. [Online]. Available: https://docs.

xilinx.com/r/en-US/ug1393-vitis-application-

acceleration

[35] Intel, “Intelligent Storage Acceleration Library.”

[Online]. Available: https://github.com/intel/isa-l

Hongsu Byun received the BS

degree in computer science from

Sogang University, South Korea, in

2021. He is currently pursuing the

M.S. degree leading to Ph.D. degree

in integrated program with the

Department of Computer Science and

Engineering, Sogang University, Seoul. His research

interests include operating systems, file and storage

systems, and parallel and distributed systems.

Safdar Jamil received the BE degree

in Computer Systems Engineering

from Mehran University of

Engineering and Technology

(MUET), Jamshoro, Pakistan in 2017.

He is working toward the MS leading

to PhD integrated program degree in

the Department of Computer Science and Engineering,

Sogang University, Seoul, South Korea. His research

interests include scalable indexing data structures and

algorithms, NoSQL database, data deduplication and

high performance computing.

Junghyun Ryu received the BS

degree in computer science from

Kookmin University, Seoul, South

Korea, in 2021. He is currently

pursuing the M.S. degree with the

Department of Computer Science and

Engineering, Sogang University,

Seoul. His research interests include operating systems,

file and storage systems.

Sungyong Park is a professor in the

Department of Computer Science and

Engineering at Sogang University,

Seoul, Korea. He received his B.S.

degree in computer science from

Sogang University, and both the M.S.

and Ph.D. degrees in computer

science from Syracuse University. From 1987 to 1992, he

worked for LG Electronics, Korea, as a research engineer.

From 1998 to 1999, he was a research scientist at

Telcordia Technologies (formerly Bellcore), where he

developed network management software for optical

switches. His research interests include cloud computing

and systems, virtualization technologies, high

performance I/O and storage systems, and embedded

system software.

Myungcheol Lee (Member, IEEE)

received the BS and MS degrees in

computer engineering from

Chungnam National University in

1999 and 2001, respectively. He has

been working as a principal

researcher at Electronics and

Telecommunications Research Institute (ETRI), Daejeon,

South Korea since 2001. His research interests include

database management systems, distributed storage and

processing systems, distributed stream processing

systems, cloud computing, big data storage and

processing platforms, and blockchain storage systems.

Sung-Soon Park received the B.S.

degree in computer science from

Hongik University, in 1984, the

master’s degree in computer science

and statistics from Seoul National

University, in 1987, and the Ph.D.

degree in computer science from

Korea University, in 1994. He worked as a Lecturer (full-

time) at Korea Air Force Academy, from 1988 to 1990.

He also worked as a Postdoctoral Researcher at

Northwestern University, from 1997 to 1998. He is

currently a Professor with the Department of Computer

Science and Engineering, Anyang University, and also

the CEO of Gluesys Company Ltd. His research interests

include network storage systems and cloud computing.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 24, NO. 1, FEBRUARY, 2024 17

Youngjae Kim (Member, IEEE)

received the BS degree in computer

science from Sogang University,

South Korea in 2001, the MS degree

in computer science from KAIST in

2003, and the PhD degree in

computer science and engineering

from Pennsylvania State University, University Park,

Pennsylvania in 2009. He is currently an associate

professor with the Department of Computer Science and

Engineering, Sogang University, Seoul, South Korea.

Before joining Sogang University, Seoul, South Korea,

he was a R&D staff scientist at the US Department of

Energy’s Oak Ridge National Laboratory (2009-2015)

and as an assistant professor at Ajou University, Suwon,

South Korea (2015-2016). His research interests include

operating systems, file and storage systems, database

systems, parallel and distributed systems, and computer

systems security.

