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Abstract—While commercially available 

Computational Storage Drives (CSD) have appeared, 

it is challenging to build a CSD array-based storage 

system due to the lack of storage provisioning tools 

determining the performance and cost-effectiveness of 

a storage system with CSDs. Therefore, CSDPLAN, a 

storage provisioning tool to find the number of 

performance-efficient CSDs when building a storage 

system with CSD, has been proposed. However, the 

effectiveness of CSDPLAN has only been evaluated 

using specific big data analysis workloads, which are 

not computationally intensive. In this work, we extend 

CSDPLAN to propose CSDPLAN-EC, a CSD

provisioning tool for building storage systems with 

computationally intensive erasure coding offloaded to 

CSDs. Our evaluation shows that the optimal number 

of CSDs running erasure coding in a storage system is 

5 and that it decreases to 1 when the computational

power of the CSDs is improved by a factor of 5.

Index Terms—Storage system, computational storage 

drive, erasure coding, analytical modeling and 

simulation

I. INTRODUCTION

Computational storage drives (CSDs) [1-10] have 

gained attention due to their hardware and software 

characteristics, such as high computational power and 

near-data processing while significantly reducing data 

movement costs. The storage architects can design 

storage systems that take advantage of these 

characteristics of CSDs to offload various computational 

tasks and provide high-end storage systems. Therefore, 

with the advent of computational storage devices (CSDs),

there have been attempts to build storage systems using 

multiple CSDs [11-13]. However, there has been a lack 

of research on storage provisioning tools that evaluate 

the effectiveness when a storage system is built with 

CSDs rather than when storage is built based on an 

existing HDD/SSD.

Recently, when building a storage system with CSDs, 

a storage provisioning planning tool, CSDPLAN [14], that 

can evaluate the effectiveness of CSDs according to the 

work-load type has been proposed. CSDPLAN finds the 

optimal number of CSDs (break-even point) that is more 

effective than building a system based on traditional 

HDD/SSD when building a storage system with CSDs 

through a combination of mathematical models and 

experimental evaluation. Storage architects or system 

administrators can use CSDPLAN to determine whether it 

is cost-effective to build a storage system with CSD for a 

given workload. 

On the other hand, erasure coding has recently been 

widely applied in various storage systems as an effective 

technique for increasing the availability of storage 

systems [15, 16]. In general, erasure coding is a 
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compute-intensive task. Therefore, performing erasure 

coding using the powerful CPU of the host may be faster 

than performing erasure coding in a CSD, which has 

weak computing power. However, if multiple CSDs can 

cooperate to process multiple erasure coding tasks in 

parallel, utilizing CSDs can be more effective.

Therefore, in this work, we propose CSDPLAN-EC for 

CSD efficiency provisioning when building storage 

systems using devices where erasure coding is offloaded 

to CSD. CSDPLAN-EC extends CSDPLAN to take into 

account the kernel executing erasure coding. We 

evaluated the effectiveness of building a storage system 

with CSD by performing an evaluation to find the break-

even point (BEP) of CSD for workloads that perform 

various erasure coding using the CSDPLAN-EC. Our 

extensive evaluation showed that when the number of 

encoding blocks increased from 12 to 48, the BEP 

increased by a maximum of 2´ to 5´ . However, if the 

computational power of CSD is increased by 5´ , the 

BEP drops from 5 to 1.

II. BACKGROUND

1. Scalable, Reliable Storage with Erasure Coding

Distributed storage systems have traditionally adopted 

data replication to ensure high availability and durability. 

Data replication has the disadvantage of requiring 

additional storage capacity equal to the number of 

replicas. As the amount of stored data increases 

exponentially [17, 18], erasure coding is being adopted to 

use storage capacity more efficiently. For erasure coding, 

Reed-Solomon (RS) [19] codes are widely used [20-23].

The (n, k) RS code, composed of two parameters, n and 

k, encodes one data block into n data blocks and k parity 

blocks, and even if up to k blocks are lost, the original 

data block can be restored. Therefore, data storage 

capacity can be drastically reduced compared to the data 

replication method.

2. Storage Capacity Provisioning Tool

In the past decade, several storage provisioning studies 

have been conducted that aimed to design cost-effective 

storage systems using SSD instead of HDDs [14, 24-27].

Narayanan et al. [24] conducted a study on the 

significance of Solid-State Drives (SSDs) within 

enterprise-level computing systems by analyzing actual 

data traces from data centers. They delved into the cost-

efficiency comparisons across diverse arrangements of 

SSDs and Hard Disk Drives (HDDs). Kim et al. [25]

explored the challenge of determining the most efficient 

storage configuration for computing systems that utilize 

both SSDs and HDDs, ensuring they fulfill performance 

criteria. Furthermore, they examined the strategy behind 

the fluid allocation of workloads in hybrid storage setups. 

On the other hand, Byun et al. [14] delved into the 

complexities of evaluating the cost-efficiency of 

establishing a storage system that incorporates 

Computational Storage Devices (CSDs). Given the 

intricacies of CSDs, which are significantly more 

advanced than SSDs, pinpointing the design prerequisites, 

including the number of CSDs necessary for a 

computational node based on a CSD array, poses a 

considerable challenge. They scrutinized the 

computational prowess and input/output processing 

capabilities of prevalent CSDs, finding that (i) CSDs 

exhibit a wide range of performance capabilities, distinct 

from SSDs, and (ii) there are noticeable disparities in 

performance trends even among CSDs themselves.

3. CSDPLAN: Capacity Planning

This section provides a brief introduction to CSDPLAN. 

More details can be found in the CSDPLAN paper [14].

1) System Modeling: CSDPLAN [14] is a software tool 

that uses a mathematical analysis model to guide system 

and storage designers in constructing storage systems. 

CSDPLAN’s model requires the I/O and computation 

performance parameters of CSDs for a given application 

as input and produces the minimum number of CSDs that 

are cost-effective when compared to a conventional SSD-

based storage system as output.

CSDPLAN considers the execution time of an analysis 

kernel (W ) on two systems as follows.

• SSD-array system (n) (TSSD(n)-array): A system with a 

host with a block-based SSD array. It executes the 

analytic kernel using the n cores and memory of the 

host.

• CSD-array system (TCSD-array): A system with a CSD 

array on the host. It executes the analytic kernel using 

the memory and CPU of the CSDs.
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The kernel’s execution time in an SSD-array system is 

modeled as data transfer time (TSSD-tx) and computation 

time (TSSD(n)-comp.). If M SSDs are equipped, and the data 

required to run the kernel is uniformly distributed, the 

data transfer time is reduced to 1/ M . However, the 

computation is not reduced because it is performed by 

one host CPU. However, the computation is not reduced 

because it is performed by a single host CPU. Therefore, 

the model for an SSD-array system is as follows.

( ) ( )SSD txSSD -array SSD -comp

1
n n

T T T
M

-= × + (1)

In an SSD-array system with an array of M SSDs, the 

data transfer time can theoretically be reduced by 1/ M . 

However, if the bus connection becomes a bottleneck 

[28], the reduction is no longer possible. Therefore, 

CSDPLAN defines the number of SSDs (M) at which the 

bottleneck occurs in an SSD-array system as follows.

limit

limit

     if ( )

          else

M M k
M

k

<ì
= í
î

(2)

The model of CSD-array system is more efficient than 

the SSD-array system because each CSD is equipped 

with computing power, reducing both computation and 

data transfer time to 1/ M . Furthermore, without a 

shared bus between CSDs, there are no bottlenecks as the 

number of CSDs increases. To extend the model of CSD-

array system, the following steps are required.

CSD-array CSD tx CSD comp

1 1
T T T

M M
- -= × + × (3)

2) Solver: Finding the Break-Even Point: CSDPLAN 

deploys a solver to find the BEP for the number of CSDs 

in a CSD-array-based node. CSDPLAN’s solve takes the 

CSD’s performance characteristics as an input and 

returns an optimal number of CSDs as an output, which 

represents the following BEP where the CSD-array is 

more effective than the conventional compute node. 

Therefore, the following model represents the formula 

for TSSD(n)-array to exceed TCSD-array.

( ) CSD-arraySSD -arrayn
T T>

( )SSD tx CSD tx CSD compSSD -comp.

1 1 1
n

T T T T
M M M

- - -Þ × + > × + ×

Solve the above inequality for M. We omit the details 

of the theorem.

( )

CSD-tx CSD-comp. SSD-tx

SSD -comp.n

T T T
M

T

+ -
>

Therefore, the BEP (M) function based on the internal 

I/O bandwidth and computational power of the CSD is as 

follows.

( )
( )

CSD-tx CSD-comp. SSD-tx

CSD-tx CSD-comp.

SSD -comp.

,
n

T T T
S T T

T

é ù+ -
= ê ú
ê úê ú

1 (4)

III. CSDPLAN-EC

CSDPLAN aims to provide CSD effectiveness 

guidelines based on workload-specific processing time 

(data transfer time and computation time). However, 

workloads performing continuous erasure coding are 

dominated by computation time with minimal data 

transfer time. Therefore, it is necessary to modify the 

mathematical analysis model to apply erasure coding into 

CSDPLAN. In this section, we propose CSDPLAN-EC, 

which provides CSD effectiveness guidelines when 

performing erasure coding on a storage server.

1. Overview of CSDPLAN-EC

Fig. 1 depicts an overview of CSDPLAN-EC. Like 

CSDPLAN, CSDPLAN-EC is a software tool that provides 

storage architects with a break-even point (BEP). 

CSDPLAN-EC is specifically extended to apply CSDPLAN 

                                           
1 (⌈ ⌉) is least integer function

Fig. 1. An overview of CSDPLAN-EC.
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when building a storage server that runs erasure coding. 

The storage architect inputs into CSDPLAN-EC the 

computing power of the host CPU and the CSD. 

CSDPLAN-EC provides a BEP using a specialized 

analysis model based on CSDPLAN when executing 

erasure coding, which the storage architect can use as a 

guideline.

2. Extended of CSDPLAN for EC Offloading

We explain the CSDPLAN-EC, which is the 

methodology for using CSDPLAN when performing 

erasure coding. Fig. 2(a) and (b) depict the execution 

time phase when performing erasure coding for M data 

blocks in the SSD system and CSD system equipped with 

M number of devices, respectively. In each figure, 

erasure coding time (TSSD-ec, TCSD-ec) is (n, k) RS code 

execution time once. In other words, it means that 

erasure coding is executed M times in each system

equipped with M number of devices. In Addition, it is 

assumed that block data transfer is possible 

asynchronously with erasure coding.

Therefore, in order to apply CSDPLAN modeling, as 

shown in Fig. 2(a), the execution time when erasure 

coding is performed for M blocks in an SSD system with 

M SSDs is as follows.

( ) ( )SSD txSSD -array SSD -ec

1
n n

T T M T
M

-= × + × (5)

On the other hand, in the CSD system equipped with 

M number of CSDs, as shown in Fig. 2(b), parallel 

processing is performed in each CSD, as follows.

CSD array CSD tx CSD ecT T T- - -= + (6)

To find the BEP, we derive the mathematical model as 

follows:

( ) CSD-arraySSD -arrayn
T T>

( )SSD tx CSD tx CSD compSSD -ec

1
n

T M T T T
M

- - -Þ × + × > +

By assumption, data transfer time is only required 

once for the first time, so it is ignored for simplicity of 

the model. Then,

( ) CSD ecSSD -ecn
M T T -Þ × >

( )

CSD ec

SSD n -ec

T
M

T
-

é ù
³ ê ú
ê úê ú

(7)

Therefore, BEP is affected by the computational power 

of the host CPU and CSD, and BEP changes according to 

this are as follows.

( )( )
( )

CSD ec
ec CSD ec SSD n ec

SSD n -ec

,
T

S T T
T

-
- -

é ù
= ê ú
ê úê ú

(8)

IV. EVALUATION

Our evaluation consists of two parts: one focuses on 

evaluating the performance of commercial CSDs, while 

the other concentrates on evaluating the effectiveness of 

CSDPLAN when erasure coding offloaded to CSD.

1. Evaluation of Commercial CSDs

We extensively evaluated the computing and I/O 

performance of two notable commercial CSDs, namely 

SmartSSD and Newport CSD. The evaluation was 

conducted on a host server that had dual AMD EPYCTM

7352 CPUs, 256GB DRAM and was running CentOS 7.9. 

The comprehensive specifications of the host server and 

the CSDs can be found in Tables 1 and 2.

We employed various methodologies to evaluate the 

performance of CSDs, depending on their unique 

hardware designs. To evaluate computing performance, 

we developed in-house big data analysis kernels2 such as 

Count (4.8 GB), Vector Addition (4.8 GB), Array Merge 

                                           
2 The data size in parentheses is the workload size.

Fig. 2. Comparison of erasure coding execution time between 
SSD system and CSD system.
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(4.8 GB), and Page Rank (0.2 GB). In contrast, we used 

the FIO benchmark [31] for the host and Newport CSD 

to measure external and internal I/O bandwidth. For 

SmartSSD, we used a bandwidth measurement kernel 

program [32]. To set up the FIO benchmark, we chose 

LibAIO 3  and selected the direct option while 

configuring it for a 1MB request size, 64 queue depth, 

and sequential pattern.

1) I/O Bandwidth Capability: In Fig. 4, we compare 

the internal and external I/O bandwidth of the CSDs. The 

internal I/O bandwidth pertains to the rate at which the 

device’s kernel accesses data in the NAND flash, 

whereas external I/O bandwidth refers to the speed at 

which the host’s kernel accesses data in the NAND flash. 

For SmartSSD, we observed that the external bandwidth 

for reads is roughly 1.18 ´ higher than the internal 

bandwidth. On the other hand, for writes, the internal 

bandwidth is about 1.36 ´ higher than the external 

bandwidth. We attribute these constraints to the PCIe bus 

connecting the SSD and the FPGA, which limits the 

maximum internal bandwidth.

In contrast, when testing the Newport CSD, we made 

                                           
3 Linux-native Asynchronous I/O Access Library

an unexpected observation: the external bandwidth for 

both read and write workloads was remarkably higher 

than the internal bandwidth by a factor of 2.28 and 1.33, 

respectively. This finding suggests that the internal 

bandwidth of commercial CSDs may be lower than their 

external I/O bandwidth. Therefore, kernels executed 

within the device cannot always rely on having higher 

I/O bandwidth.

2) Computational Capability: We evaluated the 

computing power of an SSD system (1) using a single 

core of the CPU in the host server and two CSD systems 

using SmartSSD and Newport CSD’s processing engine 

when running the analysis kernel. Fig. 3 shows the 

execution times of the CSD systems for analysis kernel 

workloads normalized to the SSD system (1). For the 

convenience of description4, the CSD system equipped 

with SmartSSD and Newport CSD and the SSD system 

(1) are expressed as CSD-S, CSD-N, and SSD(1), 

respectively. We conducted this experiment with the 

assumption that all data required for kernel execution 

was already loaded entirely in DRAM, thus eliminating 

any I/O time involvement. To maximize the performance, 

CSD-S used all FPGA optimization techniques [33-36],

such as local memory buffer, loop pipelining, and 

multiple compute units, while CSD-N adopted 

multithreading.

Overall, both CSD-S and CSD-N are slower than the 

SSD (1) for compute-intensive workloads. In all analysis 

kernels, CSD-S was 1.6 ´ , 4.6 ´ , 28.1 ´ , and 15.4 ´

slower than SSD(1), respectively, and CSD-N was 1.7´ , 

6.3´ , 2.8´ , and 1.3´ slower than SSD(1), respectively. 

Therefore, the representative commercial CSDs have low 

computing power, and naively offloading computation to 

the device might not be as effective as expected.

                                           
4 Hereinafter, we use SSD system, CSD system, SSD(n), CSD-S, and 

CSD-N interchangeably.

Table 1. Detailed specification of the host server

CPU
AMD EPYCTM 7352

24 Cores, 2.3 GHz (Up to 3.2 GHz)

Socket 2 NUMA Node

Memory 256 GB DRAM DDR4 3200 MHz

OS Centos 7.92.2009 (Core) / Linux Kernel 4.14

Table 2. Detailed specification of the CSD

SmartSSD [11] Newport CSD [13]

Xilinx Kintex
Ultrascale+ KU15P

ARM Cortex-A53
1.0 GHz, 4 Cores

DRAM : 4 GB DDR4 DRAM : 8 GB DDR4

In-Storage
Processing

Engine
Clock : 300 MHz OS : Linux Kernel 4.14

Fig. 4. Bandwidth evaluation of SmartSSD and Newport CSD.Fig. 3. Comparison of the computational power of SSD system 
and CSD system.
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2. Evaluation of CSDPLAN for Erasure Coding

We evaluated CSDPLAN when erasure coding offloaded 

to CSD through the change in break-even point (BEP) 

according to the size and number of blocks and the 

computational power of CSD. The block size means the 

size of the data block to execute RS code, and the 

number of blocks is the number of blocks created after 

the completion of RS code execution. When (n, k) RS 

code is executed, n + k blocks are created.

We evaluated erasure coding on both the SSD system 

and the CSD system with a single device. When running 

erasure coding, the SSD system uses the host CPU 

single-threaded, whereas the CSD system uses multi-

threading. In addition, to use the same erasure coding 

library [37] in the Linux environment for both the SSD 

system and CSD system, the CSD system used Newport 

CSD running operating system.

1) Impact of Block Size: Fig. 5(a) shows the execution 

time of the SSD system and CSD system according to the 

block size when encoding 24 blocks with (16, 8) RS code. 

As the block size increases, SSD(1) has little change 

from 3 to 4 seconds, while CSD-N slows down 

significantly from 4 seconds to 10 seconds. This is 

because CSD’s computational power is weaker than that 

of the host CPU, so it is more affected by the block size.

Fig. 5(b) shows the BEP related to Fig. 5(a). When the 

block size is 16 MB, the BEP is 2, and when the block 

size is 128 MB, the BEP increases to 3. Compared to the 

block size increase, the BEP increase is insignificant.

2) Impact of Number of Blocks: Fig. 6(a) shows the 

execution time for encoding 64 MB data blocks from 12 

to 48 blocks. In (n, k) RS code, n = 2k, i.e., (8, 4) RS 

code when encoding with 12 blocks. When the number of 

blocks increases from 12 to 48, SSD(1) shows little

change from 3 seconds to 4.8 seconds, while CSD-N 

increases significantly from 3.8 seconds to 22.3 seconds. 

Fig. 6(b) shows the BEP change of CSD-N related to Fig.

7. BEP more than doubles from 2 to 5. In erasure coding, 

it can be seen that BEP is more affected by the number of 

blocks than the size of blocks.

3) Impact of Computational Power: Fig. 7 shows the 

BEP as a function of computational power when 

executing the (32, 16) RS code with a 64 MB data block. 

Fig. 7(a) shows the BEP as the computational power of 

the CSD increases. It can be seen that the BEP decreases 

to 1 when the computational power is increased by a 

factor of 5. Through this, it is possible to know the 

required degree of computational power improvement of 

CSD to find an appropriate BEP. Fig. 7(b) shows the BEP 

with increasing computational power of the CSD and 

decreasing computational power of the host CPU. In Fig.

7(a), the BEP becomes 1 when the CSD computational 

power is increased by 5´ , but the BEP becomes 1 when 

the CSD computational power is increased by 2.3´ , and 

Fig. 5. Changes of erasure coding execution time and break-
even point according to block size.

Fig. 6. Changes of erasure coding execution time and break-
even point according to the number of blocks.

Fig. 7. Change in break-even point with computational power:
(a) Increase in computational power of CSD; (b) Increase in 
computational power of CSD and decrease in computational 
power of host CPU.
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the host CPU computational power is decreased by 2.3´ . 

This shows that the BEP can be found by combining the 

host CPU and CSD.

V. CONCLUSION

In this paper, we proposed CSDPLAN-EC for 

evaluating the effectiveness of building a storage system 

that offloads erasure coding to CSD. CSDPLAN-EC finds 

the break-even point (BEP), which is the number of 

CSDs in the CSD system that outperforms the existing 

SSD-based storage system according to the number and 

size of blocks in erasure coding. In our extensive

evaluation of CSDPLAN, when the number of encoding 

blocks increased from 12 to 48, the BEP increased by a 

maximum of 2 ´ to 5 ´ , and at this time, when the 

computational power of CSD increased by 5´ , the BEP 

decreased from 5 to 1.
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