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ABSTRACT Spot Virtual Machines (Spot VMs) offer access to underutilized computing resources
at significant discounts, sometimes up to 90% off regular on-demand pricing. For budget-conscious
organizations, using clusters of Spot VMs is an effective strategy for training large-scale distributed deep
learning (DDL) models. However, the risk of preemption by cloud providers poses a challenge, as it
can result in the loss of unsaved data in memory and local storage. To mitigate this risk, one solution
involves using networked storage systems for checkpoints, though their low write throughput can slow
down training. An alternative approach is to use the memory of a remote, on-demand computing node for
temporary checkpoint storage, balancing data protection with training efficiency. In this paper, we propose a
novel approach, ACUTE, to optimize temporary checkpointing in the memory of on-demand nodes during
DDL training. ACUTE includes three key optimizations: 1) Check-Mem, which reduces memory copying
overhead on the training node; 2) Check-Trans, which accelerates checkpoint data transfer through parallel
processing; and 3) Check-Pack, which eliminates unnecessary data unpacking and repacking. Implemented
using PyTorch’s distributed data-parallel library, ACUTE was evaluated against two other checkpointing
schemes on AWS VM instances. Results show that ACUTE reduces makespan delay to nearly zero and
achieves, on average, 43.30% faster checkpointing compared to a baselinemulti-level checkpointing scheme,
without compromising the precision of Deep Neural Network (DNN) models.

INDEX TERMS Distributed deep learning, cloud computing, fault-tolerant systems, checkpoint and restart.

I. INTRODUCTION
Distributed Deep Learning (DDL) is an effective method
for training extensive Deep Neural Networks (DNNs) using
large datasets. This approach necessitates the deployment
of multiple computational resources, often GPUs, or a
network of interconnectedmachines. Through the application
of parallel processing methods such as data and model
parallelisms [1], [2], [3], [4], [5], [6], DDL efficiently
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tackles the substantial computational requirements of DNN
training, considerably shortening the time needed for
training relative to the use of a singular computational
resource.

Constructing a GPU-based cluster for comprehensive
training presents significant challenges and expenses, making
such endeavors less feasible for smaller organizations or
governmental agencies interested in conducting large-scale
DDL projects. In response to these constraints, public cloud
services emerge as a practical alternative, with leading
providers including Amazon AWS, Microsoft Azure, and
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Google Cloud Platform offering the necessary infrastructure
to support extensive DDL operations.

Leveraging public cloud services allows users to execute
DDL operations at reduced costs, eliminating the necessity
for on-site GPU clusters [7]. Cloud Service Providers (CSPs)
proffer a variety of options designed to meet diverse fiscal
requirements. While on-demand Virtual Machine (VM)
instances are available at standard rates, Spot VM instances
offer a more cost-effective solution, with discounts up to
90% off, notably with Amazon Web Services (AWS). This
pricing model attracts considerable interest from budget-
conscious entities, providing access to VMs of equivalent
specifications at significantly reduced costs. Spot VMs rep-
resent surplus idle computing capacities that CSPs leverage
to enhance their profit margins by optimizing resource
utilization.

Nonetheless, it is crucial to recognize the inherent
limitations of Spot VM instances, especially in terms of
their reliability and availability. The allocation of Spot
VMs is highly dependent on fluctuating market prices and
demand [8], which may lead to their abrupt termination
to repurpose resources for other clients. Consequently, this
allocation introduces a risk of unforeseen disruptions or
terminations of Spot VM instances by the CSP. Therefore,
deploying DDL tasks within this unstable Spot VM frame-
work frequently results in job failures, underscoring the
importance of weighing the benefits of cost savings against
the potential for service interruptions.

The Check and Restart mechanism plays a pivotal role in
mitigating disruptions during DDL training [2], [9]. It focuses
on the safeguarding of DNN model parameters and vital
states of the training process by storing them in persistent
storage. This strategy is essential for preserving the training
progress, ensuring that in the face of unforeseen interruptions
or failures, the process can resume precisely where it left off,
using the saved checkpoint data. This approach eliminates the
need to start over from the beginning of the training cycle,
offering a significant advantage in maintaining the continuity
of model training.

The frameworks PyTorch and TensorFlow, which are
extensively employed in DNN development, natively support
the checkpointing process. Despite this, the fundamental
implementation of checkpointing in these platforms can
introduce significant Input/Output (I/O) overhead, potentially
detracting from performance. For instance, consider a sce-
nario where a PyTorch user engages the torch.save()
function to execute checkpointing at the end of each epoch
in a DNN model’s training. Although this method effectively
secures the training progress against data loss, it also
increases the overall duration required to complete the
training–referred to as the makespan, primarily because of
the delays introduced by the I/O activities involved in saving
checkpoint data, thereby causing interruptions in the training
flow. More importantly, within the framework of Spot VM
clusters, both node-local memory and storage are vulnerable
to loss in the event of a Spot VM interruption.

Users can use network storage for checkpointing. How-
ever, we observed that, as outlined in Section III-B, the
network storage’s performance within the AWS Cloud
environment is slower than expected. This reduced speed
fails to meet the efficiency requirements for checkpointing,
a crucial element in the learning process. Consequently, this
leads to noticeable delays in saving data to remote storage,
resulting in extended checkpointing durations that could
negatively affect the entire training process.

As an alternative, the memory space of a reliable on-
demand VM can be leveraged supporting faster write speed
and reliability. We call this alternative a remote memory-
based, multi-level checkpointing scheme. In this scheme,
a neighboring on-demand VM serves as an intermediate
repository with persistent storage connected via a network.
This approach allows the stable on-demand VM’s memory
space to be used as a staging area for checkpointing, offering
the chance to utilize faster media for writing data. How-
ever, merely implementing this multi-level checkpointing
approach reveals further optimization opportunities.

In this paper, we propose ACUTE: Advanced Checkpoint-
ing in Unreliable DDL Training Environments. ACUTE is
a remote memory-based, multi-level checkpointing scheme
enhanced by three key optimization techniques (Check-Mem,
Check-Trans, and Check-Pack) as follows:
• Check-Mem: Checkpointing in the middle of the DDL

process involves dumping data from GPU memory to host
memory and then from host memory to the persistent
storage area. ACUTE seeks to minimize the delays
caused by memory copy during the training process by
overlapping the foreground deep learning processes with
I/O operations.

• Check-Trans: Transferring checkpoint data to the mem-
ory of a neighboring VM may require a high amount
of data communication over the network. To optimize
this checkpoint data communication, ACUTE applies
checkpoint data sharding and parallel transfer to minimize
communication overheads. This parallelized communica-
tion accelerates the process of transferring checkpoint data
to the memory space of neighboring on-demand VM.

• Check-Pack: ACUTE packs the checkpoint data only
once which avoids unnecessary additional unpacking and
repacking process. In a naive manner when using multi-
level checkpointing, every data communication accompa-
nies packing data right before sending. At the same time,
it also leads to unpacking of the data right after receiving.
However, on an intermediate level, unpacking of received
data and repacking of that data are never necessary, since
it just serves as temporary staging area. Therefore ACUTE
removes packing and unpacking overheads that can occur
during the data transfer via network communications. This
optimization decreases the stall time of user’s DDL process
by performing faster writing.
We developed ACUTE in PyTorch (v2.0.1+cu117) using

our own MPI package, specifically tuned from OpenMPI
version 5.0.0, to facilitate the transfer of checkpoint data

116892 VOLUME 12, 2024



Y. Cho et al.: Optimizing Multi-Level Checkpointing for DDL Workloads on Cloud Spot VM Clusters

to neighboring VMs. To best of our knowledge, we are
the first to propose the remote-memory based, multi-level
checkpointing strategy in a Spot VM cluster environment.
We conducted experiments on AWS using up to 16 Cloud
Spot VMs and 1 additional on-demand VM. The evaluation
results of 10 DDL training workloads demonstrate that
ACUTE showed near zero overhead due to the checkpointing
operation. With respect to the time to guarantee the persistent
save, ACUTE acheives 43.30% improvement in speed on
average compared to the baseline muliti-level checkpointing
scheme. Furthermore, there was no difference in accuracy
of DNN model between training using ACUTE and training
without checkpointing at all.

II. BACKGROUND
A. DISTRIBUTED DEEP LEARNING
Deep Learning (DL) is a powerful machine learning approach
that trains a Deep Neural Network (DNN) by optimizing its
learnable parameters [10]. The DL training process involves
multiple iterations, typically comprised of forward pass,
backward pass, and parameter update phase.

• Forward Pass: Input data is fed into the DNN through
the input layer, and it propagates through the network.
At the output layer, the network produces a computed
output based on the most recently updated parameters.

• Backward Pass: The computed output is compared with
ground truth labels, and a loss value is calculated. This
value is then propagated backward through the network,
computing gradients of the parameters with respect to the
loss value. It determines how each parameter should be
adjusted to minimize the universal loss value.

• Parameter Update: The computed gradients from the
backward pass are used to update the parameters of
the DNN. The parameters are adjusted in a direction
that reduces the loss value, typically using optimization
algorithms such as Stochastic Gradient Descent (SGD) or
its variants and so on.
This iterative cycle, so-called iteration, is repeated mul-

tiple times during the training to improve performance of
the DNN. Training the entire dataset at once, also known
as batch training, offers advantages in terms of convergence
speed and generalization of the DNN. However, it is often
constrained by memory capacity and may result in overfitting
issues. To overcome these limitations, it is common practice
to divide the dataset into smaller units called mini-batches.
The training process is then performed on these mini-batches.
After all the mini-batches complete an iterative cycle, that
constitutes an epoch.
In traditional DNN training, a single device, such as aGPU,

is typically used. However, when dealing with large-scale
datasets or larger DNN models, computational resources
of a single device may not be sufficient. To address this
problem, Distributed Deep Learning (DDL) techniques
are often employed, utilizing multiple GPUs or machines
to distribute the training workload. This approach enables

FIGURE 1. Data parallelism, one of the DDL methodologies.

parallel processing, reducing training time and allowing for
larger-scale training.

When the size of a mini-batch is extremely large, it may
lead to out-of-memory errors on a GPU device, making it
impossible to process an iteration for a single mini-batch.
In such cases, a mini-batch can be split and allocated across
multiple devices to train the DNN model. This technique of
partitioning a mini-batch into multiple GPUs and training
them in parallel is known as data parallelism. Some DNN
models such as emerging Large Language Model (LLM)
have such extraordinarily large sizes that they cannot fit on
a single GPU. In this case, a DNN model can be partitioned
across multiple GPU devices for distributed training, which
is known as model parallelism.

1) DATA PARALLELISM
In synchronous data parallelism, each GPU holds a replica of
the DNNmodel with the same content, but processes different
mini-batches [11]. In this work, we refer to synchronous
data parallelism as data parallelism. After distributing the
training of one mini-batch across multiple GPUs and
performing the forward pass, the gradients for each loss
value need to be synchronized during the backward pass.
This process is known as gradient averaging, and it usually
involves communications using a backend framework such
as Message Passing Interface (MPI) in PyTorch’s Distributed
Data-Parallel (DDP) and Horovod [3], [4]. As the dataset size
increases, using data parallelism provides an advantage in
scaling up the training data.

B. CLOUD COMPUTING AND SPOT VM INSTANCE
Cloud Service Providers (CSP) offer computing resources
to users in the form of various Virtual Machine (VM)
instance types. Tomaximize profits by utilizing idle resources
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more effectively, CSPs provide unclaimed or low-demand
resources as Spot VM instances. Users can purchase those in
a Spot market through a bidding process. Prices dynamically
fluctuates by supply and demand. The prominent CSP include
AWS, MS Azure, and GCP. To start Spot instances on AWS
as an example, users can either directly create Spot instance
requests or automatically create those through Amazon EC2.

General on-demand VMs are run in a stable manner with
higher fixed prices. However, depending upon policies of the
CSP, Spot VM instances can be preempted at any time when
there is high demand or supply pressure for those resources.
For example, in the case of Google Cloud Platform (GCP),
preemption of Spot VMs is reported to occur at least once
every 24 hours [7]. While there is an advantage of accessing
these resources at a lower cost, users need to be aware that
Spot VM instances are temporarily allocated, and the CSP can
reclaim the resources unexpectedly. Therefore, when running
repetitive tasks, it is crucial to prepare for an unexpected
preemption. In this paper, we call this hazard the preemption
hazard. We further explain this hazard and the strategy to
avoid the data loss in the following section III.

C. MULTI-LEVEL CHECKPOINTING SCHEME
The checkpoint/restart strategy is one of the techniques
used to provide fault tolerance in preparation for sudden
system failure when performing a simulation program with
a long run time typically in High Performance Computing
(HPC). This strategy may be accompanied by a delay in
the original task makespan, because I/O traffic that writes
checkpoint data to storage occurs frequently.

To address this problem, a multi-level checkpointing
scheme that writes checkpoint data with multiple staging
hierarchies is often used [12], [13]. By utilizing this scheme,
makespan delay can be decreased by first writing to media
with a faster write speed. The system can flush checkpoint
data later to persistent media with a slower write speed. This
technique can be used not only for simulation workloads in
HPC but also for DL workloads [1], [14].

This study also uses a multi-level checkpointing scheme
to provide fault tolerance against preemption hazards that
may occur in DDLworkloads. However, popular open source
DDL frameworks such as PyTorch DDP or Horovod provide
only single-level checkpointing in an API. Additionally,
multi-level checkpointing can be implemented in various
ways depending on what media is used as a staging
heirarchy. For example, when configuring a cluster to
perform distributed tasks, thememory space of neighboring
nodes can be used as the primary first staging area. This
study directly implements and uses it as a baseline by using
the open source MPI framework.

III. MOTIVATION
This work is motivated by three factors: (i) the need
for a checkpointing method to provide fault tolerance to
DDL jobs against the preemption hazard when using cloud
Spot VMs to form a cluster, (ii) particularly low write

performance of network storage in cloud environments, and
(iii) several optimization opportunities when using multi-
level checkpointing scheme on top of DDL workloads.

A. UNSTABLENESS OF CLOUD SPOT VM CLUSTER
A Spot VM is a type of cloud virtual server that offers users
a cost-effective option due to its low pricing or even free
usage. However, Spot VMs are subject to preemption based
on fluctuations in cloud service prices, which can pose certain
challenges. Preemption refers to the termination of a Spot VM
instance by the CSP when the demand for resources exceeds
the available supply. When a Spot VM instance is preempted,
any data stored in the local memory and local storage is lost.
This situation is analogous to a system failure that happens
on a typical server. The most generally used method to avoid
this hazard is to apply a checkpoint/restart strategy.
AWS can terminate Spot instances when there is an

increase in demand or a decrease in supply [15]. If a user sets
a configuration when using a portion of instance types, AWS
sends a termination notice to the instances 2 minutes before
the actual termination [16]. Therefore, users can establish
protective measures if they want to prepare for potential
terminations. For example, they can write a script to save
the DNN parameters and DDL training context, which is
handled as checkpoint data, at regular intervals during the
termination notice period [17].

However, a grace period of 2 minutes is insufficient to
save DDL checkpoint data effectively. If the saving process is
guaranteed to complete within the grace period, it is obvious
that there is no problem to simply trigger the saving script
right after the notice from AWS. However, if the training
process is in the middle of a parameter update phase, DNN
parameters are just going to be overwritten. That makes it
meaningless to interrupt that process (if possible) and save
DNN parameters which are supposed to be updated to other
values. Even if a checkpointing script can wait for the training
process to finish the parameter update phase, 2minutes would
be gone before it could initiate a checkpointing process.
Therefore, 2 minutes can hardly provide any appropriate
opportunity to save checkpoint data.

B. LOW WRITE PERFORMANCE OF CLOUD STORAGE
Checkpointing is a commonly employed technique in dis-
tributed computing to facilitate failure recovery and ensure
software availability. However, as previously mentioned,
storing data associated with the states of a DNN model
on local storage of a Spot VM can be risky with possible
data loss occurring. On the other hand, cloud-based VM
instances have the advantage of being able to utilize network
storage connected to the cloud network. This advantage
enables users to perform checkpointing to network storage,
which offers improved persistence compared to Spot VM
local storage. Nonetheless, a significant challenge arises
from the relatively low write performance of cloud storage
services.
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FIGURE 2. Write throughput measurements of in-house testbed and AWS
storage. We used 16 writer threads.

1) AWS CLOUD STORAGE PERFORMANCE
To empirically support the claim that cloud performance is
a magnitude lower compared to on-premises local testbed,
we performed write performance evaluation using the
FIO [18] benchmark across various storage configurations
in our local testbed and AWS cloud. Specifically, we used
g4dn.xlarge GPU VM instance of AWS. The experimen-
tal setup involved executing a total of 16 writing threads with
each thread performing 4KB block writing. The execution
time for each experiment was set to 60 seconds.

For our local in-house testbed, we used two storage setups:
a local SSD device with an ext4 file system mounted, and
an SSD mounted with NFS utilizing the NFSv4 protocol
on a 1G network. The hardware specifications are listed in
Table 1. In the case of the NFS configuration, we measured
the aggregate write throughput by simultaneously writing
to the storage from a single node, two nodes, and four
nodes. This approach allowed us to gauge the scalability and
performance of theNFS-mounted SSD acrossmultiple nodes,
providing a comprehensive understanding of its capabilities.
Similarly, for evaluating the write performance of AWS
storage, specifically Elastic Block Store (EBS) and Elastic
File System (EFS), we employed a comparable methodology
as we did earlier on the NFS in-house testbed.

Figure 2 shows the results. Notably, the AWS cloud storage
exhibited an average 90% lower write performance compared
to the storage in local testbed for all cases. In particular, when
utilizing a single thread, the default EBS storage provided by
AWS on the g4dn.xlarge instance showed a 98% slower
write performance compared to the local SSD. These findings
demonstrate the need to utilize another media space with a
fast write speed. As a solution, we suggest memory space
of a remote node in this paper.

C. TOWARDS EFFICIENT MULTI-LEVEL CHECKPOINTING
The previous discussion highlighted the surprisingly low
write performance of AWS cloud storage, posing an I/O

TABLE 1. In-house testbed storage node specifications.

bottleneck for DDL applications relying on synchronous
checkpointing.

To address these kinds of challenges, existing DL
checkpointing methods have proposed two techniques [1],
[14]. The first technique involves asynchronous I/O, where
the performance degradation resulting from I/O is mit-
igated by parallel processing of threads responsible for
storing in-memory data of model parameters needed for
recovery. This technique aims to hide the I/O-related
performance impact. The second technique aims to reduce
I/O time by leveraging the high bandwidth and ultra-
low-latency local SSD. However, both of these methods
primarily rely on resources of the node’s local SSD for
checkpointing.

To address these limitations, we adopt remote memory-
based multi-level checkpointing scheme. In our approach,
checkpointing is performed with remote memory by utilizing
a stable on-demand VM as one level of a heterogeneous
store hierarchy, thereby eliminating dependency on Spot VM
local resources. Our work especially focuses on how to
further optimize this multi-level checkpointing scheme.
To optimize checkpointing performance and minimize the
overhead due to the checkpointing, we address the following
questions.

• Can we resume the training process before the checkpoint-
ing process ends completely?

• How can we utilize multi-node parallelism in performing
checkpointing of data-parallel DDL?

• Is there any unnecessary packing and unpacking proce-
dures while the checkpoint data passes through heteroge-
neous multi-levels of store hierarchy?

The optimization details about our proposed questions come
in the subsection IV-D.

IV. DESIGN
In this section, we first explain the target architecture of the
Spot VM cluster that performs DDL training. Each level is
defined to further elaborate the process of the checkpoint data
transfer. Next, we explain the remote memory-based multi-
level checkpointing scheme that we consider as a baseline.
Last, we describe design principles and optimization of the
checkpointing in detail.

A. TARGET ARCHITECTURE
Figure 3 shows the target architecture for the proposed
approach in this study. In this architecture, a Spot VM
cluster offers multiple computing resources to the DDL
workload. During the training, the cluster periodically sends
the in-memory checkpoint data of the DNN model to the
memory space of a peer VM utilizing network transfer.
The peer VM is an on-demand VM which ensures stability,
so it will not be suddenly preempted like a Spot VM. And
then, it asynchronously flushes the checkpoint data from
its own memory space to a cloud storage service to ensure
persistence.
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FIGURE 3. Target architecture of the multi-level cloud DDL system
supporting fault-tolerance.

We define levels in this target architecture.

• Level 0 (Lv.0) is a Spot VM cluster’s memory space
where a DDL application runs. Train nodes compose the
cluster.

• Level 1 (Lv.1) is a peer VM’s memory space that holds
the checkpoint data of the DDL application temporarily but
also reliably. Since this remote node is created as an on-
demand VM, it is safe from preemption. A remote node is
the peer VM.

• Level 2 (Lv.2) is a cloud storage service which stores
the checkpoint data persistently. NFS-based file system is
mounted on the storage. The service can be set by both
local volume of Lv.1 node or external storage service.

B. BASELINE MULTI-LEVEL CHECKPOINTING SCHEME
The train nodes are composed of three modules: Trainer,
Copier, and Sender, as depicted in Figure 3. These modules
are responsible for transferring the checkpoint data from Lv.0
to Lv.1. Trainer is an abstract of DDL training process. Copier
dumps GPU-memory data to the host memory. Sender takes
charge of sending checkpoint data to the remote node.

Meanwhile, the remote node consists of three modules:
Receiver, Master, and Flusher. These modules are used to
store the checkpoint data passed from Lv.0 to Lv.2. Master
orchestrates whole sequence of receiving checkpoint data and
flushing it. Receiver communicates with Sender by a 1:1
mapping to receive data. Flusher takes charge of collating and
flushing the checkpoint data as a file to Lv.2 storage. Lv.2
represents the persistent storage, where the checkpoint files
are stored at last.

We have identified three potential bottlenecks in the multi-
level checkpointing scheme above: (i) the process during
which the Copier dumps the data, (ii) the process during
which the Sender communicates with the Receiver over
network, and (iii) the process during which the Flusher
flushes checkpoint data in a buffer to the storage. In the
following subsections, we will explain how to address these
bottlenecks.

C. DESIGN PRINCIPLES
Now, we introduce the design approach of ACUTE.
ACUTE’s key design principles are as follows:

• Quick persistence guarantee:ACUTE aims tominimize
the risk of losing trained contents of a DNN model
due to instance preemption in an unreliable Spot VM

FIGURE 4. Illustration of checkpointing process in ACUTE. Serialization
means the process of dumping the checkpoint data from GPU memory to
Host memory on Lv.0.

environment. To achieve this minimization, checkpoint
data should be saved in the persistent storage area as
quickly as possible.

• Minimum delay in foreground DDL training: ACUTE
does not want to interleave too much stall time to protect
users from DNN model loss. It aims to minimize the stall
by resuming the training process as soon as possible.

• No change in training semantic: ACUTE optimizes
the execution of checkpointing operations through multi-
threading. Our aim is to ensure that there are not any
changes in the training semantics of the DDL workload
that could negatively impact accuracy. ACUTE prevents
the parameters of the DNN model from becoming stale by
avoiding any overlaps between parameter update phase of
the foreground training process and dumping in-memory
checkpoint data of the background checkpointing process.

• Correct and portable save file:ACUTE aims to achieve
accurate and seamless recovery of saved DNN models
when resuming a DDL application after preemption.
Checkpoint data is to be loaded on a resumed DDL
application by using existing popular APIs. Furthermore,
even in DDL applications that do not utilize ACUTE, any
checkpoint data stored through ACUTE can be loaded in a
compatible manner, i.e. preserving portability.

D. OPTIMIZATION OF MULTI-LEVEL CHECKPOINTING
SCHEME
Figure 4 illustrates the checkpointing process which occurs
between the end of an epoch and the start of the next epoch
in a foreground DDL training process. Let’s consider the
scenario where the nth checkpointing is in progress.

With ACUTE, the checkpoint data can be asynchronously
dumped from GPU memory to host memory right after
the nth epoch ends. This overlapping allows for the forward
pass and backward pass of the (n+1)th epoch’s first iteration
to proceed simultaneously.

Next, the data dumped into the host memory is transmitted
to the remote node through MPI communication. During
this process, ACUTE performs data sharding and parallel
transfer optimization. It splits the checkpoint data on each
train node of a cluster and sends one piece to a remote node in
parallel. In this paper, this piece is called a checkpoint shard.

With a normal MPI protocol, once transmitted data arrives,
it is unpacked on the memory space of the receiver side.
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However, with ACUTE, it deliberately skips unpacking.
Thus, it also avoids the accompanying re-packing procedure
right before the flush to the Lv.2 storage. By avoiding
packing and unpacking the checkpoint data on the remote
node, unnecessary overhead can be eliminated.

Finally, the checkpoint data is flushed to the Lv.2 storage.
The process of flushing is completely separated from
the foreground training process. It periodically flushes the
packed checkpoint data to the storage ensuring that it does
not impact the training process and makespan at all.

We provide detailed explanations of each optimization
technique below.

• Check-Mem: memory copy overhead reduction
Train nodes in Lv.0 dumps GPU-memory data to the host
memory. It also transmits checkpoint data to Lv.1 using
MPI. If these processes are performed naively, a stall
occurs in the foreground training process. To minimize
the additional makespan increment with ACUTE, the
training thread uses multithreading to trigger the GPU-
memory dumping and the transfer of checkpoint data
without stopping the training. This overlap can avoid a
possibly lengthy checkpointing stall in a DDL training
process.

• Check-Trans: acceleration of checkpoint data commu-
nication through parallel transfer
ACUTE optimizes the transfer of checkpoint data from Lv.0
to Lv.1 by parallelizing it. Checkpoint data transfer time
is reduced by sending small checkpoint shards in parallel
rather than making one train node take full responsibility
for the transfer of the entire checkpoint data. In the case that
multiple GPUs are in a train node, ACUTE only transfers
the checkpoint data from one GPU. The remote node of
Lv.1 launches the same number of communication threads
as the number of shards. So each thread is in charge of
receiving one shard. Fragmented checkpoint shards are
to be merged through a join operation right before the
flush thread performs flushing. Through this operation,
it becomes one entire file. It allows checkpoint data to be
created in a portable format file that can be used in an
existing framework API, PyTorch load().

• Check-Pack: removal of unnecessary unpacking and
repacking of checkpoint data
ACUTE uses the MPI when checkpointing from Lv.0 to
Lv.1. Data communication through universal MPI includes
a process of packing during transmission and unpacking
during reception. However, in ACUTE, the purpose of
checkpointing is to save the in-memory data to persistent
storage in the form of a file. Therefore, the purpose of
checkpointing can be achieved more quickly by flushing
already packed bytes in Lv.0 to Lv.2 as a file itself
without going through the unpacking process. Therefore,
the process of unpacking the received checkpoint data in
Lv.1 is unnecessary. Thanks to this optimization, the flush
thread can run faster without unnecessary unpacking and
packing prior to writing a checkpoint file.

FIGURE 5. Operation overview which is performed by each module in
ACUTE.

Finally, the checkpoint data stored in the memory of the
remote node of Lv.1 is flushed to the persistent storage Lv.2
to complete the checkpoint saving. Please note that the flusher
in the remote node of Lv.1 is decoupled from the foreground
training process and flushes the checkpoint data regardless
of the flow of the process in Lv.0. The checkpoint data shards
sent from Lv.0 train nodes are stored in a buffer in the memory
space of Lv.1 remote node. Since this process is completely
decoupled from foreground training performed in Lv.0, it does
not affect the makespan of the DDL workload.

V. IMPLEMENTATION
In this section, first, we explain how each module of ACUTE
can be implemented with Figure 5, based on the target
architecture described earlier. Next, we track the flow on
which checkpoint data travels from train nodes to persistent
storage with Figure 6.

A. MODULES
When the Lv.0 train nodes need to checkpoint after an epoch
ends, they dump the checkpoint data from the GPU device
memory to host memory. At this time, the dump thread is
executed separately and overlaps without interfering with
main thread’s training. However, if the main thread tries to
update the parameters of the DNN model while the dump
thread works, data consistency problems may occur. If this
happens, the contents stored at the checkpoint data do not
correctly include the trained contents.

To avoid this hazard, while the dump thread dumps
checkpoint data immediately after the nth epoch ends, the
main thread keeps training up to a certain point. The training
can be overlapped until the backward pass of the first iteration
of the next epoch ends. If the GPU dump is not done by this
time, a stall will occur.
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The checkpoint data buffer at Lv.1 is managed as a circular
buffer by the master thread. At the same time, the master
thread controls the operation of the MPI communication
(comm) threads and the flush thread. There are multiple
receiving comm threads in one remote VM, and each thread
receives only the checkpoint shard from the Lv.0 sending
comm thread which is mapped to it. One Lv.0 sending comm
thread can only communicate with one Lv.1 receiving comm
thread. Each comm thread pair can transmit data in parallel
with other pairs.

The master thread calls the comm thread to receive only
when checkpoint data can be written to any buffer. The
called comm thread stores the received data shard in a buffer
and notifies the master thread. The master thread keeps
monitoring this process and when all comm threads put their
checkpoint shard into the buffer, the flush thread is called
so that all shards in corresponding buffers are merged into
one data piece and written to a file. The flush thread merges
the checkpoint data shards stored in the circular queue and
greedily flushes the complete checkpoint data to Lv.2 in a
FIFO manner. Through this operation, the checkpoint data
split in Lv.0 is joined as a packed checkpoint data in Lv.1, and
immediately flushed as a single file, resulting in a complete
and portable save file.

After merging, the flush thread stores the data in Lv.1
memory space to Lv.2 persistent storage. Unlike Lv.0 and
Lv.1, Lv.2 is not a VM instance, but a storage service.

B. I/O FLOW
Figure 6 illustrates the process of performing checkpointing
right after nth epoch ends. Specifically Figure 6 represents
the moment of storing the j-th shard of the i-th checkpoint
data. First, the main thread triggers checkpointing. And then
it enters into (n+1)th epoch and continues to train the DNN.
Note that it can only proceed until the end of the backward
pass of the first iteration of the (n+1)th epoch. For this reason,
the main thread uses a lock mechanism. If dumping doesn’t
complete before the end of the backward pass, the main
thread waits until the dumping ends. The gray box in Figure 6
represents the wait time.

At Lv.0, when the i-th epoch of the train nodes ends,
checkpoint data(i) is generated. Since data(i) is still in the
GPU memory, the address of the data is passed to the dump
thread by the main thread. Then the dump thread dumps the
data pointed by the address to create packed data(i). In this
process, data(i) is moved from the GPU memory to the host
memory. Remember that each train node sends only one
distinct shard. data(i) is split by each dump thread, becoming
shard data(i,j). It is then transmitted to the receiving comm
thread in the remote node.

The remote node stores each data(i,j) into a buffer
designated to hold data(i). To determine whether there is an
empty buffer in the remote node, a dirty bit is used for each
buffer. The dirty bit becomes 1 right before the receiving
comm thread stores data in a buffer, and becomes 0 right
after the data in the buffer is flushed. Therefore, if the dirty

FIGURE 6. Data transfer and message passing flow in ACUTE.

bit of all buffers is 1, the receiving comm thread is stalled
until the flush thread flushes a buffer. However, we have
not observed any cases that buffers become full, since the
frequency of triggering checkpointing in Lv.0 is not as high as
that of flushing in Lv.1. The checkpointing interval includes
one epoch of DDL training. In contrast, the flushing interval
which is performed greedily includes the write time of the
checkpoint data.

Subsequently, when a checkpoint shard is received by the
remote node’s receiving comm thread, it is stored in an Lv.1
buffer managed by the master thread. Once all the shards of
data(i) are stored in the k-th buffer, k (the index of that buffer)
is passed to the flush thread by the master thread. data(i,j) is
merged with other shards by the flush thread to become the
complete data(i). The data(i) just constructed is eventually
written to the Lv.2 storage by the flush thread. In this way,
the i-th checkpoint file is stored in the storage persistently.
After writing the data in k-th buffer, the flush thread sets the
dirty bit of the k-th buffer to 0 to indicate it can hold a new
data(i).

C. RECOVERY
If external cloud storage is used, when a DDL job running
on a Spot VM cluster recovers after a failure, direct access
to the checkpoint file can be obtained by mounting the
corresponding external storage. Additionally, data access is
still possible if the local volume of the reliable on-demand
instance of Lv.1 is used as Lv.2. In this case, recovering can
be achieved by directly accessing the checkpoint data on that
volume.

The starting point for recovery varies depending on where
a failure due to preemption occurs during the execution of the
DDL workload. If a failure occurs during the training process
of the nth epoch, theDDLworkload can roll back to the (n-1)th

checkpoint data. In addition, even if the training of the nth

epoch ends, if dumping and sending checkpoint data are not
performed completely, users can use the (n-1)th checkpoint
data to roll back.

Once transfer of the checkpoint data to the memory of
the remote node is completed, the data is protected from
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preemption hazard. Note that the remote node is a reliable
on-demand instance. Therefore, after the nth epoch ends, if a
failure occurs after the checkpoint data is sent to remote
memory, the DDL workload can roll back using the nth

checkpoint data.

VI. EVALUATION
A. EXPERIMENTAL SETUP
We implemented ACUTE using PyTorch (v2.0.1+cu117),
a popular DL framework, along with the MPI library
(OpenMPI-v5.0.0rc12). In the ACUTE framework, dis-
tributed training is facilitated using PyTorch’s Distributed
Data-Parallel (DDP) library [19]. ACUTE will be pub-
licly open sourced. The source code can be downloaded
from https://github.com/lass-lab/ACUTE. The training VM
instances transmit checkpoint data to remote VM instances
using the MPI library (OpenMPI-v5.0.0rc12). To ensure
resilience in the face of interruptions, ACUTE leverages
the User-Level Failure Mitigation (ULFM) technique [20].
This approach safeguards flush operations in progress on
the remote VM instances, ensuring that they are unaffected
when interruptions occur in the training Spot VM. Users
can enable fault-tolerant checkpointing by specifying the
ulfm option when initiating training through the mpirun
command. The integration of PyTorch, MPI, and ULFM in
the implementation of ACUTE provides a robust and reliable
environment for DDL with enhanced fault tolerance.

To evaluate the performance of ACUTE across various
workloads, we conducted experiments by setting up a
DDL training cluster environment using 16 g4dn.xlarge
instances on AWS. These instances were chosen for their
cost-effectiveness and were configured as Spot VMs. And,
an on-demand c4.xlarge instance is used as the remote
VM instance.

To evaluate the improvement in checkpointing per-
formance offered by ACUTE across various workloads,
we employed several popular DNN models with checkpoint
data of varying sizes. Table 2 shows the workloads used
for evaluation. The models used were as follows: ResNet
series: ResNet-18, ResNet-50, ResNet-152, EfficientNet-v2
series: EfficientNet-v2 (small), EfficientNet-v2 (medium),
EfficientNet-v2 (large), DenseNet series: DenseNet-121,
DenseNet-201, VGG series: VGG-16, VGG-19.

We conducted the experiments using the CIFAR-10
dataset. The batch size for a single GPU processing in one
iteration was fixed at 128 data units. The training process
consisted of a total of 50 epochs, utilizing theAdam optimizer
with the ReduceLROnPlateau scheduler.

B. METRICS
We define the following two metrics to evaluate the
performance of ACUTE.

• Persistence Guarantee Time (PGT):
PGT refers to the time that takes for the checkpoint data to
be persistently stored. This metric allows us to evaluate the

TABLE 2. Checkpoint file size statistics of 10 workloads. Checkpoint data
size is dependent to DNN model, optimizer and scheduler. CKP means
checkpoint file.

speed at which checkpoint data reaches the persistent area,
providing insights into the efficiency of ACUTE. When
utilizing the remote VM instance of Lv.1 as an on-demand
instance, it is considered as persistent space starting from
level Lv.1. However, if the instance is used as a Spot
instance, it corresponds to a persistent space starting from
storage level Lv.2. For all of our evaluation, the remote
node was an on-demand VM instance.

• Checkpointing Stall Time (CST):
CST refers to the duration of time that a training job is
stalled due to checkpointing. It represents the overhead
incurred during the process of saving the training progress.
By measuring CST, we can evaluate the delay introduced
by checkpointing and evaluate its impact on the overall
training time.

Since PyTorch’s checkpointing module is synchronous,
PGT and CST are the same.

Using the upper two metrics, we compare the four systems
below.

• No Checkpointing is a system that does not trigger any
checkpointing during a DDL training.

• PyTorch save is a checkpointing system using the default
save module provided by PyTorch during training.

• MLC-base is a system that stores data asynchronously
using only the multi-level checkpointing scheme.

• ACUTE is our proposed system with all optimizations of
ACUTE.

C. PERFORMANCE EVALUATION
To demonstrate the effectiveness of the ACUTE design,
we measured and compared the changes in makespan, PGT,
and CST of the total training time based on variations in the
checkpoint data size across different systems.

1) MAKESPAN
In this experiment, we investigated the impact of checkpoint
data size on the makespan of the training time for each
system. Statistics on the checkpoint file size for different
workloads are presented in Table 2.

Figure 7 presents the comparison results of the makespan
for each workload on each system. To account for the
significant variability in makespan observed in the cloud VM
environment, the results of each experiment were normalized
to the makespan without checkpointing (No Checkpointing).
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FIGURE 7. Comparison of the makespan of each comparison system for each model. Each run time was normalized to the
training time.

The makespan includes both the DL training time and the
checkpointing time.

MLC-base exhibited a shorter makespan compared to
PyTorch save in 8 out of 10 workloads, with the exception
of ResNet-18 and DenseNet-121. During the checkpointing
process, MLC-base sends the data to a remote node, while
PyTorch save writes the data to network storage. The
longer makespan observed in MLC-base for ResNet-18 and
DenseNet-121 is attributed to the fact that the time required to
send a small amount of data to the memory of a neighboring
remote node exceeds the time needed to write it to network
storage. For both workloads, the size of the checkpoint data
is less than 130 MB.

Next, ACUTE demonstrated significantly superior per-
formance compared to both PyTorch save and MLC-base.
The experimental results revealed that ACUTE incurred a
delay of less than 0.01% compared to the case without
checkpointing. This remarkable improvement means that
ACUTE has achieved the significant makespan reduction
through three optimizations, especially through Check-Mem.

The only potential scenario where an extraordinary stall
may occur is during the update pass of the first iteration of an
epoch while dumping data from the GPU memory. However,
this situation did not arise in any of the tested workloads.
In extreme cases where the batch size is very small and the
time required for parameter update falls within one iteration,
which is shorter than the dump time, there may be some cases
of stalling.

2) PERSISTENCE GUARANTEE TIME (PGT)
To evaluate the speed at which each checkpointing sys-
tem/technique ensures the persistence of checkpoint data,
we measured the checkpoint time for each model workload
and each system. Figure 8 presents the PGT for each check-
point technique across 10 workloads. First and foremost,
ACUTE exhibited the shortest PGT. PyTorch save took the
longest time to ensure persistence among the 10 workloads.
For all workloads, MLC-base guaranteed persistence of
checkpoint data in an average of 43.3% less time than
PyTorch save. This result demonstrates the benefits of an
asynchronous multi-level checkpointing strategy. ACUTE,

FIGURE 8. Comparison of Persistent Guarantee Time (PGT) for
10 workloads.

FIGURE 9. Comparison of Checkpoint Stall Time (CST) for 10 workloads.
For ACUTE, CST is effectively zero.

which applied three more optimization techniques in MLC-
base, showed a PGT that took 53.1% less time than PyTorch
save. Across all workloads, ACUTE consistently yielded
smaller PGT compared to both the PyTorch save module and
MLC-base. It means that ACUTE reduces the time required
for checkpoint data to reach the remote VM instance through
three optimizations: Check-Mem, Check-Trans, Check-Pack.

3) CHECKPOINT STALL TIME (CST)
Through CST, we can evaluate how effectively the check-
pointing technique performs its tasks without causing delays
in the makespan. Figure 9 presents the CST measurements
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FIGURE 10. Checkpoint time breakdown of ACUTE. Serialization means
the process of dumping the checkpoint data from GPU memory to Host
memory on Lv.0.

FIGURE 11. PGT variations when changing the number of shards for two
workloads. Serialization means the process of dumping the checkpoint
data from GPU memory to Host memory on Lv.0.

for the 10 workloads. Surprisingly, the CST of ACUTE is
near zero. This result is because almost all operations of
ACUTE are overlapped with the training process: Check-
Mem. Therefore, ACUTE does not increase the makespan
of DDL. In the case of PyTorch save, since the check-
point data is written synchronously, the writing time to
network storage contributes to the CST. MLC-base showed
a 17.9% shorter stall time than PyTorch save. This difference
between PyTorch save and MLC-base refers to the advantage
of the baseline asynchronous multi-level checkpointing
scheme.

D. CHECKPOINT TIME BREAKDOWN
We analyzed the time distribution of each step (refer to
Figure 4) during a checkpointing operation using ACUTE.
The experiment was conducted with 8 Spot VMs, and
a sharding degree of 8 was used for all workloads.
Figure 10 illustrates that the time taken to write the file
to storage is the largest among all workloads. ACUTE has
significantly optimized the MPI sending process through
Check-Trans.

Meanwhile, we observed that the portion of the MPI
sending time increased proportionally with the checkpoint
data size for each workload (refer to Table 2). Among
the workloads, VGG19 had the highest proportion of MPI
sending time, accounting for 23.6% of the total time, with
a checkpoint data size of 1.56 GB. On the other hand,
ResNet-18 had the smallest proportion of MPI sending
time, with a ratio of 3.0% and a checkpoint data size
of 128 MB.

FIGURE 12. ACUTE’s PGT comparison with variable peer/remote VM
instances.

TABLE 3. Reomte VM instance specifications used in Figure 12
experiment.

E. SHARDING DEGREE SELECTION
ACUTE accelerates the MPI sending process by employing
the checkpoint data sharding and parallel transfer technique.
To evaluate this Check-Trans’s effectiveness, we conducted
experiments to observe how the PGT of ResNet-152 and
EfficientNet-v2-l workloads decreases with increasing shard-
ing degrees (number of shards). In this experiment, we used
16 g4dn.xlarge Spot instances instead of 8. Figure 11
shows that the MPI sending time decreases until a certain
point. When the sharding degree was set to 16, there was an
improvement of 42.2% for ResNet-152 and an improvement
of 29.4% for EfficientNet-v2-l compared to when set to 1.

For ResNet-152, the PGT decreases as the number of
shards increases from 1 to 8. However, when the number of
shards reaches 16, the PGT slightly increases compared to
when it is 8. This means that there is a saturation point in
the performance improvement when the number of shards
lies between 8 and 16. On the other hand, for EfficientNet-
v2-l, the PGT continues to decrease until the number of
shards reaches 16. However, in both cases, there is minimal
difference in the PGT when changing from 8 to 16.

The saturation point is influenced by the size of the
checkpoint data. For instance, ResNet-152 has a checkpoint
data size of 667 MB, while EfficientNet-v2-l has a size
of 1.31 GB. This implies that randomly splitting a certain
amount of checkpoint data into a large number of shards
and sending them does not always lead to a speed-up.
Additionally, since there is only one remote VM instance,
contention may arise if data is pouring into it from multiple
Spot train instances simultaneously, which can actually result
in performance degradation.
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FIGURE 13. Top-1 validation accuracy of two workloads when running
with PyTorch save module and ACUTE. Dotted vertical line means when
checkpoint & restart happened.

F. REMOTE VM INSTANCE SELECTION
We evaluate how the checkpointing performance of ACUTE
varies depending on the type of remote VM instance.
Table 3 presents the different types of VM instances used
as remote VMs, while Figure 12 illustrates the PGT of
ACUTE when executing ResNet-152 and EfficientNet-v2-
l workloads using 8 Spot VMs. In Figure 12, we observe
that the c4.2xlarge instance, which is the most expensive
and offers superior overall performance, exhibits the smallest
PGT. This performance is attributed to the c4.2xlarge
instance’s high performance in receiving checkpoint data
throughMPI and writing files to storage efficiently.When the
remote VM instance was selected as c4.2xlarge, there was an
improvement of 65.2% for ResNet-152 and an improvement
of 66.8% for EfficientNet-v2-l compared to when set to
c4.large. Notably, during the execution of the EfficientNet-
v2-l workload with a t2.small instance as the remote VM,
an out-of-memory error occurred, preventing ACUTE from
proceeding with the checkpointing process. Consequently,
there is no corresponding bar for the t2.small instance
in Figure 12. This outcome highlights the trade-off between
price and performance when selecting a remote VM instance
in ACUTE.

G. END-TO-END TRAINING
When a failure occurs due to the preemption of a Spot VM,
ACUTE performs recovery using previously checkpointed
data. To verify the accuracy of DNN model when recovering
with checkpointed data and resuming training, we conducted
the following experiment. We assumed that an interruption
(preemption) occurred once every 10 epochs while perform-
ing checkpointing every epoch.

The checkpointed data was reloaded to resume model
training. We measured and compared the validation accuracy
at every epoch for both PyTorch save and ACUTE. For the
experiment, we used 8 Spot VMs and evaluated the ResNet-
152 and DenseNet-201 training workloads.

Figure 13 shows the validation accuracy obtained for each
epoch. The slight differences observed in each epoch are due
to the different mini-batch inputs provided to the model in

each epoch. However, it is evident that the validation accuracy
values of PyTorch save and ACUTE follow a similar pattern
for each epoch as a whole. Therefore, it can be concluded that
ACUTE does not impact DNN model’s accuracy.

VII. RELATED WORK
A. CHECKPOINTING FOR DEEP LEARNING
There have been several studies related to checkpointing for
availability and resiliency [2], [9], [13], [14], [21] for deep
learning applications. CheckFreq [9] proposes the use of fine-
grained and frequent checkpointing as a strategy to reduce
recovery time in the event of potential deep learning job
failures. By implementing fine-grained and frequent check-
pointing asynchronously, while still maintaining accuracy,
the runtime overhead is minimized. However, there is a limit
that CheckFreq [9] focuses solely on local checkpointing of a
single-nodeDL job, rather thanDDL jobs. Furthermore, since
it only supports checkpointing to node-local storage, it cannot
be applied to unstable Spot VM clusters. DeepFreeze pre-
sented a multi-level checkpointing mechanism that leverages
storage at multiple levels, including the local storage of
neighboring nodes in a high-performance computing (HPC)
environment. However it does not utilize memory space of
neighboring nodes as a checkpoint data staging area.

B. MULTI-LEVEL CHECKPOINTING SCHEMES
In distributed environments, multi-level checkpointing [1],
[14] – a strategy that utilizes multiple storage tiers to
improve data recovery and system resilience – is employed.
These studies take advantage of the storage hierarchy in
High-Performance Computing (HPC) environments. They
are to use as little system resources as possible during the
checkpointing process, by leveraging node-local storage or
the local storage of neighboring nodes between the compute
node and the Parallel File System (PFS). By organizing
several storage tiers effectively, they aimed to minimize
the overhead of checkpointing itself. By using specific
checkpointing modules such as VELOC [22] or SCR [12],
they perform checkpointing towards the file system-mounted
storage. However, they do not consider leveraging the
memory space of neighboring nodes in a multi-level manner.
Fault Tolerant Service in Cloud Computing: In cloud

computing, it is important to provide robust platforms in
order to provide reliable, effective and seamless services
for multiple users simultaneously. For this purpose, research
on fault-tolerance, load balancing, and simulators has been
conducted to improve the cloud computing environment
itself [23], [24], [25]. Several recent studies have specifically
used machine learning techniques to optimize fault-tolerance
and load balancing of cloud systems [23], [24].

VIII. CONCLUSION
This paper introduces ACUTE, a design optimized for multi-
level checkpointing schemes using the remote memory space
of neighboring on-demand VMs to enhance reliability in
distributed deep learning across cloud Spot VM clusters.
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It improves the fault tolerance of distributed deep learning
systems by safeguarding against the unexpected preemp-
tion of Spot VMs. ACUTE achieves near-zero overhead
through three optimization techniques. Our comprehensive
experiments, conducted with 8 and 16 VMs on AWS
for 10 distributed deep learning workloads across various
DNN models, demonstrate that ACUTE incurs minimal
checkpointing overhead and only marginally affects the
overall makespan.
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