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ABSTRACT The Zoned Namespace (ZNS) interface shifts data management responsibility to upper-level
applications, requiring them to reclaim space by issuing the zone-reset command to ZNS SSD devices,
a process known as garbage collection (GC). Application-level GC can lead to performance degradation
due to the high valid data copy overhead, which is further exacerbated by the larger GC units in ZNS SSDs.
However, the impact of larger GC units can be mitigated if GC operations are made interruptible, allowing
I/O requests to be served during zone resets or block reclamation. Moreover, the adoption of offline data
deduplication as a storage optimization technique in ZNS-based file systems like ZenFS presents additional
challenges. Offline deduplication must consider lifetime-based file allocation to avoid deduplicating hot data,
and placing unique and duplicate data blocks together can further increase valid data copy overhead during
GC. To address these issues, we propose DeZNS, an innovative data placement strategy for deduplication-
enabled ZenFS. DeZNS tackles the increased valid data copy overhead during GC in offline deduplication
by employing a lightweight CRC32 checksum-based method to predict potential duplicates with minimal
performance impact, segregating unique and duplicate data blocks. This segregation reduces valid data
migration overhead during GC, while the interruptible GC mechanism ensures that ongoing I/O requests
are not delayed during zone resets, maintaining ZenFS performance. Additionally, DeZNS integrates an
offline deduplication module that operates on segregated zones. Our extensive evaluation shows that DeZNS
reduces valid data migration by 28% compared to baseline ZenFS and by up to 2× compared to naive offline
deduplication in micro-benchmarks.

INDEX TERMS Zoned namespace SSD, data deduplication, file system, data placement, CRC32-checksum.

I. INTRODUCTION
Key-value stores are popular storage engines known for their
simplicity and scalability. For example, RocksDB [1], based
on a Log-Structured Merge (LSM) tree, is Facebook’s default
storage engine and is optimized for write I/Os. There are two
main LSM-tree designs: (i) traditional, where keys and values
are stored together, and (ii) key-value separation, as proposed
byWiscKey [2]. Various studies have optimized the traditional
LSM-tree design [3], [4]. While standard RocksDB uses
the traditional design, its variant, BlobDB [5], employs the
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key-value separation design. BlobDB reduces RocksDB’s
write amplification and write stalls by decoupling values.

RocksDB and BlobDB are optimized for block-based
NVMe SSD, however, there are attempts to extend these
key-value stores for Zone Namespace SSDs (ZNS SSD). ZNS
SSD divides the logical address space into fixed-size zones,
allowing only sequential writes, which optimizes NAND
flash memory utilization and enhances I/O performance
by eliminating Garbage Collection in the Flash Translation
Layer (FTL) [6], [7], [8]. These features make ZNS
SSDs ideal for BlobDB, which uses a key-value separation
design with sequential, append-only write patterns. However,
BlobDB requires middleware for effective data management
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on ZNS SSDs. ZenFS [9], a user-level Log-structured File
System optimized for RocksDB and BlobDB, employs an
LSM-tree-aware zone allocation strategy to organize files
with similar lifetimes into the same zone, reducing garbage
collection-related data migration.
Although BlobDB reduces the write amplification, it still

has the problem of unnecessary write amplification in
workloads with high duplication. To mitigate this, storage
optimization technique like deduplication can be adopted. Data
deduplication is a storage optimization technique that retains
only unique data while eliminating duplicates. Numerous
studies have identified high levels of data duplication in
user workloads [10], [11], and various research efforts have
explored implementing deduplication in block-based storage
systems. These investigations have focused on integrating
deduplication at the file system level [10], [11], [12], [13] and
the block device drive level [14]. Most of the deduplication
efforts have targeted conventional SSD/HDD-based systems,
however, there has been no exploration of deduplication
support within ZNS file system, such as ZenFS.
ZenFS is a user-level file system based on Log-structured

File System. Although deduplication has been thoroughly
studied for LFS, works like SmartDedup [13] and F2DFS [15].
These works solely focus on optimizing performance for
deduplication systems on conventional NVMe SSD and do
not consider the impact of deduplication on garbage collection
process. This is because in conventional NVMe SSDs the
garbage collection process is offloaded to Flash Translation
Layer and the erase unit is a few megabytes. Therefore, the
garbage collection process does not interfere with the file
system operations. However, in ZNS SSDs-based file systems,
the garbage collection process is the responsibility of the file
system, making it a critical factor in performance and write
amplification in ZenFS. Additionally, one of the fundamental
differences between NVMe SSD and ZNS SSD is the erase
unit which defines the performance of garbage collection
process, due to valid data migration overhead. Therefore,
naively adopting existing deduplication solutions in ZenFS
would lead to following shortcomings.

• Amplified garbage collection overhead: Offline deduplica-
tion increases garbage collection calls and the overhead of
copying valid data. It marks valid duplicate data as invalid,
triggering garbage collection when thresholds are crossed,
leading to more data copying. To reduce this overhead,
unique and duplicate data should be segregated by zone
with minimal impact on the application.

• Agnostic of file organization: ZenFS organizes files by
lifetime. Deduplicating short-lived files yields minimal
benefits while wasting resources. Therefore, focusing
deduplication on long-lived files is crucial for optimizing
resource usage and maintaining system efficiency.

In this work, we propose DeZNS, a novel data placement
approach for deduplication-enabled ZNS file systems. DeZNS
uses a CRC32 checksum-based method to segregate unique
and duplicate data, predicting potential duplicates with

FIGURE 1. Overview of ZNS device and zone reclamation process.

minimal performance overhead. Additionally,DeZNS employs
an offline deduplication module to handle deduplication in
unique and duplicate zones, marking duplicates as invalid.
This approach reduces valid data migration overhead during
the garbage collection process while maintaining ZenFS
performance. The key contributions are as follows:

• A systematic investigation of the adoption of deduplication
in ZNS file system and identification of potential
bottlenecks.

• A CRC32 checksum-based data placement with minimal
performance overhead to identify potential duplicates. This
approach minimizes valid data migration overhead caused
by offline deduplication through effective segregation of
unique and duplicate data.

• Implementation of DeZNS atop ZenFS and extensive
evaluation using macro- and micro-benchmarks. Our
evaluation reveals that, DeZNS reduces the valid data copy
overhead on average by 28% and up-to 2× in comparison
to baseline ZenFS and offline dedup-enabled ZenFS, with
increasing deduplication ratio using micro-benchmark.
DeZNS is able to maintain the performance in both macro-
and micro-benchmarks.

II. BACKGROUND AND MOTIVATION
A. ZONED NAMESPACE SSD (ZNS SSD)
The NVMe Zoned Namespace (ZNS) [7], [16] utilizes a
zone interface designed for flash-based SSDs [6], [17], [18],
[19]. Each SSD zone comprises multiple NAND erase blocks,
spanning 16 to 128 flash chips, resulting in a few gigabytes
of writable capacity per zone. These blocks are directly
accessible to the host machine through the zone interface.
ZNS ensures only sequential writes to each zone with reset
commands, eliminating the necessity for garbage collection
in the Flash Translation Layer of the SSD. However, adopting
ZNS necessitates software modifications on the host side due
to hardware changes in the SSD [6], [17], [19], [20]. For
instance, applications utilizing ZNS SSDs must manage data
placement by selecting zones during data writes. Furthermore,
applications are responsible for free-space reclamation [6],
[17], [19], explicitly erasing zones instead of relying on the
SSD’s FTL. The free-space reclamation process involves
executing zone-reset commands, which erase blocks and
decrease the Program/Erase (P/E) cycle [21] of cells in the
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NAND flash memory. During zone-reset, valid data in the
zone to be reset must be copied into a free zone before the
reset, leading to increased I/O blocking time. Figure 1 shows
the overview of ZNS device and its zone reclamation process.

B. ZONE MANAGEMENT WITH ZenFS
ZenFS [7] is a user-level Log-structured File System tightly
integrated with BlobDB to manage persistent components on
ZNS devices. ZenFS is responsible for managing zones for
Write-Ahead Logs (WAL), SSTables, and blob files created
by BlobDB, and reclaiming zones to secure free space. The
files are organized in file extents (data blocks) of fixed sizes,
128 KB by default. ZenFS implements a lifetime hint-based
algorithm for file allocation, organizing zones to group files
with similar lifetimes. The lifetime hint values in ZenFS are
short, medium, long, and extreme. We categorize short and
medium as hot data, while long and extreme as cold. This
policy minimizes the number of valid files in a single zone,
enhancing the efficiency of the garbage collection process.
ZenFS allocates a dedicated asynchronous thread to handle the
garbage collection process. This thread periodically checks the
garbage collection trigger threshold and, once reached, selects
a victim zone and proactively performs garbage collection.
The garbage collection process is designed to preemptively
secure empty zones by choosing a victim zone based on the
highest amount of invalid data, thereby minimizing valid data
migration overhead.
Moreover, the garbage collection process in ZenFS is

categorized based on two cases (i) reclaiming a zone having
only invalid files, and (ii) reclaiming a zone having both valid
and invalid files. For the case (i), only a zone reset command is
issued which resets the write pointer of the zone. Meanwhile,
for the case (ii), valid data copy is conducted which results
in higher write amplification as in conventional SSDs. ZenFS
explicitly calls the case (ii) as ‘garbage collection’ and a
dedicated asynchronous thread is responsible to perform this
garbage collection operation. ZenFS wakes up the garbage
collection thread periodically to perform the zone reclamation
of a victim zone if a predefined condition is satisfied,
to proactively secure empty zones.

C. DATA DEDUPLICATION
Deduplication is a technique used to optimize storage
utilization. A typical deduplication process involves: (Step 1)
segmenting data into fixed or variable-sized chunks, (Step 2)
computing cryptographic fingerprints for each chunk, (Step 3)
performing duplicate fingerprint lookups, and (Step 4)
updating deduplication metadata and storing only unique
chunks. Deduplication can be classified as inline or offline,
based on when the deduplication operation is performed [11].
Inline deduplication occurs during I/O operations, providing
immediate storage space savings but potentially degrading I/O
throughput. Offline dedup, performed on already stored data,
does not impact I/O throughput as it occurs outside the critical
I/O path [10], [11], [12].

FIGURE 2. An illustration of offline deduplication in ZenFS. The offline
deduplication invalidating the duplicate but valid blocks resulting in
additional garbage collection overhead.

D. MOTIVATION
The fundamental difference between conventional SSDs and
ZNS SSDs lies in their erase unit. This discrepancy raises
intriguing questions for deduplication strategies: How can we
adapt existing techniques to handle these larger erase units
effectively? And how do we optimize storage requirements
while maintaining efficient internal operations?
To address above-mentioned questions, we conducted a

thorough investigation into integrating deduplication into the
ZNS-based file system, ZenFS. Although, data deduplication
is widely studied for file systems [10], [11], [12] and object
storage systems [22], [23], [24], [25], but there is no study that
has explored the integration of deduplication in ZNS-based
file systems. As explained in Section II-C, data deduplication
can be adopted inline and offline manner. We first discuss the
opportunities to adopt deduplication in inline manner then
provide details of offline deduplication in the rest of this
section.

1) INLINE DEDUPLICATION IN ZNS FILE SYSTEM
The inline deduplication is known for providing immediate
storage savings. However, the inline deduplication carries out
all the deduplication steps within the critical I/O path of write
operation. When a data block is written, it goes through the
chunking, cryptographic hashing, duplicate detection, and if
found unique then writing to the storage device otherwise the
data chunk is discarded. The inline deduplication has been
extensively exploited in different file systems [10], [26], [27].
Since ZenFS is tightly coupled with BlobDB, our

previous work, DenKV [28] explores the integration of
inline deduplication system in BlobDB. DenKV performs
deduplication steps during the FLUSH operation when
Immutable MemTables are written to SSTables and Blob files.
During the FLUSH operation, each value goes through the
deduplication steps, chunking, cryptographic fingerprinting,
duplicate detection, and if found unique then written to
the blob file otherwise discarded. Meanwhile the keys and
the list of value pointers are written to SSTables. DenKV
selectively performs deduplications on values of key-value
pairs to achieve better space savings and further reduce the
write amplification. Although, DenKV achieves the goal of
write and space amplification reduction but it increases the
frequency of write stall events due to reduced service rate of
the FLUSH operation.
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Additionally, ZenFS incorporates various design choices
that need to be taken into account when considering the
adoption of inline deduplication. For instance, whether to
design a system oblivious of the lifetime hinting based
data placement and perform deduplication on all the files
coming from application? If this design is to be adopted
then performing deduplication on short-lived data do not
provide any benefit instead exhaust the system resource.
Additionally, ZenFS is a user-level file system tightly coupled
with write optimized BlobDB, and incorporation of inline
deduplication comes with its own negative performance
overhead from cryptographic hashing and deduplication
metadata management [12], [29].
Adopting deduplication without carefully considering

the design choices of ZenFS could directly interfere with
BlobDB’s performance. For instance, implementing inline
deduplication in the critical I/O path of ZenFS would reduce
its service rate, impacting BlobDB’s FLUSH operation
when writing values to blob files. This reduced service
rate could eventually lead to write stalls due to memory
pressure [3], [28]. DeNOVA [12] demonstrates the overhead
of computing cryptographic hash with increasing data block
size, which clearly indicates that adopting inline deduplication
for write-optimized file system is not a suitable choice.

2) OPPORTUNITIES FOR OFFLINE DEDUPLICATION
ZenFS assigns a dedicated asynchronous thread for the
garbage collection process, presenting an opportunity to
integrate offline deduplication within this process. During
the garbage collection process, deduplication steps can be
performed on each valid data block that will be migrated from
a victim zone to a target zone. However, integrating offline
deduplication within the garbage collection process increases
the critical section of the garbage collection process and does
not fully exploit the potential of deduplication. The victim
selection algorithm in ZenFS’s garbage collection process
prioritizes zones with the most invalid data to minimize the
negative impact of valid data copying, resulting in fewer data
blocks being deduplicated and a less efficient deduplication
system.
Decoupling offline deduplication from the garbage collec-

tion process, as illustrated in Figure 2, yields a more efficient
deduplication system. A zone becomes a candidate for offline
deduplication when it’s states are changed from open to
closed and full, meaning the remaining capacity of the zone
is zero. The offline deduplication module marks duplicate
data as invalid, allowing the garbage collection process to
reclaim the space later. However, this approach has two major
shortcomings:

a: AMPLIFIED GARBAGE COLLECTION OVERHEAD
Offline deduplication increases the number of garbage
collection calls. Offline deduplication marks valid but
duplicate data blocks as invalid, leading to a higher ratio of
invalid blocks within a zone and, consequently, more garbage

FIGURE 3. Design overview of our proposed CRC32-based data placement
for deduplication-enabled ZenFS.

collection operations. The garbage collection process involves
valid data copying when unique (valid) and duplicate (invalid)
data blocks are stored together within a single zone, as shown
in Figure 2. To minimize the overhead of valid data copying,
it is necessary to segregate cold data further between unique
and duplicate zones.

b: AGNOSTIC OF FILE ORGANIZATION
ZenFS’s employs a lifetime-based data placement algorithm,
as explained in Section II-B, grouping files with similar
lifetime into same zones, therefore segregating hot and cold
data. Deduplicating files with short lifetime provides minimal
benefits while unnecessarily consuming system resources,
memory and computational power. Therefore, it is essential
to consider the lifetime-based data placement and selectively
perform deduplication on long-lived data to provide better
long-term space savings.

III. DESIGN OF DEZNS
In this section, we present the design and implementation
details of the deduplication-enabled ZNS file system, DeZNS.

A. DESIGN GOALS
The design of DeZNS revolves around two main goals:

• Lifetime-aware Selective Deduplication: ZenFS orga-
nizes files within zones based on their lifetime, and dedupli-
cation of short-lived files does not yield significant benefits.
Additionally, the incorporation of deduplication intro-
duces performance overheads, such as compute-intensive
cryptographic fingerprinting and deduplication metadata
management. Therefore, it is essential to consider these
design choices and perform selective deduplication to
maintain ZenFS’s performance characteristics.

• Reducing Data Migration Overhead of the Garbage
Collection Process: Incorporating offline deduplication
increases the frequency of garbage collection operations,
as it marks duplicate data as invalid, raising the ratio
of invalid data. This work focuses on scenarios where
the garbage collection process initially does not require
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data migration, but the introduction of deduplication
necessitates it. Consequently, careful data placement based
on uniqueness is crucial to minimize the negative impact of
data migration during the garbage collection process.

B. SYSTEM ARCHITECTURE
DeZNS is designed to seamlessly integrate deduplication while
achieving the outlined design goals. Figure 3 provides an
overview of the proposed design, which consists of three main
components.

The first component is a data placement predictor (C3PO)
that uses a CRC32 checksum to identify incoming data blocks
as duplicate or unique. C3PO employs a Hinting Metadata
Table (HMT) to track written data blocks and uses lifetime
hints from file creation to decide on segregation. C3PO
primarily manages data placement for cold files.
The second component is an Offline Dedup module that

processes files in the zones marked as duplicate zones,
as shown in Figure 3. Since C3PO is susceptible to false
positives in identification of duplicate data blocks, therefore,
to avoid data loss, we also conduct a thorough offline
deduplication process on the zones marked as duplicates by
the C3PO.
The third component is the GC process, which selects a

victim zone based on the duplicate and invalid data ratio.
In baseline ZenFS, the garbage collection’s victim zone
selection is based solely on the invalid ratio of the workload.
However, in DeZNS, we enhance the selection algorithm by
incorporating the duplicate ratio within a zone.

C. C3PO: CRC32-BASED DATA PLACEMENT
Incorporating offline deduplication with baseline data place-
ment algorithm of ZenFS would result in increased valid data
migration during garbage collection process. This problem
worsens when the zone selected as a deduplication candidate
contains unique and duplicate data together, as shown in
Figure 2. To mitigate this overhead, identifying duplicate data
in an inline manner is essential. However, traditional inline
duplicate detection techniques often degrade performance at
both the file system and application levels, conflicting with
our design goal of maintaining the performance characteristics
of ZenFS.

In contrast, several studies have adopted non-cryptographic
hashes (e.g.,CRC32 [30] and xxHash [31]) to accelerate
the detection of duplicate blocks [26], [27]. However, non-
cryptographic hashes have a higher probability of collisions
compared to cryptographic hashes, leading to false positives
and potential data loss. This data loss occurs when a data block
is mistakenly identified as a duplicate due to a hash collision
and subsequently reclaimed by the garbage collection process.
To address this limitation, DeZNS proposes

CRC32-based data placement predictor (C3PO) that employs
non-cryptographic hashes solely for predicting the placement
of data blocks and introduces two new categories of zones,
unique and duplicate zones. C3PO is only activated for

FIGURE 4. An illustration of data placement and two-step reconstruction
of files for read operations. MZ, UZ and DZ represent meta, unique, and
duplicate zones, respectively.

files categorized as cold based on lifetime hint value. C3PO
omits the hot files that will be invalidated promptly to avoid
performing checksum and deduplication operations. C3PO
consists of three sub-modules: a CRC32-based checksum
module, a placement module, and a Hinting Metadata
Table (HMT), as shown in Figure 3.

1) CRC32-BASED CHECKSUM
Cryptographic fingerprints, such as SHA1 [32] and MD5 [33],
are widely used for duplicate detection. However, these
fingerprints are compute-intensive, requiring tens to hundreds
of microseconds to compute, depending on the block size [26],
[27]. In contrast, non-cryptographic hashes, such as the
CRC32 checksum,1 can generate a unique identifier for each
data block with significantly lower computation time. This
allows for predicting the uniqueness of data blocks in a more
performance-efficient manner.

When C3PO receives a file categorized as cold, it computes
the checksum for each data block and queries the Hinting
Metadata Table (HMT) to determine if the checksum is already
stored. If a checksum is found in the HMT, C3PO informs the
placement module that the data block is likely a duplicate.
Conversely, if a checksum is not found, the data block is
considered unique and the placement module assigns it to
the unique zone.
Moreover, the HMT of C3PO is a hash-based table that

keeps track of the already stored checksums. Each entry
in HMT is of 8 bytes and can fit in memory to provide
fast and efficient tracking. However, HMT can be lost on
a sudden power failure, therefore, we periodically flush the
HMT contents to the metadata zones.

2) PLACEMENT MODULE
ZenFS organizes files within zones based on their lifetime
hint values to reduce data migration overhead. DeZNS builds
on this concept by allocating two types of zones—unique and
duplicate—for files categorized as cold by lifetime hint values.
The placement module uses information from the CRC32
checksummodule to determine whether data blocks are unique
or duplicates, assigning each block to the corresponding zone.
Although this segregation might appear to result in random file
placement, DeZNS maintains the sequential write constraint
within each zone.

1From hereafter, we use ‘checksum’ to refer non-cryptographic hashes.
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Moreover, the baseline ZenFSwrites file sequentially within
a single zone, however, the segregation of unique and duplicate
zones distribute file’s data block into multiple zones. This
segregation of data blocks necessitates a robust reconstruction
logic for read operations. DeZNS implements a two-step
reconstruction logic for each file. In the first step, as shown in
Figure 4(a), the placement module of C3PO tracks data blocks
written to the duplicate zone by storing their offsets. It also
tracks subsequent data blocks written to the unique zone, and
vice versa for files where the first block is a duplicate. For
instance, a file ‘01.blob’ contains seven data blocks, with
three being duplicates, the offsets of the duplicate blocks
are recorded in the unique zones in the same sequence as
the original file’s data blocks. This allows the file to be
reconstructed sequentially by fetching data blocks from the
corresponding duplicate zone during read operations. The
second step of reconstruction is managed by theOffline Dedup
module of DeZNS.

D. OFFLINE DEDUPLICATION
DeZNS does not solely rely on checksums to identify
duplicates but uses them as a hinting mechanism to identify
potential duplicates. Due to the susceptibility of checksums to
collisions,DeZNS employs a cryptographic hash-basedOffline
Dedup in conjunction with the CRC32-based data placement
module, as shown in Figure 3. The offline module consists
of components responsible for carrying out deduplication
operations; chunking, cryptographic fingerprinting, duplicate
lookup, and maintaining a deduplication metadata table
(DMT).

When a duplicate zone transitions from open to closed
and full, it becomes a candidate for offline dedup. There
are two approaches to track these zones. The first approach
introduces a collaborative data structure that tracks zones
requiring deduplication by the oOffline Dedup. The second
approach is similar to the garbage collection process in ZenFS,
where the Offline Dedup periodically checks all I/O zones and
selects a candidate zone for deduplication. The first approach
incurs memory overhead from the collaborative data structure
and requires maintaining its consistent state, especially during
ungraceful shutdowns.
In contrast, the second approach uses a deduplication flag

within each zone’s state metadata, allowing the Offline Dedup
to identify zones for deduplication easily. When a duplicate
zone is full, this flag is set, signaling the Offline Dedup
module. The Offline Dedup module then selects a candidate
zone, reads the data blocks, and computes their cryptographic
fingerprints. If a duplicate is found, the module fetches the
unique data block’s offset from the DMT and updates the file’s
reconstruction logic. The duplicate data block is marked as
invalid and later reclaimed by the GC process.
Additionally, the Offline Dedup is responsible for the

second-step of the two-step reconstruction logic for each
file. Before marking a duplicate data block as invalid for
reclamation by the GC process, the Offline Dedup updates
the file’s reconstruction logic. As the Offline Dedup marks

FIGURE 5. Schematics of GC-Dedup and Offline dedup.

duplicate data blocks as invalid, it becomes necessary to update
the file’s reconstruction logic, as shown in Figure 4(b). The
first step of the two-step reconstruction is handled by C3PO’s
placement module, which stores the offsets of data blocks
from the duplicate zone to the unique zone and vice versa.

During the second step of reconstruction, the Offline Dedup
constructs reconstruction metadata for files with duplicate
data blocks. This metadata includes a list of offsets for all
unique data blocks corresponding to a file. Since a file can be
distributed across multiple zones, the offsets are constructed
by combining the zone identification number with the starting
locations of the write pointers where the data blocks are stored
within the zones. The reconstruction metadata is written along
with other file system metadata in designated metadata zones.

E. GARBAGE COLLECTION
The garbage collection (GC) component of DeZNS consists
of three sub-modules: victim selection, data migration, and
zone resetting, as shown in Figure 3. The victim selection
module inDeZNS follows two paths; First is for the zones with
hot lifetime hint values. For these zones, the victim selection
criteria is based on most invalid data within the zone. Second
victim selection path is for zones whose lifetime hint values
are cold. For these zones, the victim selection module first
identifies whether the zone is a unique zone or duplicate zone.
DeZNS gives higher priority to duplicate zones as it aims to
minimize the data migration.
Moreover, the data migration module in DeZNS’s GC

component considers the segregation of unique and duplicate
zones. During the GC process, if a unique data block is
encountered, the data migration module identifies the most
appropriate zone for migration. It prioritizes the data migration
from duplicate zone to unique zone previously allocated
alongside the victim zone, unique zone with same lifetime
value. If space is available in this corresponding unique zone,
the unique data blocks are migrated there. Otherwise, the data
migration module moves the data to a different unique zone
with a similar lifetime or allocates a new unique zone. Lastly,
the zone resetting module simply executes the zone_reset
command to reset the write pointer of the selected zone.

F. I/O FLOW
The I/O operations in DeZNS are categorized into two
main types: application I/Os and file system I/Os, as shown
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in Figure 3. Application I/Os are inline operations performed
by the application to read and write data. Within file system
I/Os, write operations follow two paths: the default I/O path
of baseline ZenFS for data blocks with lifetime hint values
categorized as small or medium, and an extended I/O path
proposed by DeZNS for data blocks categorized as long or
extreme. When a data block with a long or extreme lifetime
hint is encountered, it is redirected to C3PO, where its
uniqueness is predicted, and it is placed in the corresponding
I/O zone, either unique or duplicate.

The read I/O path for applications remains unchanged, while
file system read operations incorporate file reconstruction.
Initially, the read operation retrieves the file’s metadata, which
includes the list of offsets to be read from different zones. Note
that a file processed by the Offline Dedup can be distributed
across several zones. This reconstruction results in random I/O
operations, which are typically low-performing I/O operations
in SSDs.

IV. EVALUATION
To evaluate the effectiveness of our proposed ideas, we imple-
ment DeZNS atop ZenFS and compared against three
different variants. Our evaluation is based on macro- and
micro-benchmarks with low and high deduplication ratio
workloads. We first present the evaluation methodology
followed by performance analysis.

A. EXPERIMENTAL SETUP
1) IMPLEMENTATION
We implemented DeZNS on ZenFS v2.1 with Linux
v5.10, using BlobDB—a key-value separated variant of
RocksDB—as our example application. BlobDB’s separate
storage of values in blob files provided a prime opportunity
for deduplication, as these files are the main space consumers
and are assigned a lifetime hint value of extreme, since
blob files are not frequently updated by the application.
We set the garbage collection trigger point at 20% storage
utilization, meaning garbage collection is triggered when
storage utilization exceeds this threshold. Meanwhile, the
decoupled offline deduplication does not follow this threshold
and perform deduplication as soon as it finds a zone with
concerned lifetime hint value. Moreover, data placement in
DeZNS is considered at the extent level of ZenFS and offline
deduplication is also performed at the extent level.

2) ZNS SSD DEVICES
The ZNS SSDs are not yet commercially available in
market, which limits the options for real device evaluation.
Therefore, for our initial evaluation of DeZNS, we used the
state-of-the-art Configurable ZNS (ConfZNS) [34], a ZNS
SSD emulator based on FEMU [35]. ConfZNS has been
widely adopted in various studies to evaluate different
aspects of ZNS SSD. For example, FAR [36], ZACA [37],
and BAZA [38] are effectively evaluated on ConfZNS [35].

FIGURE 6. Performance and garbage collection analysis of large-sized
zone device with varying deduplication ratio.

We emulated a 64 GiB ZNS SSD environment with Intel Xeon
E5-2640 v4 @ 2.40GHz CPU and 128 GB DDR4 DRAM.
Additionally, different vendors are considering different

zone sizes for ZNS SSDs. For example, Western Digi-
tal is considering to bring ZNS SSDs with large zone
sizes where each zone is about 1 GiB [7], [37], [39], [40],
meanwhile Samsung and SK Hynix are considering ZNS
SSDs with relatively smaller zone size in between 64 to
256 MiB [18], [41], [42], [43], [44], [45], [46]. Therefore,
we conducted experiments with large and small-sized zones
using ConfZNS. For large-sized zones, we set the zone size
to 1024 MiB while for small-size zones, we set the zone size
to 256 MiB. Additionally, we also conducted experiments on
real ZNS SSD; however, we only had access to large-sized
zone device, therefore our real device evaluation is limited to
large-sized zones.

3) BENCHMARKS AND WORKLOADS
Our evaluation comprised micro- and macro-benchmarks. For
the micro-benchmark, we developed an in-house synthetic
benchmark using a single application thread to perform write
I/Os. We used fixed-size key-value pairs (1 KB) and varied the
deduplication ratio (0%, 30%, 60%, and 90%) by adjusting
the number of duplicate values. For the macro-benchmark,
we employed the YCSB benchmark with three different
workloads, described in Table 1.

We evaluate the following systems for comparison:

• ZenFS: The baseline version of ZenFS.
• GC-Dedup: A version of ZenFS where the deduplication
operations are integrated within the garbage collection
process, performing deduplication during data migration
from victim to target zones, as shown in Figure 5(a).

• Offline: A version of DeZNS utilizing only the offline
deduplication module and selecting deduplication candidate
based on long and extreme lifetime hint values, as shown in
Figure 5(b).

• DeZNS: The complete version of DeZNS, incorporating
C3PO, Offline Dedup, and garbage collection process.

B. MICRO-BENCHMARK RESULTS
In this section, we evaluate the superiority ofDeZNS compared
to other systems using micro-benchmark. We first present the
performance and garbage collection analysis of large-sized
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zone and small-sized zone devices followed by detailed
analysis of garbage collection operation.

1) LARGE-SIZED ZONE
Figure 6 shows the performance and garbage collec-
tion analysis results of a micro-benchmark with varying
deduplication ratios using large-sized zones. Figure 6(a)
presents the user-level performance of the compared systems,
while Figure 6(b) shows the amount valid data migrated during
garbage collection process. GC-Dedup, which integrates
deduplication within the garbage collection process, exhibits
the worst performance regardless of the deduplication ratio,
with an average degradation of 13% compared to baseline
ZenFS. This is due to the increased critical section of the
garbage collection process, causing interference between
background and foreground operations. Additionally, the
amount of data migrated by GC-Dedup increases with
the deduplication ratio, as shown in Figure 6(b), because
GC-Dedup adopts the default data placement algorithm of
baseline ZenFS, where unique and duplicate data reside in the
same zone.
Moreover, the offline variant, which uses only the Offline

Dedupmodule of DeZNS, improves performance compared to
GC-Dedup but has a 10% lower performance on average than
baseline ZenFS with increasing deduplication ratios, as shown
in Figure 6(a). The performance drop in the offline variant
is due to the additional data migration overhead during the
garbage collection operation with increasing deduplication
ratios. Figure 6(b) shows a significant increase in valid data
migration during the garbage collection process for the offline
variant compared to baseline ZenFS and GC-Dedup. This is
because the offline variant marks all duplicate file extents as
invalid, which are later reclaimed by the garbage collection
process.
In contrast, DeZNS with CRC32 checksum-based data

placement outperforms the offline variant, with less than a
2% performance drop on average as deduplication increases,
as shown in Figure 6(a). This slight performance decline is
due to the inline checksum-based data placement by C3PO,
which segregates unique and duplicate data into separate zones.
Additionally, Figure 6(b) shows that with higher deduplication
ratios, DeZNS reduces valid data migration by up to 28%
compared to baseline ZenFS and by 2× compared to the
offline variant. This significant reduction is due to the efficient
segregation of unique and duplicate data.
Since CRC32 checksum has higher probability of hash

collisions than cryptographic fingerprint, we also measured
the false positives caused by C3PO during data placement.
The false positive is considered when a file extent is placed in
duplicate zone despite being unique. In DeZNS, we measured
that less than 0.3% of file extents are misplaced by the C3PO
which are later migrated by the garbage collection process.
Although, the ratio of false positive is significantly less but it
would result in data loss if solely relied on CRC32 checksum
for duplicate detection. DeZNS effectively reduces the valid

FIGURE 7. Performance and garbage collection analysis of small-sized
zone device with varying deduplication ratio.

FIGURE 8. Analysis of garbage collection operation. (a) Total number of
times zone_reset command is executed for workloads. The sub-graph
shows the break of zone_reset command between different zones of
DeZNS. (b) The average and standard deviation of garbage collection
operation’s duration.

data migration due its efficient data segregation mechanism
with minimal performance impact on user-level.

2) SMALL-SIZED ZONE
Figure 7 shows the performance and garbage collection
analysis results of a micro-benchmark with varying dedupli-
cation ratios using small-sized zones. Figure 7(a) presents
the user-level performance, while Figure 7(b) shows the
amount of valid data migrated during the garbage collection
process. Similar to the results with large-sized zones,
GC-Dedup suffers from the worst performance due to the
reduced service rate of the garbage collection process,
and the amount of valid data migration increases with
the deduplication ratio, as shown in Figure 7(b). The
offline variant improves performance by decoupling offline
deduplication from the garbage collection process, but the
amount of valid data migrated during the garbage collection
process still increases with the deduplication ratio. In contrast,
DeZNS maintains its performance and valid data migration
characteristics even with small-sized zones. Although the
valid data migration is not as significant as with large-sized
zones, DeZNS is able to further reduce valid data migration
and achieve comparable performance to baseline ZenFS.

3) GARBAGE COLLECTION ANALYSIS
In this section, we provide details of garbage collection
analysis using micro-benchmark with large-sized zones.
Since small-sized zones do not significantly impact garbage
collection process, the remaining experiments focus on large-
sized zones. We analyze two representative micro-benchmark
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FIGURE 9. Performance and garbage collection analysis with chunking of
enabled.

workloads based on deduplication ratios: 0% (worst case) and
60% (more realistic).

Figure 8(a) shows the total number of zone reset operations
during workload execution. With a 0% deduplication ratio, the
zone reset count remains the same across all systems. However,
with a 60% deduplication ratio, the reset count for the offline
and DeZNS systems is more than twice that of baseline ZenFS.
This increase is due to the invalidation of duplicate data/zones
in the offline andDeZNS systems, respectively. The sub-graph
in Figure 8(a) breaks down DeZNS’s total zone reset count,
showing that over 45% of zone resets occur in duplicate zones.
While the other zones in sub-graph mostly represent zones
with lifetime hint value small, medium, and large. The ratio
of unique zones in this breakdown is significantly low.

Figure 8(b) presents the average duration of the garbage col-
lection process across compared systems. GC-Dedup exhibits
the longest garbage collection duration, as deduplication
is part of the garbage collection process’s critical section.
With a 60% deduplication ratio, the offline system has the
second-highest garbage collection duration due to high data
migration overhead. In contrast, DeZNS achieves a lower
garbage collection duration by avoiding unnecessary data
migration. Although DeZNS’s garbage collection duration
is shorter than other systems, its user-level performance is
slightly lower than baseline ZenFS due to additional steps
during data placement. DeZNS increases zone reset calls
based on the dataset’s duplicate ratio, with most resets
occurring in duplicate zones.

4) IMPACT OF DATA CHUNKING
In previous experiments, we used the extent size (128 KB)
of baseline ZenFS as the data chunk size. In this sub-section,
we enable fine-grained chunking of extents and present the
performance and garbage collection analysis, conducted on
large-sized zones.

a: PERFORMANCE ANALYSIS
The bar graphs in Figure 9 show the performance of compared
systems with varying chunk sizes. It can be observed the
GC-Dedup has consistently demonstrated worst performance.
This is because the enabling of chunking further increases the
critical section of the garbage collection process as multiple
iterations of deduplication operations are performed based
on the chunk size. However, this performance does not go

FIGURE 10. Performance and garbage collection analysis of YCSB
benchmark.

beyond 15% as the garbage collection is only triggered
after the garbage collection trigger threshold crosses the
pre-defined utilization threshold. In contrast, the offline and
DeZNS has lower performance than ZenFS because of more
number of deduplication operations performed within a single
zone. However, DeZNS outperforms offline due to its effective
data segregation.

b: GARBAGE COLLECTION ANALYSIS
The line graphs in Figure 9 display valid data copy overhead
with increasing chunk size. The offline version suffers the
highest valid data copy overhead regardless of chunk size.
In contrast, GC-Dedup’s valid data copy decreases with larger
chunk sizes due to the significant amount of duplicate data
in the workload, Figure 9(b). For DeZNS, valid data copy
overhead remains constant regardless of chunk size, due to its
efficient data placement prediction.

C. MACRO-BENCHMARK RESULTS
Since ZenFS is tightly coupled with key-value stores,
RocksDB and BlobDB, we evaluated the efficiency of DeZNS
compared to other systems using well-known key-value store
benchmark, YCSB. Table 1 presents the details of workloads
used for experiments in this section. The zipfian distribution
is used for queries. We loaded same amount of data before
running the workload. We considered the large-sized zones
and chunk size as extent size of ZenFS. We first present the
performance analysis and then discuss the garbage collection
process.

TABLE 1. YCSB benchmark and workload description. U, I, and R
represents Update, Insert, and Read operations.

1) PERFORMANCE ANALYSIS
Figure 10(a) presents the performance results of the YCSB
benchmark. WL(A) and WL(B) are write-only workloads,
while WL(C) is a mixed workload. It is evident that regardless
of the workload type, GC-Dedup consistently exhibits lower
performance due to the increased critical section of the
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FIGURE 11. Macro-benchmark on Real ZNS device with different access
pattern.

garbage collection process. Since YCSB does not generate
duplicate values, and both invalid and valid data are written
together in the zone, GC-Dedup suffers a 22% performance
drop. Additionally, all workloads contain update operations,
increasing the workload for the garbage collection process.
In update-intensive scenarios, values are invalidated by the
application, triggering garbage collection on more zones.
Conversely, the Offline and DeZNS systems reduce the

critical section of the garbage collection process by decoupling
deduplication operations. Both systems perform offline
deduplication on blob files before garbage
collection is triggered, allowing them to stay ahead of
the garbage collection process and effectively parallelizing
tasks. Furthermore, WL(C) includes read operations, and
deduplication systems are known for generating random read
operations. However, since the workload does not generate any
duplicates, it does not suffer from random reads, and the read
path remains consistent with baseline ZenFS. The exploration
of random reads is left for future work.

2) GARBAGE COLLECTION ANALYSIS
Figure 10(b) presents the valid data copy during the garbage
collection operation for compared systems. It can be observed
that the amount of data data copy stays the same for all
workloads. This is majorly because the benchmark does not
generate any duplicate data. However, it can be noticed that
the the amount of valid data copy is greatly affected by the
workload types.

For instance, the WL(A) is update-intensive workload with
20% new inserts, therefore, it has moderate valid data copy
overhead. Moreover, WL(B) being update-heavy workload
with 50% new inserts, has the highest valid data copy overhead
as the ratio of zones with valid and invalid data is higher.
On the other hand, WL(C) is update-heavy but only includes
read operations therefore, the ratio of mixed zones with valid
and invalid data becomes lower hence less valid data copy.
The effective parallelization of Offline Dedup and garbage
collection process in DeZNS results in reduced interference
between background and foreground jobs.

D. EXPERIMENTS ON REAL DEVICE
To validate our previous experiments, we conducted tests using
a real device. We used the ZMe ZNS SSD, which consists
of 904 zones, each with a capacity of 1077MB, and a total

FIGURE 12. Micro-benchmark on Real ZNS device. We emulated WL(C) of
YCSB benchmark with varying duplicate ratio.

size of 1TB [40]. For ease of experimentation, we mounted
only 64 zones in ZenFS and conducted experiments using
Macro- and Micro-benchmarks.

1) MACRO-BENCHMARK RESULTS
Figure 11 shows the performance and garbage collection
analysis of three different workloads of YCSB benchmark. The
details of workload is presented in Table 1. It can be observed
from Figure 11(a) that DeZNS maintains its performance
characteristics equal to baseline ZenFS while GC-Dedup
suffers from performance drop due to inline deduplication
at the garbage collection operation. The remaining insights
in Figure 11 are similar to what we explained in Figure 10.
Meanwhile, Figure 11(b) shows the valid data copy during
the zone cleaning operation. Since YCSB does not exhibit
any duplicate ratio therefore the amount of valid data copied
during zone cleaning operation stays equivalent to the baseline
ZenFS, as shown in Figure 11(b).
Additionally, DeZNS is designed with two primary

goals: maintaining the performance and reducing the write
amplification (valid data copy). Figure 11 demonstrate that
DeZNS achieve these two goals. Moreover, the observed
reduction in data migration (valid data copy overhead) directly
translates to a reduction in write amplification, as DeZNS
minimizes the additional writes to zones by segregating unique
and duplicate data. This reduction in unnecessary writes helps
to extend the longevity of the ZNS SSD, even if it does not
immediately reflect as a substantial performance gain in terms
of operations per second. The key benefit lies in reducing
the wear on the ZNS SSD, which contributes to its overall
lifespan.

2) MICRO-BENCHMARK RESULTS
We conducted these experiments in two phases. In first phase,
we loaded the 50% of the dataset and then in the second phase,
we run the benchmark which simulated the WL(C) of YCSB
with 50% writes and 50% read operations. Note that, the read
operations are performed on already written data in a uniform
distribution.

a: THROUGHPUT AND GARBAGE COLLECTION ANALYSIS
Figure 12 presents the performance and garbage collection
analysis from the micro-benchmark conducted on a real
ZNS device, where the workload’s duplicate ratio varies.

197242 VOLUME 12, 2024



S. Jamil et al.: Efficient Data Placement in Deduplication Enabled ZenFS via CRC-Based Prediction

TABLE 2. Put and Get latency analysis of the compared systems with 60%
duplicate data. The values presented are in Micro-second unit.

This analysis is crucial to understanding the impact of DeZNS
on both performance and write amplification in comparison
to baseline ZenFS.

In Figure 12(a), we observe that both the Offline andDeZNS
maintain performance levels comparable to the baseline
ZenFS across all deduplication ratio. This result highlights
that DeZNS and Offline deduplication methods can support
high-performance operations without introducing additional
overhead from deduplication and data placement. In contrast,
GC-Dedup experiences a noticeable performance degradation,
particularly at lower deduplication ratios. This performance
drop is attributed to the inline deduplication within garbage
collection, which becomes more pronounced when the data
lacks redundancy. Notable, the GC-Dedup’s read performance
remains stable since the read operations are served directly
from the LSM-tree’s components that are yet not processed
by the garbage collection. On the other hand, the impact
of redirection and random read operations in the Offline
and DeZNS is negligible as the modern SSD’s have similar
sequential and random read performance [37], [47].
Figure 12(b) provides a detailed analysis of garbage

collection efficiency in terms of data copy reduction, which
directly correlates with reduced write amplification. Across
all deduplication ratios, DeZNS achieves the lowest data
copy volume compared to ZenFS, GC-Dedup, and Offline
deduplication configurations. This outcome underscores
DeZNS’s effectiveness in minimizing write amplification
by segregating duplicate and unique data, thus significantly
lowering the overhead of valid data copy operations. As the
deduplication ratio increases, DeZNS’s advantage in reducing
data copy becomes even more apparent. For instance, at high
deduplication ratio (60% and 90%), DeZNS demonstrates a
substantial reduction in data copy, outperforming all other
configurations. This result indicates that DeZNS can leverage
higher redundancy in workloads to more effectively manage
write amplification, a critical advantage for systems based on
ZNS SSDs.

b: LATENCY ANALYSIS
Table 2 provides a detailed analysis of the Put (write) and
Get (read) latency across different percentile levels for
compared systems under 60% duplicate ratio workload from

TABLE 3. Storage requirements after the execution of the macro- and
micro-benchmark.

micro-benchmark. The latencies are measured in
microseconds (µm), offering insights into the performance
consistency of each system, particularly at high percentiles
where tail latency becomes a significant concern.

Across all systems, the average write latency remains fairly
consistent, with ZenFS and Offline showing the lowest latency
at 9.8 µm, and DeZNS at a similar level. This slight increase is
due to the computation of CRC32 checksum when the data is
placed within the zones. GC-Dedup exhibits a slightly higher
average write latency, likely due to the overhead introduced by
inline deduplication and garbage collection operations. As we
move to high percentiles, the variance in performance becomes
more apparent. GC-Dedup exhibits a significant increase in
write latency at high percentiles, reaching 90.23 µm at the
99.99th percentile. This result highlights the performance
penalty associated with GC-Dedup’s inline deduplication and
garbage collection process under high redundancy workloads,
which adds latency during data copy operations.DeZNS on the
other hand, maintains relatively low and stable write latencies
at higher percentiles, with a latency of 72.55 µm at 99.99th
percentile. This stability reflects DeZNS’s efficient handling
of redundant data, reducing the impact on write performance
by segregating duplicate data.
For read operations, ZenFS and GC-Dedup have the

lowest average read latency at 19.44 µm, while offline and
DeZNS show a slightly higher latency of 21.1 µm. This
minor increase for Offline and DeZNS is attributed to the
deduplication approach, which introduces redirection and
random reads. At high percentiles, especially the 99.99th
percentile, both Offline and DeZNS show similar read
latency results (81.0 µm). Although this is marginally higher
than ZenFS and GC-Dedup, the difference remains modest,
suggesting that DeZNS’s deduplication odes not impose
significant penalties on read latency. Additionally, the system’s
ability to handle 50% of reads directly from the LSM-tree
components helps keep latency low across the percentile
spectrum.

E. SPACE UTILIZATION AND METADATA OVERHEAD
1) SPACE UTILIZATION
We measured the total storage requirements for both macro-
and micro-benchmarks. In the macro-benchmark, we con-
trolled the duplicate ratio, whereas the micro-benchmark
did not support this feature. Table 3 details the storage
requirements of all compared systems. Dedup-integrated
systems show lower storage requirements than baseline ZenFS
as the deduplication ratio increases. However, GC-Dedup is
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less effective than Offline and DeZNS because GC-Dedup
only performs deduplication when the garbage collection
process selects a victim zone with duplicate data. In contrast,
Offline andDeZNS parallelize both deduplication and garbage
collection tasks, marking duplicate data as invalid, which
is later reclaimed by the garbage collection process. This
approach reduces overall storage requirements.

2) METADATA OVERHEAD
DeZNS introduces two additional metadata structures: the
Hinting Metadata Table (HMT) and the Deduplication
Metadata Table (DMT), as shown in Figure 3. Both require
extra memory and storage. The HMT, stored entirely in
memory for fast access, uses 8 bytes per entry to reference
a 128 KB ZenFS extent, requiring only 64 MB of memory
to manage 1 TB of data. For failure consistency, DeZNS
periodically flushes HMT contents to the metadata zone.
The DMT has higher memory and storage demands, with
each entry being 32 bytes (20 bytes for the cryptographic
fingerprint, 4 bytes for the reference count, and 8 bytes for
the offset). The DMT is also stored in memory to ensure fast
access for the offline deduplication module, avoiding random
lookups and preventing high write amplification. Like the
HMT, the DMT is periodically flushed to the metadata zone for
failure consistency. Additionally, file reconstruction metadata
is directly written to metadata zones. Extensive research on
optimizing deduplication metadata can be applied to DeZNS,
as metadata optimization solutions complement our proposed
solution.
DeZNS achieves significant space savings based on the

deduplication ratio of workload while maintaining the
minimal performance impact.

V. RELATED WORK
A. ZNS SSD
There have been several studies focused on optimizing systems
for ZNS SSDs [18], [34], [41], [48], [49], [50]. Waltz [48]
improved tail-latency in LSM-ZNS storage’s PUT(k,v)
operation by implementing zone-append [49]. ZNSwap [50]
addressed the issue of performance isolation failure in
multi-tenant environments caused by Garbage Collection,
by integrating ZNS SSD into the kernel subsystem’s swap
memory area, setting it apart from conventional SSDs.
ZNS+ [6] enhanced file system performance by offload-
ing copy operations to the device in the F2FS log-
structured file system [51]. ConfZNS [34] introduced the
concepts of Full-Unit zone (FU-zone) and Single-Unit
zone (SU-zone) layouts based on internal parallelism, and
provided a real-latency ZNS SSD emulator for researchers.
Bae et al. [18] boosted read performance and latency in
small-zone layouts by using kernel-level internal parallelism
profiling and an interference-aware scheduler. eZNS [41]
proposed a method to fully exploit the internal parallelism of
ZNS through Zone Ballooning.

B. DATA DEDUPLICATION IN FILE SYSTEM
Deduplication has become essential in both archival and
primary storage, including file systems [10], [12], [27],
[52], [53], [54], [55], databases [56], [57], and distributed
storage systems [22], [23], [24], [25]. Recent works have
adopted deduplication in NVM-based storage systems, such
as NV-Dedup [27], LO-Dedup [58], DeNOVA [12], and
LightDedup [26], which proposed both inline and offline
deduplication techniques. Notable file system-level works
include iDedup [10], PDFS [11], D3 [59], and ProSy [60].
For object storage systems, Grate [22], [23] proposed inline
deduplication for Ceph-based distributed storage systems.
In recent years, deduplication has become a key focus in

file system research, with numerous attempts to integrate
it into existing systems [10], [11], [12], [13], [15]. Recent
advancements in deduplication for file systems include
SmartDedup [13] and F2DFS [15]. Both target F2FS and
propose a hybrid approach, combining inline and offline
deduplication. SmartDedup is designed for resource-
constrained storage devices and adopts adaptive deduplication
based on the number of duplicates over time to reduce the
access overhead on storage devices. F2DFS also employs
a hybrid approach with a file system-coupled design and
optimizes deduplication metadata to reduce many-to-one
mapping updates during segment cleaning. However, both
works focus on conventional SSDs and do not consider the
impact of deduplication on the GC process in ZNS-based
file systems. Moreover, DenKV [28] is the only work that
attempted to incorporate deduplication in BlobDB during the
Flush operation when values are written to blob files. However,
DenKV suffers from frequent write stalls and reduces the
overall performance of BlobDB due to reduced service rate of
Flush operation.

However, the existing studies fall short on ZNS SSD due to
two reasons. First, the existing solutions do not consider the
impact of deduplication on the garbage collection operation
which is the major source of write amplification in SSDs.
Second, the existing solutions do not provide solutions to
segregate the unique and duplicate data blocks as the data
placement in traditional SSDs is the responsibility of the
internal hardware of the storage device. ZNS SSDs offload this
responsibility to the host therefore, providing the flexibility
to the deduplication systems to segregate the unique and
duplicate data blocks which eventually lead to reduced
write amplification and longevity of SSD’s lifespan. DeZNS
leverage this opportunity in ZNS SSD and proposed solutions
to maintain performance and reduce write amplification.

VI. CONCLUSION
In conclusion, ZNS interface places the responsibility of
data management on upper-level applications, necessitating
the use of garbage collection (GC) through the zone-reset
command. While application-level GC can cause performance
degradation due to the significant overhead of copying valid
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data, this challenge is exacerbated by the larger GC units
in ZNS SSDs. However, the negative impact of larger GC
units can be alleviated by making GC operations interruptible,
allowing I/O requests to be processed during zone resets or
block reclamation. Offline deduplication, a commonly used
storage optimization technique in ZNS-based file systems like
ZenFS, presents additional complexities. It requires careful
management of file allocation based on data lifetime to avoid
deduplicating hot data, and the co-location of unique and
duplicate data blocks further increases the valid data copy
overhead during GC.
To address these challenges, we introduced DeZNS,

an innovative data placement strategy for deduplication-
enabled ZenFS. DeZNS mitigates the increased valid data
migration overhead during GC by using a lightweight CRC32
checksum-based method to predict duplicates with minimal
performance cost, while also segregating unique and duplicate
data blocks. This segregation reduces the migration overhead
during GC, and the interruptible GC mechanism ensures
that ongoing I/O requests are not delayed, maintaining
ZenFS performance. Furthermore,DeZNS integrates an offline
deduplication module that operates on these segregated zones.
Our evaluation demonstrates that DeZNS reduces valid data
migration by 28% compared to the baseline ZenFS, and
by up to 2× compared to naive offline deduplication in
micro-benchmarks, highlighting its effectiveness in improving
performance in deduplication-enabled ZenFS environments.
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