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Abstract

Micro-batch streaming systems using Log-Structured Merge-tree based Key-Value Store (LSM-KVS) as state stores often
experience high tail latency due to several factors. First, the commit task is synchronous, blocking query execution until it
is fully completed. During this time, the streaming engine must wait for all associated operations to finish. Additionally,
remote checkpointing, which is part of the commit task, increases compaction time in the LSM-KVS. This involves reading
metadata and state from a remote persistent node for compaction then writing the updated data back, which prolongs the
commit latency and degrades overall performance. These delays also postpone subsequent tasks, causing rapid data
accumulation from data source and creating a cycle that further extends commit latency, ultimately resulting in long tail
latency. To address these issues, we propose MISA, a micro-batch streaming system that incorporates asynchronous
commit and state preloading mechanisms in the LSM-KVS based architectures. MISA overlaps the time-consuming
commit operation with query execution and enhances performance through hierarchical state preloading. We implemented
MiSA in Apache Spark Structured Streaming with LSM-KVS support, a widely-used micro-batch streaming platform.
Experimental results show that MiSA reduces tail latency by up to 13.4x at the 99th percentile and boosts average
throughput by up to 10.4x.
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1 Introduction

Micro-batch streaming systems aggregate incoming data
. . ) over short intervals and process it as micro-batches. These
was revised: Some of the corrections were missed to . ] .
incorporate in the article, the missing corrections have been systems provide higher throughput than event-driven
now incorporated. streaming systems by handling large volumes of data at
once. They also simplify the execution of complex stateful
operations by defining clear boundaries, which improves

Update 12 September 2025 The original online of this article

< Sungyong Park

arksy @sogang.ac.kr . .

P .y gang processing accuracy. Due to these benefits, micro-batch

Kyuli Park streaming systems have been widely adopted for data

kyuripark @sogang.ac.kr .o . .
analysis in complex stateful queries, such as online fraud

Dongjae Lee

detection [1, 2], product recommendation services [3, 4]
and network monitoring [5].

As the complexity of stateful queries increases, the size
of intermediate states grows substantially, leading to sig-
nificant memory management overhead and degrading
application performance [6]. Additionally, when the state
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Among the available options, Log-Structured Merge-tree
[11] based Key-Value Stores (LSM-KVS), such as
RocksDB [12], LevelDB [13], and Apache Cassandra [14],
are widely used for their ability to efficiently store and
retrieve large volumes of state information using high-ve-
locity storage devices. LSM-KVS employs append-only
writes and in-memory access to reduce the performance
impact of disk I/O during query execution. Data is con-
tinually written to an in-memory structure called memtable,
which is later flushed to disk as files. These files are then
processed through a background process called compaction
that reorganizes the data and removes redundancies, opti-
mizing access latency for improved performance.

An LSM-KVS based micro-batch streaming system
performs a commit task to persist runtime-generated state
in LSM-KVS and create checkpoint files for the persistent
node. This commit task includes a flushing operation
within LSM-KVS and two types of checkpointing opera-
tions: LSM checkpointing for the key-value store and
stream checkpointing for the streaming engine. When a
commit task is initiated from a streaming engine, LSM-
KVS operations such as flushing and LSM checkpointing
are executed to transfer in-memory states to disk. After
these LSM-KVS operations are completed, the streaming
engine performs stream checkpointing to transfer the state
information from disk to the persistent node. To ensure
exactly-once semantics during micro-batch processing, all
operations within the commit task are executed syn-
chronously. Consequently, even background tasks like
flushing in LSM-KVS must wait for preceding commit
tasks to finish, which can introduce delays.

The primary delay in commit tasks is due to compaction
operations, where longer compaction times result in
extended application blocking, which in turn delays sub-
sequent tasks. If a compaction operation is underway
before LSM checkpointing begins, the LSM checkpointing
must wait for the compaction to finish to prevent data
modifications during the checkpointing process. The data
accumulated during this delay is transferred to the next
batch, causing an unintended increase in both batch size
and execution time. Additionally, remote stream check-
pointing further extends the commit latency. For instance, a
compaction operation requires fetching the necessary
metadata from the persistent node and then writing the
updated file back. This process increases the overall delay,
especially when the persistent node is located remotely. In
this paper, commit latency is the time to complete all
synchronous operations within a commit task, including
flushing, LSM and stream checkpointing, and compaction
delays.

To address the aforementioned problems, existing
studies [15, 16] have suggested dynamic batch size
adjustment mechanisms based on the processing engine’s
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capacity. While these studies can initially reduce latency,
they do not fully address the challenge of increasing state
size due to long-term stateful computations. By concen-
trating solely on batch control, these methods fail to
resolve underlying issues, resulting in an ongoing cycle of
problems. Additionally, adjusting the batch size may
reduce throughput and is unlikely to offer a comprehensive
solution. Databricks [17] introduces asynchronous stream
checkpointing, which allows the next micro-batch to pro-
ceed before the checkpointing process is finished, thus
reducing latency. However, only the stream checkpointing
within the commit task is performed asynchronously, while
all other operations within the commit remain synchronous.
Consequently, the stream checkpointing overhead is elim-
inated, reducing commit latency, but commit latency still
exists due to other operations within the commit task.
Furthermore, it increases the risk of query failures if issues
occur during asynchronous checkpointing, as it lacks the
retry mechanism present in synchronous checkpointing.

This paper presents MiSA, which introduces asyn-
chronous commit and state preloading mechanisms for
LSM-KVS based micro-batch streaming systems. The key
idea behind MISA is to separate the synchronous commit
task from the critical execution path to avoid application
stalls. When a commit task is initiated, a dedicated commit
thread handles the necessary operations while the micro-
batch processing can proceed with the next task concur-
rently. Additionally, MiSA enables compaction to begin
immediately after LSM checkpointing is complete, allow-
ing stream checkpointing and compaction to run in parallel.
This overlap permits the commit and compaction thread in
the LSM-KVS to execute concurrently. MiSA also intro-
duces a state preloading mechanism, which writes stream
checkpointing data locally first, followed by a hierarchical
write to DFS. A dedicated checkpointing thread copies the
locally stored checkpoint file to DES, allowing this process
to run independently of the commit task. This approach
accelerates state retrieval for query execution and speeds
up the compaction operation.

We implemented MiSA on Apache Spark Structured
Streaming [18] (referred to as vanilla Spark), a widely used
distributed micro-batch streaming system. Our experiments
with various real-world workloads demonstrate that MiSA
reduces tail latency by up to 13.4x and enhances average
throughput by up to 10.4x.

This paper makes the following contributions.

e We identified an increase in tail latency due to
synchronized commit operation in LSM-KVS based
micro-batch streaming systems and analyzed that the
compaction operation is one of the main causes of this
delay.
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e We proposed an asynchronous commit mechanism to
address the issue of synchronous commit while pre-
serving exactly-once semantics.

e We proposed a hierarchical checkpointing mechanism
called state preloading designed to enhance checkpoint-
ing performance.

e We implemented MISA on a real streaming system,
improving query processing performance without mod-
ifying the core system. This preserves the system’s
original integrity while ensuring broad compatibility.
Consequently, the core principles of MISA can be
applied to other micro-batch streaming frameworks.

2 Background and related work
2.1 LSM-KVS

LSM-KVS is a key-value store based on the LSM-tree
architecture, designed to optimize write operations using an
append-only approach. As depicted in Fig. 1, it consists of
both memory and disk components. Incoming write
requests, represented as key-value pairs, are initially stored
in a memory buffer known as a memtable. Once the
memtable is full, it is converted into a Sorted String
Table (SST) file and flushed to disk in the background,
starting at level 0 (LO).

The disk component is organized into multiple levels,
each containing a collection of SST files. At LO, these
flushed SST files are unsorted. As data moves to higher
levels, the number of SST files allowed per level increases.
Once this number exceeds a predefined threshold, a back-
ground process called compaction is triggered. During
compaction, SST files from levels L, and L, ; are merged
and sorted, creating a new SST file that is stored in L, ;.
Notably, within any level except L0, key ranges across SST
files cannot overlap.

Memtable Full

Memtable

Write (Key, Value) > Memtable — " (Immutable)

Memory ‘ Flush (Background)

Storage (ex. SSD) l

Write-Ahead

Log LO (Level 0) SST file SST file
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Compaction (Background)

L1 SST file SST file SST file

Fig. 1 An overview of LSM-KVS
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Fig. 2 Workflow of micro-batch streaming system
2.2 Micro-batch streaming system

Figure 2 illustrates the workflow of micro-batch streaming
systems. In these systems, incoming data is buffered for a
specific time interval @, creating a small set of records
called a micro-batch. Once this interval, known as the
trigger time, expires and the micro-batch is constructed @,
a micro-batch execution begins. The query engine then
analyzes the query semantics and data dependencies, gen-
erating a query plan represented as a Directed Acyclic
Graph (DAG) ®. Afterward, the actual query execution
starts, with the plan divided into multiple stages, each
containing parallel tasks based on the dependencies
between the query’s operators.

When execution begins, each partition within a stage,
functioning as a parallel execution unit, reads the micro-
batch dataset @. The streaming system then retrieves the
previous state generated from the i — 1,, micro-batch ®
and performs query operators such as joins and aggrega-
tions ®. After completing the query, a commit operation
stores the newly generated state to the LSM-KVS @ and
commits the intermediate state to a Distributed File System
(DFS) [19-21]. Finally, the streaming engine writes the
processed results to the output sink ®.

2.3 Persistent state management

During micro-batch execution, the streaming engine han-
dles state management by delegating it to the LSM-KVS
through commit operations. Once the query execution is
completed, the streaming engine commits the state of the
current batch to the memtable. Figure 3 illustrates how the
state is managed in Spark Structured Streaming using
LSM-KYVS, providing a detailed view of the process during
the commit phase (step @) in Fig. 2.

To ensure that the state is permanently recorded and
managed in batch units, the streaming engine explicitly
flushes the memtable’s contents @, enabling version con-
trol for each micro-batch. In other words, processing a
single query results in the creation of an SST file at LO.
After flushing, the streaming engine invokes LSM
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Fig. 3 Persistent state management in Spark Structured Streaming with LSM-KVS. In the LSM-KVS and Stream Processing Engine boxes,
checkpoint() refers to LSM checkpointing (db.checkpoint()) and stream checkpointing, respectively. Sink operation is the last step of the Micro-
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checkpointing function to persist the state @. However, if a
compaction is in progress when the LSM checkpointing is
triggered, LSM checkpointing is delayed until the com-
paction completes @. Since the checkpointing process
creates a snapshot of the LSM-KVS, capturing a consistent
state during compaction is difficult due to ongoing changes
and updates to data files. As a result, longer compaction
times lead to extended wait times for checkpointing,
potentially affecting the application performance.

Once the LSM checkpointing starts, LSM-KVS gener-
ates several files in its local checkpointing directory, with
the most important being the SST file, which contains the
actual log-structured data. The remaining files store meta-
data needed by LSM-KVS to read the SST file and resume
from the checkpoint. Since SST files are hard links to files
in the LSM-KVS working directory, successive check-
points may share some of these files. Therefore, these SST
files must be copied to a Distributed File System (DFS) in a
shared directory. To facilitate this, the streaming engine
calls its own stream checkpointing function to persist
committed versions ®. It synchronizes the files in LSM-
KVS’s local checkpointing directory with the shared file
system.

Each query execution creates a new stream check-
pointing version, storing SST and log files in a designated
shared directory for reuse in subsequent queries. Each SST
file version is assigned a unique name, allowing the system
to identify and read the file using metadata. This enables
the next batch to retrieve the previous stream checkpoint-
ing version from the file system, recover the state, and
continue query execution. The commit task is finalized
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only after stream checkpointing is completed, at which
point the result is written to the sink, and the next micro-
batch begins execution.

2.4 Related work

Micro-batch stateful streaming systems Micro-batch pro-
cessing is a widely used approach in stateful streaming
systems. In this method, incoming data is divided into
small batches that are processed sequentially, simplifying
state management and checkpointing.

Lee et al. introduced zStream [16], which achieves low
latency by utilizing dynamic buffering in micro-batch
processing based on a reference value known as the
deadline. zStream reduces tail latency by adjusting the size
of each micro-batch dynamically, aiming to complete
execution as close to the deadline as possible. A-scheduler
[15] proposed an adaptive scheduling mechanism for
multiple queries, combined with dynamic micro-batch size
control to adapt to traffic fluctuations. This approach
achieves low latency by preventing unchecked growth in
batch size. However, these two approaches indirectly
reduce the number of states by managing micro-batches
rather than directly addressing state management.

Databricks [17] provides APIs for managing streaming
data and handling incremental changes using Apache Spark
Structured Streaming. It supports asynchronous stream
checkpointing, which reduces latency by allowing the next
micro-batch to proceed without waiting for checkpointing
to finish. However, this approach only performs stream
checkpointing asynchronously, leaving other operations
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Table 1 Summary of previous works on streaming system optimizations

Previous work LSM-KVS Streaming Optimization metric Optimization approach State
support architecture checkpoint
Meces [22] X Event-driven Latency State migration v
Rhino [23] v Event-driven Latency State migration v
FlowKV [24] v Event-driven Throughput Customizing KV store X
ShadowSync (4 Event-driven Latency Scheduling operation (4
[25]
zStream [16] v Micro-batch Latency Dynamic buffering X
DataBricks [17] ¢ Micro-batch Latency Asynchronous stream v
checkpointing
MiSA(Ours) v Micro-batch Latency and Asynchronous commit v
throughput
§ § -~ Batch Size
230r @ Computation 230 Latency 1200 15 300 g;q
"E’ E Commit °E-’ 1000 1250 2
o i o =
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Fig. 4 a Execution times per batch when compaction is triggered. In a, Computation represents the micro-batch processing time, and the total
time for each bar is the same as the latency in b. b—¢ Correlation between execution time and batch size at various CPU frequencies

within the commit task on the critical path. Consequently,
it only partially reduces the duration of the commit task,
leading to delays in subsequent operations. Additionally,
Databricks acknowledges the limitations of this approach.
Specifically, the entire query will fail if a failure occurs
during asynchronous stream checkpointing, as it lacks the
retry mechanism available in synchronous checkpointing.
Furthermore, Databricks is not open-source, which may
limit its accessibility and flexibility for certain users.

Event-driven stateful streaming systems Event-driven
processing is another approach where each incoming event
is processed immediately, allowing for lower latency and
higher responsiveness.

Rhino [23] attempted to minimize the amount of state
migrated during runtime reconfiguration of large operator
states by using a proactive migration protocol while
ensuring fault tolerance. It asynchronously replicates the
state of a running stateful operator, avoiding any pause in
query execution. Meces [22] aimed to reduce latency
through state migration, enabling prioritized state transfers
during rescaling to ensure that the most critical states are
migrated first. This is achieved without additional resource
usage during non-rescaling periods. However, it does not
support LSM-KVS, which limits its applicability in certain
scenarios. Zhang et al. [25] identified latency spikes in
stream processing engines using LSM-KVS when LSM

operations overlap. To address this, they proposed a
scheduling strategy to minimize overlapping LSM opera-
tions. Meanwhile, Lee et al. introduced FlowKV [24], a
specialized LSM-KVS optimized for window operations,
highlighting the inefficiencies in the interaction between
stream processing applications and state backends.

Checkpointing Checkpointing is a well-known method
used to achieve fault tolerance in distributed systems. In
this approach, the system periodically stores the application
state to persistent storage, enabling recovery in the event of
a failure.

Sachini et al. [26] proposed a mathematical model for
multi-level checkpointing based on utilization in stream
processing systems. They define utilization as the fraction
of time spent processing data and overhead as the fraction
of time spent recovering from failures. Using these defi-
nitions, they identify the optimal value that maximizes
utilization. Chiron [27] determines the optimal check-
pointing frequency for distributed stream processing
applications by balancing the trade-off between end-to-end
latency and total recovery time in case of failure.

Compaction optimization Although widely used in
latency-sensitive applications, LSM-tree-based key-value
stores incur significant overhead due to their internal
operations, particularly compaction, which is resource-in-
tensive. Several studies, such as [28, 29], have aimed to

@ Springer



420 Page 6 of 19

Cluster Computing (2025) 28:420

reduce this overhead by optimizing and scheduling com-
paction. While these optimizations help decrease the
commit times, they cannot entirely eliminate delays in
subsequent tasks caused by blocking applications. To
address this, we remove the commit task from the critical
path, avoiding the endless cycles caused by compaction.

Table 1 provides a summary of previous studies on
optimizations in streaming systems.

3 Motivations

To investigate the impact of operations during the commit
task, we evaluated the performance of vanilla Spark using
the Linear Road benchmark [30], a real-world road traffic
monitoring benchmark built on the streaming pipeline, with
RocksDB [12] as the state store. The detailed system
specifications for each server and workloads are outlined in
Sect. 5.1. The experiments utilized LR2 queries (shown in
Table 2), with the trigger interval in vanilla Spark set to the
default value of 1 s and a traffic rate of 1000 records per
second. The size of each record was 65 bytes.

3.1 Problem 1: synchronous commit

As explained in Sect. 2.3, the flush operation during a
commit task generates an SST file in the LSM-KVS. When
the number of SST files exceeds a predefined threshold, a
compaction operation may be triggered. We set this
threshold to 4, ensuring compaction is triggered after every
4th batch.

Figure 4a presents the execution times of commit and
compaction operations over the first 100 batches, illus-
trating when compaction takes place. As depicted in the
figure, the steady increase in commit time leads to a sub-
stantial rise in overall execution time. This happens
because the commit operation is executed synchronously,
causing delays in subsequent tasks until the commit fin-
ishes. When compaction takes place, the next operation in
the commit task (e.g., LSM checkpointing) is forced to
wait, which increases the size of the micro-batch. This
creates a cycle where the growing state size leads to longer
commit and compaction times, further exacerbating delays.

To further explore the correlation between execution
time and batch size, we conducted the same benchmark on
two servers with different CPU frequencies (i.e., a low-end
CPU and a high-end CPU). The purpose of using different
CPU frequencies was to demonstrate that, even though
compaction may be faster on a high-end CPU, the commit
time remains prolonged, eventually leading to an increase
in batch size. Figure 4b, ¢ show the execution time and
accumulated micro-batch size based on CPU specifications.
In this experiment, the micro-batch size was calculated by
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sampling and averaging 10 batches. Although the patterns
of growth in execution time and batch size differ,’ both
metrics ultimately exhibit increases regardless of the CPU.

As depicted in Fig. 4(b), the server with the low-end
CPU experiences a sharp increase in execution time. For
example, by the 60th batch, latency reaches approximately
7.6 s, representing a 2X increase from the initial batch
phase. By the 100¢h batch, latency rises to nearly 17 s, a
5.3x increase from the 10¢h batch. Additionally, the batch
size processed between the 90th and 100zh batch is 4.17 X
larger than in the initial batch phase. A similar trend is
observed for the server with the high-end CPU, as shown in
Fig. 4(c). While the higher-end CPU reduces compaction
time, slight delays still occur, causing a gradual accumu-
lation in batch size.

In summary, LSM-KVS based micro-batch streaming
systems running for a long period suffer from significant
delays, regardless of CPU specifications. A key factor
contributing to these delays is the synchronous nature of
the commit operation.

3.2 Problem 2: overhead in remote
checkpointing

In High Performance Computing (HPC) applications and
streaming systems, remote checkpointing is often carried
out on remote machines to ensure fault tolerance [31-34].
This study aims to quantify the overhead incurred when
stream checkpointing is performed on remote nodes.

Figure 5 illustrates the latency of four key operations—
Get, Compaction, L.Ckp (LSM checkpointing), and S.Ckp
(stream checkpointing))—which affect the 99tk percentile
tail latency when checkpointing is performed either locally
or remotely. In both cases, checkpointing was conducted
on worker nodes with low-end CPUs. The x-axis represents
the checkpointing location (local or remote), while the
y-axis uses a different scale for clarity.

As shown in Fig. 5, checkpointing on a remote node
results in a noticeable increase in latency for compaction
and stream checkpointing operations. Compaction on the
remote node takes 7 s, approximately 6.7 longer than on
the local node. Likewise, stream checkpointing on the
remote node has a latency of 2.5 s on the remote node, a
36.8-fold increase compared to local checkpointing. This
increase is primarily due to network overhead, as the
checkpointing data must be stored in the remote DFS.
Additionally, compaction is further delayed because files
need to be transferred between local and remote nodes,
requiring read, process, and send operations across loca-
tions. The get operation also experiences latency when
executed remotely since the state data must be fetched

! Note that the y-axis in both figures uses a different scale.
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Fig. 5 Operations influencing the 99fh percentile tail latency
depending on the checkpointing location. L.Ckp refers to LSM
checkpointing, while S.Ckp represents stream checkpointing. All
experiments were performed in a low-end CPU environment

from the remote node during a query. It takes around 4.1 s
on the remote node, compared to just 0.2 s locally, making
it about 20 times slower. However, the LSM checkpointing
latency remains relatively low, 121 ms for remote and 34
ms for local checkpointing, as it is performed on the local
node where the LSM-KVS resides. As a result, LSM
checkpointing is not impacted by the location of the stream
checkpointing, leading to minimal differences between
local and remote configurations at the 99th percentile tail
latency.

In summary, remote checkpointing significantly increa-
ses the latency of operations such as get, compaction, and
stream checkpointing, which degrades tail latency and
overall performance. In contrast, local checkpointing
shows only slight latency increases. This analysis confirms
that remote checkpointing introduces considerable latency
overhead, negatively affecting system performance.

4 Design and implementation
4.1 Overview of MISA architecture

We propose MISA, a micro-batch streaming system based
on LSM-KVS that integrates asynchronous commit and
state preloading mechanisms. MiSA aims to achieve two
key objectives: (i) reducing tail latency by overlapping
query processing with asynchronous commit tasks. (ii)
Enhancing access to persistent data during query execution
and minimizing stream checkpointing time through the
state preloading mechanism. MiSA is implemented on the
JAVA-based micro-batch streaming framework, Apache
Spark Structured Streaming, using RocksDB as its state
store.

Figure 6 presents the architecture of MISA, which
comprises two main components: Streaming Processor and
MISA Controller. Streaming Processor manages query

processing and initiates commit tasks as threads, while
MiSA Controller executes these tasks asynchronously.

The flow of MiSA operates as follows. Once the query
processing for the iy, micro-batch is completed, Streaming
Processor sends a signal to MiSA Controller. At the same
time, the results are written to the sink, and the system
immediately begins the i + 1,, micro-batch. Upon receiv-
ing the signal, MiISA Controller initiates the commit
asynchronously via the commit thread @. The contents of
the memtable are then flushed to the LSM-KVS ©@, with
the flushing operation explicitly triggered by calling the
flush function through the Java Native Interface (JNI).

Once the flushing operation is completed, the commit
thread calls the JNI function to perform LSM checkpoint-
ing, capturing a snapshot of the LSM-KVS ®. If com-
paction is triggered within LSM-KVS at this time, it
proceeds independently via a dedicated compaction thread.
However, running compaction and LSM checkpointing
simultaneously can compromise data consistency. There-
fore, MiSA ensures that LSM checkpointing and com-
paction do not occur concurrently by locking the LSM-
KVS during checkpointing.

Regardless of compaction, once the LSM checkpointing
is completed, the commit thread proceeds with the stream
checkpointing @ on the local machine, followed by send-
ing an acknowledgment signal (Ack) to the Streaming
Processor ®. Meanwhile, the commit thread creates a
stream checkpointing thread to copy the checkpoint files to
the remote DFS asynchronously ®. Finally, MiSA Con-
troller sends an Ack to the currently executing i+ 1y
micro-batch @, indicating that the commit is complete.

To simplify the explanation of the MISA architecture,
Algorithm 1 provides a pseudocode that outlines the
asynchronous commit workflow of MiSA. Details on how
MiSA overlaps with other stream processing and the state
preloading mechanism are covered in Sects. 4.2 and 4.3.

4.2 Overlapping flow

Figure 7 illustrates how MISA overlaps with micro-batch
processing to improve its performance. The overlapping
scenarios are categorized into three cases. Case I represents
a scenario with no compaction, while Case II and Case III
involve compaction being triggered. In all cases, the flow
prior to commit remains the same.

As stream processing starts, data is continuously
ingested and organized into micro-batches. A DAG is then
created for query planning. Once the query is ready for
execution, the micro-batch data is processed alongside the
previously generated state to perform the actual query (O—
®). Up to this point, the process is identical to that shown
in Fig. 2 of Sect. 2.2.
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refers to LSM checkpointing (db.checkpoint()) and stream checkpointing, respectively

After the query execution finishes, the commit task
begins asynchronously @ while the sink operation for the
micro-batch continues ®. Following this, the next micro-
batch processing starts. During the commit task, the
flushing, LSM checkpointing, and stream checkpointing
operations are executed sequentially (® ~ @). Since these
steps are independent, they must be completed in order.
This process represents Case I in Fig. 7, where commit
tasks and micro-batch processing can overlap for improved
performance.

If compaction occurs, two possible scenarios exist
depending on when it is triggered. In Case II, compaction is
triggered before LSM checkpointing. Here, compaction
must be completed first, followed by LSM checkpointing.
Thus, the commit task proceeds in the order of @, @, ®,
and @. During this process, subsequent tasks may be
delayed due to the longer time required for compaction,
potentially pushing the start of @ beyond its intended time.
Consequently, ® may have to wait until the entire commit
task is finished. In Case III, compaction is triggered after
LSM checkpointing. In this case, LSM checkpointing can
proceed immediately without waiting for compaction,
reducing delays.

Stream checkpointing and compaction have no depen-
dencies between each other. Once the target file is flushed
and the LSM checkpointing is completed, compaction can
proceed using a copy of the file, while stream check-
pointing continues simultaneously, as it only depends on
the completion of LSM checkpointing. To take advantage
of this, MiSA enables the commit thread of the MiSA
Controller to overlap with the compaction thread managed

@ Springer

within LSM-KVS. This allows the two operations not only
to overlap with each other but also with ongoing micro-
batch processing.

Typically, compaction takes longer than stream check-
pointing but shorter than micro-batch processing. This
arrangement ideally allows commit tasks to be completely
hidden, enabling each micro-batch to be processed imme-
diately after the previous one without any delays.

By isolating the commit task from micro-batch pro-
cessing and separating the compaction process within the
commit, the time spent on commits does not count toward
the micro-batch processing duration. The overlapping
portion of the commit occurs between the steps of writing
the results to the sink and reading the micro-batch data
during the actual query execution of the next micro-batch.

4.3 State preloading

In traditional systems, stream checkpointing is executed
directly on a remote node, leading to remote I/O overhead
for every state access. When stream checkpointing is per-
formed directly on DFS to save a file, micro-batch
streaming is executed using the state stored at this remote
location. This approach introduces additional overhead, not
only from the stream checkpointing process itself but also
from compaction and state fetching (i.e., get operations)
required for query execution, leading to increased latency.

In contrast, The state preloading mechanism proposed in
MISA minimizes network overhead involved in all state
processing by directly performing stream checkpointing
locally. This technique initially writes checkpoint data
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Algorithm 1 MiSA

Input: ¢ - Micro-batch execution number
1 Function MicrobatchExec (i):

2 // Construct and read the 45 micro-batch

3 Construct a microbatch and read the contents;

4 // Read the (i — 1)y, state

5 while read state Ack from the (i — 1)}, commit is not
received do

6 L 5

7 Read previous state from the (¢ — 1);5 commit;

8 // Execute query

9 Execute the i}, query;

10 // Start a thread for commit task

11 while two commit Acks from the (i — 1)¢5, commit are
not received do

12 ;

13 Create a Commit thread with state information;

14 // Write the processed results to the output sink

15 Sink the results;

16 Return;

Input: state - state information
17 Thread Commit (state):

18 // Flush

19 Flush the state using JNI call;
20 // LSM checkpointing

21 while compaction is in progress do

22 L ;

23 Activate LSM checkpoiting operations using JNI call;
24 // Stream checkpointing on local node

25 Stream checkpointing using LSM checkpointing result;

26 Send a read state ACK to MicrobatchExec;

27 // Start checkpoint thread

28 Create a Checkpoint thread with checkpoint file;
29 if compaction is completed then

30 L Send a commit ACK to MicrobatchExec;
Input: file - checkpoint files

31 Thread Checkpoint (file):

32 copy file to DFS;

33 Send a commit Ack to MicrobatchExec;

locally and then hierarchically transfers files to DES using
the stream checkpoint thread. Transferring the check-
pointing file to DFS is to safeguard against data loss due to
failure. MISA Controller accomplishes this by modifying
the read path for these operations from remote storage to
local storage through orchestration between the stream
checkpoint thread and the commit thread.

MiISA Controller ensures that stream checkpointing
during a commit occurs on the local file system. It gener-
ates the current version of the checkpoint file using the
snapshot created during LSM checkpointing. Once stream
checkpointing is finished, it sends the first Ack to
Streaming Processor. Subsequently, the checkpoint files are
transferred to the remote file system through a stream
checkpoint thread. After the transfer to the DFS is com-
plete, the stream checkpoint thread sends an Ack to the

commit thread. Upon receiving this Ack, MiSA Controller
then sends the second Ack to Streaming Processor.

Streaming Processor receives two Acks for the follow-
ing reasons: the first Ack is required to read the state for the
next micro-batch, while the second Ack is necessary to
trigger the next commit, thus enabling its execution. In the
event of a failure during local stream checkpointing that
results in data loss, the most recent stream checkpoint
version can be retrieved from the remote node, ensuring
fault tolerance.

4.4 Keeping consistency

Asynchronous commit can introduce consistency issues.
Figure 8 shows three scenarios that uphold the execution
order of the system to prevent these consistency problems.

Figure 8a illustrates a scenario where micro-batch pro-
cessing and commit tasks can overlap. As explained earlier,
the commit occurs asynchronously after the execution of
the iy, query. The sequence of operations within the commit
includes flushing, LSM checkpointing, and stream check-
pointing. All three of these operations must be completed
before the state reading operation for the next i+ 1,
micro-batch processing. Here, stream checkpointing spe-
cially refers to the checkpointing performed to a local
directory (i.e., up to the first Ack). If stream checkpointing
is not yet finished, the state reading operation will be
delayed, waiting for its completion and acknowledgment,
thereby ensuring that the correct state generated from the
previous processing is accessed.

Figure 8b depicts the required order of operations when
compaction occurs. If compaction is initiated after the
flushing operation, it will be executed in the background
thread of LSM-KVS, allowing it to run concurrently with
stream checkpointing. However, compaction must be
completed prior to the i + 1, commit, which occurs after
the execution of the i 4 1, query. During state retrieval,
the SST file from stream checkpointing must be accessed,
and if compaction is not finished, this could lead to slower
read performance. Therefore, if compaction is not com-
pleted before the next commit, the commit task will pause
until compaction is finished to ensure faster state reading.

Figure 8c shows the order that must be followed when
copying checkpoint files to the remote DFS after stream
checkpointing. Once stream checkpointing is performed in
the local directory, the checkpoint file is copied to DFS in
the background. This operation is required to be completed
before the i + 1,, commit, as depicted in Fig. 8c. While it
is not critical for the file to be copied to DFS before the
next commit, doing so is essential for state retrieval in the
event of a failure. Furthermore, to guarantee that each
checkpoint version is stored in DFS, this copy operation
must be finalized before the commit associated with the
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Fig. 7 Three overlapping cases in MiSA. T1, T2, and T3 represent the time axes in Case II and Case III. Case II and III write the i,, state to the

state store and read the iy, state during the i + 1,, execution like Case I

stream checkpointing. As shown in Fig. 8c, if the
acknowledgment confirming the successful copy to DFS is
not received prior to the next commit, the system will
pause until the checkpoint file is successfully copied,
ensuring the preservation of each checkpoint version.

4.5 Failure handling

Since MISA performs commits through an asynchronous
thread, failure handling is required. The following scenar-
ios may arise during an asynchronous commit: a failure
during stream checkpointing and after stream checkpoint-
ing. Here, a failure is defined as the termination of the
commit thread. In both scenarios, the query may indefi-
nitely await an Ack due to the absence of a response. To
prevent this, system status is periodically monitored using a
heartbeat mechanism.

In the first scenario, failure occurs during stream
checkpointing. If the system does not receive a heartbeat
signal, it detects a failure and checks for the presence of the
checkpoint file. If the checkpoint file is missing, it indicates
that stream checkpointing was not completed successfully.
In this case, the commit thread is recreated, and the commit
task is restarted.

In the second scenario, failure occurs after stream
checkpointing. The checkpoint file, that is state, has been
written locally, but the commit thread terminates before
sending an ack. If the heartbeat is not received, the system
detects a failure and checks for the checkpoint file. Since
the checkpoint file exists, the state is read and used to
proceed with query execution as usual.

Additionally, query execution is represented as a DAG,
with multiple operators arranged in sequence. In a DAG-
based execution model, operators are processed sequen-
tially on worker nodes, while the master node continuously
tracks the completion status of each operator. This tracking
allows the system to recover from intermediate failures by
restarting from the failed operator, as the master node
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retains the success history of prior operators. This failure
recovery model is a default mechanism in DAG-based
streaming systems with a master/worker architecture. As
MiSA follows this model, it can resume processing from
the failure point if a worker node fails, ensuring efficient
fault tolerance and minimizing reprocessing overhead.

4.6 Implementation

We implemented MiISA on Apache Spark Structured
Streaming (version 3.2.3) [18] framework. Specifically, we
focused on one of the native core modules, Spark-
SQL [36], which performs various operations during the
commit task and while executing queries. The overall
system configuration was implemented using Scala lan-
guage [37], and we utilized Future [38], a standard Scala
library that supports asynchronous programming.

MiSA’s design aims to make the commit process
(step @ in Fig. 2) asynchronous, enabling commits to
overlap with other tasks, and to asynchronously copy
checkpoint data to DFS. As a result, implementing these
concepts in existing systems is straightforward. MiSA
achieves this by creating a separate thread each time the
original commit function is called, allowing for asyn-
chronous operation. Since transitioning to asynchronous
processing may disrupt the original synchronous sequence,
acknowledgments (acks) are used to ensure synchroniza-
tion. Additionally, the stream checkpointing path is modi-
fied to be local, with a thread that asynchronously copies
data to DFS and generates an ack to synchronize with the
main process. MISA also leverages built-in LSM-KVS
functions to monitor background tasks (e.g., compaction)
within LSM-KVS. These adjustments make integrating
MISA into existing systems easier.
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Fig. 8 a, b and c represent three scenarios to ensure consistency. Q.E. and R.S. denote Query Execution and Read State, respectively. L.Ckp and
S.Ckp denote LSM checkpoint and Stream checkpoint, respectively. The order of Flush, L.Ckp, and S.Ckp in commit is the same in both b and
c. Note that the micro-batch processing and commit arrows show sequences, not threads

Table 2 Query details of real-world streaming workloads used in experiments

SELECT L.timestamp, L.vehicle, L.speed, L.highway, L.lane, L.direction, L.segment FROM SegSpeedStr

Benchmark Notation Query details
Linear road [30] LR2
[range 30 (slide 1)] as A, SegSpeedStr as L WHERE (A.vehicle == L.vehicle)
LR4 SELECT timestamp, highway, direction, segment, COUNT(vehicle) as num Vehicle
FROM SegSpeedStr [range 20 slide 5] GROUPBY (highway, direction, segment)
Cluster CM1 SELECT timestamp, category, SUM(cpu) as totalCpu
monitoring [35] FROM TaskEvents [range 60 (slide 10)] GROUPBY category ORDERBY SUM(cpu)
cM2 SELECT jobld, AVG(cpu) as avgCpu

FROM TaskEvents [range 30 slide 1] WHERE (eventType == 1) GROUPBY jobld

5 Evaluation
5.1 Experimental setup

Configuration For the experiments, we set up a Spark
cluster with one master node and two worker nodes. Each
worker node hosted a Spark executor with 8 CPU cores and
48 GB of memory, and we used 8 data partitions to facil-
itate parallel processing. To evaluate the impact of differ-
ent CPU specifications on performance, we configured two
Spark clusters: one equipped with high-end CPUs and the
other with low-end CPUs. Detailed specifications can be
found in Table 3.

Workloads The workloads used in the experiments are
outlined in Table 2. We selected four stateful queries from
the real-world streaming benchmarks, the Linear Road
benchmark [30] and Cluster Monitoring benchmark [35].
LR2 includes a join operator that is both compute-intensive
and resource-demanding due to its 1-second sliding win-
dow. In contrast, LR4 use aggregate operators to compute
count rows, with sliding window set to 5 s to highlight the
differences between the queries. Additionally, LR4, having
larger sliding windows than LR2, result in lighter work-
loads Likewise, CM1 has a sort operator, making it

compute intensive, whereas CM2 uses aggregate to cal-
culate the average, resulting in lower computational
demands than CM1. We also set the trigger value to 3 s to
accumulate more records for each batch, as this value
controls the duration the streaming engine buffers incom-
ing records before processing.

Input traffic We generated random traffic with varying
numbers of records’ per second (records/sec). The record
count follows a normal distribution, with the average
converging to the specified traffic rate. Unless otherwise
noted, the traffic rate was set to 1500 records/sec, which is
adequate to demonstrate the challenges encountered by
existing micro-batch streaming systems. To achieve this
traffic, we adjusted the input from the Apache Kafka [10]
broker to attain an average of n records/sec.

Comparison targets To demonstrate the effectiveness of
our approach, we selected three comparison targets: vanilla
Spark and two optimized versions. We designated vanilla
Spark as the baseline (denoted as Baseline) since it is
one of the most widely used micro-batch streaming sys-
tems. This allows us to highlight the issues that arise when
using LSM-KVS as a state store. The other two comparison
targets include one that utilizes dynamic buffering (denoted

% The size of one record is 65 bytes.

@ Springer



420 Page 12 of 19

Cluster Computing (2025) 28:420

as zStream) and another that implements asynchronous
stream checkpointing (denoted as Async.Ckp). Both
modified versions of Apache Spark Structured Streaming
aim to optimize latency. However, we will show that their
methods are insufficient to address the latency issues in
micro-batch streaming system that use LSM-KVS. We
implemented these modifications using Apache Spark
Structured Streaming for comparison, and details are
summarized below.

e Baseline: LSM-KVS based vanilla Spark.

e zStream: LSM-KVS based vanilla Spark with
dynamic buffering mechanism [16].

e Async.Ckp: an implementation of Databricks’
approach in vanilla Spark.

In zStream [16], a dynamic buffering mechanism
using deadline is employed to control the batch size at
runtime. The deadline serves as the maximum time allowed
for query processing. Specifically, the engine continues to
buffer incoming records only as long as the current micro-
batch can be processed within this deadline. If the expected
processing time for the current micro-batch exceeds this
limit, buffering stops, and any remaining input records are
carried over to the next batch. Since the concept of a
deadline is similar to the trigger value in Apache Spark
Structured Streaming (i.e., dynamically adjusting the trig-
ger value), we set it to 3 s for comparison.

Async.Ckp aims to improve performance by shifting
the stream checkpointing of Apache Spark Structured
Streaming, which is usually done synchronously, to the
background. This approach, proposed by Databricks [17],
shares similarities with our method but has a significant
limitation: it only decouples the stream checkpointing
process, which is part of the commit task that we identify
as problematic. Since Databricks’ implementation is not
available as open source, we implemented this approach
using Apache Spark Structured Streaming to demonstrate
its limitations and to show how our solution surpasses it.

5.2 Overall performance

Figures 9 and 10 compare the execution time of each batch
in MiSA and its comparison targets across the four queries

Table 3 Testbed specification

CPU (high-end)
CPU (low-end)

AMD Ryzen 9 3900X 12-core 3.80 GHz
AMD Ryzen 9 3900X 12-core 2.80 GHz

Memory DDR4, 64 GB
Storage Samsung SSD 970 EVO NVMe SSD
Ethernet 1 Gbps
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(LR2, LR4, CM1, CM2) for up to the 100¢h batch. The
experiment utilizes two types of traffic rates: 1500 records/
sec (normal) and 2500 records/sec (heavy). The x-axis
represents the batch number, while the y-axis indicates the
execution time for each batch. Throughout the experiment,
execution times for MiSA and all comparison targets
fluctuate. We evaluate their performance by analyzing the
frequency and degree of these fluctuations, as well as the
overall trend.

Figure 9a illustrates the execution times of LR2 at a
traffic rate of 1500 records/sec. The figure shows that all
three comparison targets periodically experience sharp
spikes in execution time, with the peaks of these fluctua-
tions rising as the batch number increases. These fluctua-
tions are result from the regular triggering of compaction in
LSM-KVS, which delays subsequent tasks in the commit
process until compaction is complete. This unintended
consequence of using LSM-KVS as a state store empha-
sizes the importance of carefully considering LSM-KVS
operations when optimizing performance.

Notably, Async .Ckp exhibits a pattern similar to the
other two comparison targets, despite its consideration of
LSM-KVS. This suggests that its approach of decoupling
only the stream checkpointing, which is part of the commit
process, is inadequate for fully optimizing the system. In
contrast, while MiSA also experiences fluctuations, its peak
values remain relatively stable, and the execution time does
not increase over time. Although it cannot completely
eliminate compaction time, the frequency and magnitude
of these fluctuations are significantly smaller and more
stable compared to the other three systems.

When the traffic rate for the same query is 2500 records/
sec (as shown in Fig. 10a), the systems behave similarly to
when the traffic rate is 1500 records/sec at least until
around the 55th batch. However, the effects are more
pronounced due to the increased volume of incoming data
and the computationally intensive join operator. Beyond
this point, while MiSA continues to show stable perfor-
mance, the other comparison targets experience the previ-
ously mentioned vicious cycle more severely, leading to
delays so significant that further analysis becomes
impractical or irrelevant. Therefore, in the subsequent
experiments, we will focus on the results up to the 55th
batch for LR2 at a traffic rate of 2500 records/sec.

The LR4 displays similar patterns under both traffic
conditions(Figs. 9b, 10b). Unlike LR2, where all three
comparison targets exhibited progressively increasing val-
ues, LR4 maintains a consistent peak value. This consis-
tency is due to the lighter workloads of these two queries
compared to the more computationally intensive LR2. As a
result, the compaction time is shorter, and the overhead
from processing additional incoming data is minimal,
preventing the vicious cycle seen in LR2.
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CMI1 and CM2 exhibit similar spike patterns, reaching a
consistent peak value similar to LR4 under both traffic
conditions. However, execution time for both queries
shows an overall increasing trend regardless of traffic. In
particular, CM1, which is more compute-intensive than
CM2, shows a more apparent increase in execution time. It
is visible that the slope of the comparison systems becomes
steeper at a traffic rate of 2500 (Fig. 10c). Nevertheless,
MISA consistently achieves the best performance by
maintaining a stable execution time.

5.3 Tail latency and throughput

Figures 11 and 12 illustrate the Cumulative Distribution
Functions (CDFs) of latencies for MiSA and the compar-
ison targets across the four queries at two traffic rates: 1500
records/sec and 2500 records/sec. In these figures, the
x-axis represents latency, corresponding to the execution
times of batches up to the 100tk batch, while the y-axis
indicates the percentile of the cumulative distribution of
these execution times. The 99tk percentile tail latency is
marked with a red dotted line in a inset figure.

Overall, as shown in these figures, MISA consistently
demonstrates lower and more stable latencies across dif-
ferent queries and traffic rates. In particular, the 99th per-
centile tail latency is significantly lower than those of the
comparison targets. For instance, in LR2 with a traffic rate
of 1500 records/sec, as shown in Fig. 11a, the latency for
MiSA starts increasing around the 80¢h percentile, whereas
the comparison targets experience a sharp rise between the

35th and 65th percentiles. At the 99th percentile, MISA
achieves approximately a 2.6x speedup over the worst-
performing Baseline (3694 ms vs. 9729 ms).

It is notable that MiSA outperforms zStream in terms
of the 997 tail latency, which was specifically designed to
reduce tail latency. We believe this is because MiISA
achieves substantial performance gains by eliminating
unnecessary synchronization between the internal opera-
tions of the LSM-KVS and the streaming engine. In con-
trast, zStream focuses solely on optimizing the streaming
engine without addressing the LSM-KVS, limiting its
ability to achieve maximum optimization when using
LSM-KVS as the state store.

When the traffic rate increases to 2500 records/sec in
LR2, a similar pattern is observed as shown in Fig. 12a.
However, the higher traffic rate leads to more data being
processed per batch, causing the elbow to shift to a lower
percentile and increasing tail latency across all four
engines. For LR4 query, which involves relatively lighter
workloads, all four engines display similar patterns. Nev-
ertheless, MISA achieves up to 4.9x lower 99th percentile
tail latency compared to the other systems, with a more
gradual increase in latency. For Fig. 12c, d, the tail latency
of the comparison systems increases more rapidly as traffic
grows. In particular, CM1 experiences a sharper increase
than LR4 and CM2 at a traffic rate of 2500 records/sec due
to the additional computational load caused by the sort
operator. In contrast, MiSA exhibits minimal increases in
95th and 99th percentile tail latencies, maintaining a
latency close to its initial levels. For example, in the case of
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CM1, zStream and MISA are 5908 and 439 ms, respec-
tively, a decrease of about 13.4 times at 99¢h percentile tail
latency. This stability is achieved by eliminating the
commit latency required for state management, allowing
the computing time—which previously increased due to
the commit task—to remain constant, thereby enabling
efficient execution of stateful queries.

It is noteworthy that the tail latency of Async.Ckp
remains almost identical to the Baseline across all
queries. For instance, in Fig. 11c, Async.Ckp shows
slightly better tail latency than the Baseline at the 95¢h
and 99th percentiles, but in Fig. 12¢, it is close to the
Baseline. This indicates that while hiding the stream
checkpointing, which is a part of the commit task, may
provide temporary improvements, tail latency ultimately
increases due to other operations within the commit task.
Furthermore, this demonstrates that the primary issue lies
in the cumulative overhead caused by sequential depen-
dencies within the commit task. Reducing only the final
step, such as stream checkpointing, does not address the
underlying problem of delays due to interdependent oper-
ations within the commit.

Figure 13 presents the average throughput for the four
queries at traffic rates of 1500 records/sec and 2500
records/sec. The average throughput is calculated by
dividing the batch size (in bytes) by the time taken to
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process each batch, averaged over the first 100 batches.
Therefore, reducing the latency per batch directly increases
throughput.

Overall, MiISA shows significantly higher throughput
than its comparison targets across all queries and traffic
types. The most dramatic difference is seen in Fig. 13c ata
traffic rate of 1500 records/sec, where MISA achieves
10.4x the throughput of the worst-performing zStream
(126.58 KB/s vs. 1327.05 KB/s). Even compared to the
engine with the highest throughput among the three,
Async.Ckp, MiSA delivers 4.81x higher throughput
(170.99 KB/s vs. 1327.05 KB/s).

It is also worth noting the throughput differences across
the queries. In Fig. 13a, at a traffic rate of 1500 records/sec,
MIiSA achieves a throughput of 337.814 KB/s in LR2. This
increases to 1000.939 KB/s (2.96x) in LR4,
1327.05(3.93x) KB/s in CM1 and in 500.92 KB/s (1.48x)
CM2. Similarly, the performance improvement of MiSA
compared to Baseline at the same traffic rate is 1.47 X in
LR2, rising to 4.87x in LR4, 7.6x in CMI1 and 5.1x in
CM2. These differences are due to variations in query
semantics. LR2 and CM1 involve join and sort operator,
respectively, which are more compute-intensive than win-
dowed aggregation in LR4 and CM2. This results in higher
batch processing times, which not only reduce throughput
but also limit the optimal performance of MiSA, as the
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longer processing time reduces the opportunity for over-
lapping query execution and commit operations.
Meanwhile, the high throughput of MiSA can be
explained by how throughput is calculated. Considering
that each record is 65 bytes, the total data ingested is 95.5
KB/sec at a traffic rate of 1500 records/sec. With a trigger
interval of 3 s, a single micro-batch buffers approximately
286.5 KB of input data. For a traffic rate of 2500 records/
sec, the input data per batch is similarly calculated to be
487.5 KB. Given this, MiSA is the only system capable of
processing the ingested records within one second per
batch, maintaining low latency and high throughput.

5.4 Tradeoff between latency and throughput

To analyze the effect of the trigger value on MiSA, we
evaluate MISA and all comparison targets across LR2 and
LR4 queries by varying the trigger value (or the deadline
for zStream) from 3 to 5 s. Figure 14 shows the corre-
lation between average latency and throughput for these
trigger values. We focus only on the results for LR2 and
LR4. In the figure, markers positioned further left and
higher up indicate better performance, signifying lower
latency and higher throughput.

Overall, Fig. 14 illustrates that MISA consistently
exhibits the lowest latency and highest throughput across
the two queries, regardless of the trigger value. As the
trigger value increases from 3 to 5 s, both average latency
and throughput rise across the two queries, which is typical
in micro-batch streaming systems. The increase in latency
results from the extended buffering time before processing
each batch, while the throughput improves due to the larger
volume of data processed in each batch.

In LR2, which involves a high-computation workload,
MISA consistently achieves higher throughput and signif-
icantly lower latency compared to the other targets,
regardless of the trigger value. While the three comparison
targets exhibit average latencies close to the trigger value,

$8 (LR2) Baseline $8 (LR2) zStream ® (LR2) Async. Ckp. $ (LR2) MiSA
A (LR4) Baseline A (LR4) zStream A (LR4) Async. Ckp. A (LR4) MiSA
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Fig. 14 Correlation between average latency and throughput for LR2
and LR4 on a high-end CPU. For zStream, the deadlines are set to 3
and 5 s, respectively

MISA demonstrates significantly lower average latency.
However, the increase in throughput is less pronounced
than the rise in latency, due to the saturation of computing
resources during query execution, while larger batch sizes
contribute to higher latency, causing latency to rise more
sharply than throughput.

In contrast, LR4 involves a less computationally inten-
sive workload compared to LR2. Like in LR2, MiSA
achieves the lowest latency and highest throughput in LR4,
regardless of the trigger value. However, unlike LR2,
where latency increases significantly in relation to
throughput, all four systems in LR4 show only a slight rise
in latency. While computing resources are saturated in
LR2, the underutilization of resources in LR4 allows
throughput to increase linearly as the batch size grows.

The rate of throughput increase due to the trigger
increment is most pronounced in Async.Ckp. For
example, when the trigger value shifts from 3 to 5 s,
Async.Ckp’s throughput increases by 77% compared to
a 51% rise for MiSA. In MISA, the processing time grows
only slightly with the trigger value, resulting in smaller
batch accumulation compared to other systems. In contrast,
Async.Ckp experiences a more substantial increase in
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latency, leading to larger batch volumes and, consequently,
a higher rate of throughput growth.

5.5 Effect of state preloading

Figure 15 shows the execution time per batch for stream
checkpointing and get operations up to the 100th batch. By
comparing the performance of these two operations across
the Baseline and MISA , we aim to demonstrate that the
delay in the commit task is due to the synchronous nature
of the commit task and the remote checkpointing location.
The location of stream checkpointing in Baseline is
DEFES, while the location of MiSA is the local machine.

Figure 15a illustrates the execution time for the stream
checkpointing operation. While the execution time of the
Baseline approach increases with each compaction
cycle, MISA maintains a constant execution time
throughout. Additionally, execution time increases com-
pared to the initial batch due to the large number of files
generated during the compaction process compared to a
scenario where compaction is not performed. This outcome
is expected, as the baseline performs stream checkpointing
on a remote DFS, introducing network delays, whereas
MiSA performs checkpointing directly on the local
machine, thereby avoiding such delays. Furthermore,
MiSA’s state preloading technique asynchronously copies
locally checkpointing files to the DFS, eliminating addi-
tional overhead.

Figure 15b depicts the execution time for the get oper-
ation. Unlike the trends observed in Fig. 15a, the execution
time per batch continues to rise. The rise is due to the
growing number of states, which results in longer traversal
times to retrieve the necessary state. In contrast to
Baseline, which experiences a sharp rise in execution
time, MISA maintains stable performance, with its rate of
increase significantly lower than that of Baseline. This
indicates that state preloading effectively reduces execu-
tion time for each task while maintaining stability, enabling
fast processing and minimizing tail latency.

@ Springer

Table 4 Resource usage (%) of Baseline and MiSA on low-end
and high-end CPUs

Low-end CPU High-end CPU

Baseline MiISA Baseline MiSA
CPU usage (%) 24.57 3477 7.62 8.43
Memory usage (%) 44.49 12.74  18.37 7.27

5.6 Overhead analysis

Table 4 presents an analysis of CPU and memory usage for
both Baseline and MiSA on low-end CPU and high-end
CPUs, using the LR2 query at a traffic rate of 1500 records/
sec.

In a low-end CPU environment, MISA consumes
approximately 30% less memory compared to Baseline,
while utilizing about 10% more CPU. By executing query
and commit tasks concurrently, MiSA leverages CPU
resources efficiently, resulting in relatively low overhead.

Conversely, in a high-end CPU environment, the dif-
ference in CPU usage between MISA and Baseline is
minimal. This is mainly due to the high-performance
CPU’s ability to effectively mitigate the demands of the
CPU-intensive compaction task. Additionally, MiISA con-
sistently exhibits lower memory usage across both low-end
and high-end CPUs. Its capability to execute query tasks
more quickly than Baseline leads to smaller batch sizes,
which further contributes to the reduced memory
consumption.

In summary, MiSA demonstrates efficient resource uti-
lization, even though its CPU usage rate may not be as high
as that of Baseline. Furthermore, MiSA shows the
ability to deliver strong performance, even on low-end
CPUs.

6 Conclusion

This paper addresses the issues of performance degradation
when LSM-KVS is utilized as a state store in micro-batch
streaming systems. In these systems, the synchronous
commit task suspends the streaming engine, causing
increasing batch sizes and latency, ultimately degrading
system performance. We propose MiSA, which implements
asynchronous commit and state preloading in LSM-KVS
based micro-batch streaming systems. MISA hides the
time-consuming synchronized commit task within the
critical path and performs hierarchical checkpointing to
both local and remote nodes. Experimental results show
that these mechanisms effectively reduce tail latency while
maximizing system throughput with minimal overhead.
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Our proposed mechanism has limitations; (1) When
compaction overlaps with LSM checkpointing, the result-
ing wait times reduce the benefits of overlapping commits,
offering minimal performance improvement. (2) Perfor-
mance may degrade as the number of partitions increases
due to higher CPU load from additional commit threads.
Therefore, carefully configuring the number of partitions is
essential when executing MiSA to achieve an optimal
balance between performance and resource utilization.
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