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Abstract
Micro-batch streaming systems using Log-Structured Merge-tree based Key-Value Store (LSM-KVS) as state stores often

experience high tail latency due to several factors. First, the commit task is synchronous, blocking query execution until it

is fully completed. During this time, the streaming engine must wait for all associated operations to finish. Additionally,

remote checkpointing, which is part of the commit task, increases compaction time in the LSM-KVS. This involves reading

metadata and state from a remote persistent node for compaction then writing the updated data back, which prolongs the

commit latency and degrades overall performance. These delays also postpone subsequent tasks, causing rapid data

accumulation from data source and creating a cycle that further extends commit latency, ultimately resulting in long tail

latency. To address these issues, we propose MISA, a micro-batch streaming system that incorporates asynchronous

commit and state preloading mechanisms in the LSM-KVS based architectures. MISA overlaps the time-consuming

commit operation with query execution and enhances performance through hierarchical state preloading. We implemented

MISA in Apache Spark Structured Streaming with LSM-KVS support, a widely-used micro-batch streaming platform.

Experimental results show that MISA reduces tail latency by up to 13.4� at the 99th percentile and boosts average

throughput by up to 10.4�.
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1 Introduction

Micro-batch streaming systems aggregate incoming data

over short intervals and process it as micro-batches. These

systems provide higher throughput than event-driven

streaming systems by handling large volumes of data at

once. They also simplify the execution of complex stateful

operations by defining clear boundaries, which improves

processing accuracy. Due to these benefits, micro-batch

streaming systems have been widely adopted for data

analysis in complex stateful queries, such as online fraud

detection [1, 2], product recommendation services [3, 4]

and network monitoring [5].

As the complexity of stateful queries increases, the size

of intermediate states grows substantially, leading to sig-

nificant memory management overhead and degrading

application performance [6]. Additionally, when the state

size exceeds the available memory capacity, programs can

terminate due to out-of-memory errors, resulting in a loss

of state. To mitigate this issue, modern streaming systems

[7–10] often rely on external storage for state management.
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Among the available options, Log-Structured Merge-tree

[11] based Key-Value Stores (LSM-KVS), such as

RocksDB [12], LevelDB [13], and Apache Cassandra [14],

are widely used for their ability to efficiently store and

retrieve large volumes of state information using high-ve-

locity storage devices. LSM-KVS employs append-only

writes and in-memory access to reduce the performance

impact of disk I/O during query execution. Data is con-

tinually written to an in-memory structure called memtable,

which is later flushed to disk as files. These files are then

processed through a background process called compaction

that reorganizes the data and removes redundancies, opti-

mizing access latency for improved performance.

An LSM-KVS based micro-batch streaming system

performs a commit task to persist runtime-generated state

in LSM-KVS and create checkpoint files for the persistent

node. This commit task includes a flushing operation

within LSM-KVS and two types of checkpointing opera-

tions: LSM checkpointing for the key-value store and

stream checkpointing for the streaming engine. When a

commit task is initiated from a streaming engine, LSM-

KVS operations such as flushing and LSM checkpointing

are executed to transfer in-memory states to disk. After

these LSM-KVS operations are completed, the streaming

engine performs stream checkpointing to transfer the state

information from disk to the persistent node. To ensure

exactly-once semantics during micro-batch processing, all

operations within the commit task are executed syn-

chronously. Consequently, even background tasks like

flushing in LSM-KVS must wait for preceding commit

tasks to finish, which can introduce delays.

The primary delay in commit tasks is due to compaction

operations, where longer compaction times result in

extended application blocking, which in turn delays sub-

sequent tasks. If a compaction operation is underway

before LSM checkpointing begins, the LSM checkpointing

must wait for the compaction to finish to prevent data

modifications during the checkpointing process. The data

accumulated during this delay is transferred to the next

batch, causing an unintended increase in both batch size

and execution time. Additionally, remote stream check-

pointing further extends the commit latency. For instance, a

compaction operation requires fetching the necessary

metadata from the persistent node and then writing the

updated file back. This process increases the overall delay,

especially when the persistent node is located remotely. In

this paper, commit latency is the time to complete all

synchronous operations within a commit task, including

flushing, LSM and stream checkpointing, and compaction

delays.

To address the aforementioned problems, existing

studies [15, 16] have suggested dynamic batch size

adjustment mechanisms based on the processing engine’s

capacity. While these studies can initially reduce latency,

they do not fully address the challenge of increasing state

size due to long-term stateful computations. By concen-

trating solely on batch control, these methods fail to

resolve underlying issues, resulting in an ongoing cycle of

problems. Additionally, adjusting the batch size may

reduce throughput and is unlikely to offer a comprehensive

solution. Databricks [17] introduces asynchronous stream

checkpointing, which allows the next micro-batch to pro-

ceed before the checkpointing process is finished, thus

reducing latency. However, only the stream checkpointing

within the commit task is performed asynchronously, while

all other operations within the commit remain synchronous.

Consequently, the stream checkpointing overhead is elim-

inated, reducing commit latency, but commit latency still

exists due to other operations within the commit task.

Furthermore, it increases the risk of query failures if issues

occur during asynchronous checkpointing, as it lacks the

retry mechanism present in synchronous checkpointing.

This paper presents MISA, which introduces asyn-

chronous commit and state preloading mechanisms for

LSM-KVS based micro-batch streaming systems. The key

idea behind MISA is to separate the synchronous commit

task from the critical execution path to avoid application

stalls. When a commit task is initiated, a dedicated commit

thread handles the necessary operations while the micro-

batch processing can proceed with the next task concur-

rently. Additionally, MISA enables compaction to begin

immediately after LSM checkpointing is complete, allow-

ing stream checkpointing and compaction to run in parallel.

This overlap permits the commit and compaction thread in

the LSM-KVS to execute concurrently. MISA also intro-

duces a state preloading mechanism, which writes stream

checkpointing data locally first, followed by a hierarchical

write to DFS. A dedicated checkpointing thread copies the

locally stored checkpoint file to DFS, allowing this process

to run independently of the commit task. This approach

accelerates state retrieval for query execution and speeds

up the compaction operation.

We implemented MISA on Apache Spark Structured

Streaming [18] (referred to as vanilla Spark), a widely used

distributed micro-batch streaming system. Our experiments

with various real-world workloads demonstrate that MISA

reduces tail latency by up to 13.4� and enhances average

throughput by up to 10.4�.

This paper makes the following contributions.

• We identified an increase in tail latency due to

synchronized commit operation in LSM-KVS based

micro-batch streaming systems and analyzed that the

compaction operation is one of the main causes of this

delay.
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• We proposed an asynchronous commit mechanism to

address the issue of synchronous commit while pre-

serving exactly-once semantics.

• We proposed a hierarchical checkpointing mechanism

called state preloading designed to enhance checkpoint-

ing performance.

• We implemented MISA on a real streaming system,

improving query processing performance without mod-

ifying the core system. This preserves the system’s

original integrity while ensuring broad compatibility.

Consequently, the core principles of MISA can be

applied to other micro-batch streaming frameworks.

2 Background and related work

2.1 LSM-KVS

LSM-KVS is a key-value store based on the LSM-tree

architecture, designed to optimize write operations using an

append-only approach. As depicted in Fig. 1, it consists of

both memory and disk components. Incoming write

requests, represented as key-value pairs, are initially stored

in a memory buffer known as a memtable. Once the

memtable is full, it is converted into a Sorted String

Table (SST) file and flushed to disk in the background,

starting at level 0 (L0).

The disk component is organized into multiple levels,

each containing a collection of SST files. At L0, these

flushed SST files are unsorted. As data moves to higher

levels, the number of SST files allowed per level increases.

Once this number exceeds a predefined threshold, a back-

ground process called compaction is triggered. During

compaction, SST files from levels Ln and Lnþ1 are merged

and sorted, creating a new SST file that is stored in Lnþ1.

Notably, within any level except L0, key ranges across SST

files cannot overlap.

2.2 Micro-batch streaming system

Figure 2 illustrates the workflow of micro-batch streaming

systems. In these systems, incoming data is buffered for a

specific time interval �, creating a small set of records

called a micro-batch. Once this interval, known as the

trigger time, expires and the micro-batch is constructed `,

a micro-batch execution begins. The query engine then

analyzes the query semantics and data dependencies, gen-

erating a query plan represented as a Directed Acyclic

Graph (DAG) ´. Afterward, the actual query execution

starts, with the plan divided into multiple stages, each

containing parallel tasks based on the dependencies

between the query’s operators.

When execution begins, each partition within a stage,

functioning as a parallel execution unit, reads the micro-

batch dataset ˆ. The streaming system then retrieves the

previous state generated from the i� 1th micro-batch ˜

and performs query operators such as joins and aggrega-

tions Þ. After completing the query, a commit operation

stores the newly generated state to the LSM-KVS þ and

commits the intermediate state to a Distributed File System

(DFS) [19–21]. Finally, the streaming engine writes the

processed results to the output sink ¼.

2.3 Persistent state management

During micro-batch execution, the streaming engine han-

dles state management by delegating it to the LSM-KVS

through commit operations. Once the query execution is

completed, the streaming engine commits the state of the

current batch to the memtable. Figure 3 illustrates how the

state is managed in Spark Structured Streaming using

LSM-KVS, providing a detailed view of the process during

the commit phase (step þ) in Fig. 2.

To ensure that the state is permanently recorded and

managed in batch units, the streaming engine explicitly

flushes the memtable’s contents �, enabling version con-

trol for each micro-batch. In other words, processing a

single query results in the creation of an SST file at L0.

After flushing, the streaming engine invokes LSM
Fig. 1 An overview of LSM-KVS

Fig. 2 Workflow of micro-batch streaming system
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checkpointing function to persist the state `. However, if a

compaction is in progress when the LSM checkpointing is

triggered, LSM checkpointing is delayed until the com-

paction completes . Since the checkpointing process

creates a snapshot of the LSM-KVS, capturing a consistent

state during compaction is difficult due to ongoing changes

and updates to data files. As a result, longer compaction

times lead to extended wait times for checkpointing,

potentially affecting the application performance.

Once the LSM checkpointing starts, LSM-KVS gener-

ates several files in its local checkpointing directory, with

the most important being the SST file, which contains the

actual log-structured data. The remaining files store meta-

data needed by LSM-KVS to read the SST file and resume

from the checkpoint. Since SST files are hard links to files

in the LSM-KVS working directory, successive check-

points may share some of these files. Therefore, these SST

files must be copied to a Distributed File System (DFS) in a

shared directory. To facilitate this, the streaming engine

calls its own stream checkpointing function to persist

committed versions ´. It synchronizes the files in LSM-

KVS’s local checkpointing directory with the shared file

system.

Each query execution creates a new stream check-

pointing version, storing SST and log files in a designated

shared directory for reuse in subsequent queries. Each SST

file version is assigned a unique name, allowing the system

to identify and read the file using metadata. This enables

the next batch to retrieve the previous stream checkpoint-

ing version from the file system, recover the state, and

continue query execution. The commit task is finalized

only after stream checkpointing is completed, at which

point the result is written to the sink, and the next micro-

batch begins execution.

2.4 Related work

Micro-batch stateful streaming systems Micro-batch pro-

cessing is a widely used approach in stateful streaming

systems. In this method, incoming data is divided into

small batches that are processed sequentially, simplifying

state management and checkpointing.

Lee et al. introduced zStream [16], which achieves low

latency by utilizing dynamic buffering in micro-batch

processing based on a reference value known as the

deadline. zStream reduces tail latency by adjusting the size

of each micro-batch dynamically, aiming to complete

execution as close to the deadline as possible. A-scheduler

[15] proposed an adaptive scheduling mechanism for

multiple queries, combined with dynamic micro-batch size

control to adapt to traffic fluctuations. This approach

achieves low latency by preventing unchecked growth in

batch size. However, these two approaches indirectly

reduce the number of states by managing micro-batches

rather than directly addressing state management.

Databricks [17] provides APIs for managing streaming

data and handling incremental changes using Apache Spark

Structured Streaming. It supports asynchronous stream

checkpointing, which reduces latency by allowing the next

micro-batch to proceed without waiting for checkpointing

to finish. However, this approach only performs stream

checkpointing asynchronously, leaving other operations

Fig. 3 Persistent state management in Spark Structured Streaming with LSM-KVS. In the LSM-KVS and Stream Processing Engine boxes,

checkpoint() refers to LSM checkpointing (db.checkpoint()) and stream checkpointing, respectively. Sink operation is the last step of the Micro-

bath i Processing
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within the commit task on the critical path. Consequently,

it only partially reduces the duration of the commit task,

leading to delays in subsequent operations. Additionally,

Databricks acknowledges the limitations of this approach.

Specifically, the entire query will fail if a failure occurs

during asynchronous stream checkpointing, as it lacks the

retry mechanism available in synchronous checkpointing.

Furthermore, Databricks is not open-source, which may

limit its accessibility and flexibility for certain users.

Event-driven stateful streaming systems Event-driven

processing is another approach where each incoming event

is processed immediately, allowing for lower latency and

higher responsiveness.

Rhino [23] attempted to minimize the amount of state

migrated during runtime reconfiguration of large operator

states by using a proactive migration protocol while

ensuring fault tolerance. It asynchronously replicates the

state of a running stateful operator, avoiding any pause in

query execution. Meces [22] aimed to reduce latency

through state migration, enabling prioritized state transfers

during rescaling to ensure that the most critical states are

migrated first. This is achieved without additional resource

usage during non-rescaling periods. However, it does not

support LSM-KVS, which limits its applicability in certain

scenarios. Zhang et al. [25] identified latency spikes in

stream processing engines using LSM-KVS when LSM

operations overlap. To address this, they proposed a

scheduling strategy to minimize overlapping LSM opera-

tions. Meanwhile, Lee et al. introduced FlowKV [24], a

specialized LSM-KVS optimized for window operations,

highlighting the inefficiencies in the interaction between

stream processing applications and state backends.

Checkpointing Checkpointing is a well-known method

used to achieve fault tolerance in distributed systems. In

this approach, the system periodically stores the application

state to persistent storage, enabling recovery in the event of

a failure.

Sachini et al. [26] proposed a mathematical model for

multi-level checkpointing based on utilization in stream

processing systems. They define utilization as the fraction

of time spent processing data and overhead as the fraction

of time spent recovering from failures. Using these defi-

nitions, they identify the optimal value that maximizes

utilization. Chiron [27] determines the optimal check-

pointing frequency for distributed stream processing

applications by balancing the trade-off between end-to-end

latency and total recovery time in case of failure.

Compaction optimization Although widely used in

latency-sensitive applications, LSM-tree-based key-value

stores incur significant overhead due to their internal

operations, particularly compaction, which is resource-in-

tensive. Several studies, such as [28, 29], have aimed to

Table 1 Summary of previous works on streaming system optimizations

Previous work LSM-KVS

support

Streaming

architecture

Optimization metric Optimization approach State

checkpoint

Meces [22] 7 Event-driven Latency State migration 4

Rhino [23] 4 Event-driven Latency State migration 4

FlowKV [24] 4 Event-driven Throughput Customizing KV store 7

ShadowSync

[25]

4 Event-driven Latency Scheduling operation 4

zStream [16] 4 Micro-batch Latency Dynamic buffering 7

DataBricks [17] 4 Micro-batch Latency Asynchronous stream

checkpointing

4

MiSA(Ours) 4 Micro-batch Latency and

throughput

Asynchronous commit 4

Fig. 4 a Execution times per batch when compaction is triggered. In a, Computation represents the micro-batch processing time, and the total

time for each bar is the same as the latency in b. b–c Correlation between execution time and batch size at various CPU frequencies

Cluster Computing (2025) 28:420 Page 5 of 19 420

123



reduce this overhead by optimizing and scheduling com-

paction. While these optimizations help decrease the

commit times, they cannot entirely eliminate delays in

subsequent tasks caused by blocking applications. To

address this, we remove the commit task from the critical

path, avoiding the endless cycles caused by compaction.

Table 1 provides a summary of previous studies on

optimizations in streaming systems.

3 Motivations

To investigate the impact of operations during the commit

task, we evaluated the performance of vanilla Spark using

the Linear Road benchmark [30], a real-world road traffic

monitoring benchmark built on the streaming pipeline, with

RocksDB [12] as the state store. The detailed system

specifications for each server and workloads are outlined in

Sect. 5.1. The experiments utilized LR2 queries (shown in

Table 2), with the trigger interval in vanilla Spark set to the

default value of 1 s and a traffic rate of 1000 records per

second. The size of each record was 65 bytes.

3.1 Problem 1: synchronous commit

As explained in Sect. 2.3, the flush operation during a

commit task generates an SST file in the LSM-KVS. When

the number of SST files exceeds a predefined threshold, a

compaction operation may be triggered. We set this

threshold to 4, ensuring compaction is triggered after every

4th batch.

Figure 4a presents the execution times of commit and

compaction operations over the first 100 batches, illus-

trating when compaction takes place. As depicted in the

figure, the steady increase in commit time leads to a sub-

stantial rise in overall execution time. This happens

because the commit operation is executed synchronously,

causing delays in subsequent tasks until the commit fin-

ishes. When compaction takes place, the next operation in

the commit task (e.g., LSM checkpointing) is forced to

wait, which increases the size of the micro-batch. This

creates a cycle where the growing state size leads to longer

commit and compaction times, further exacerbating delays.

To further explore the correlation between execution

time and batch size, we conducted the same benchmark on

two servers with different CPU frequencies (i.e., a low-end

CPU and a high-end CPU). The purpose of using different

CPU frequencies was to demonstrate that, even though

compaction may be faster on a high-end CPU, the commit

time remains prolonged, eventually leading to an increase

in batch size. Figure 4b, c show the execution time and

accumulated micro-batch size based on CPU specifications.

In this experiment, the micro-batch size was calculated by

sampling and averaging 10 batches. Although the patterns

of growth in execution time and batch size differ,1 both

metrics ultimately exhibit increases regardless of the CPU.

As depicted in Fig. 4(b), the server with the low-end

CPU experiences a sharp increase in execution time. For

example, by the 60th batch, latency reaches approximately

7.6 s, representing a 2� increase from the initial batch

phase. By the 100th batch, latency rises to nearly 17 s, a

5.3� increase from the 10th batch. Additionally, the batch

size processed between the 90th and 100th batch is 4.17�
larger than in the initial batch phase. A similar trend is

observed for the server with the high-end CPU, as shown in

Fig. 4(c). While the higher-end CPU reduces compaction

time, slight delays still occur, causing a gradual accumu-

lation in batch size.

In summary, LSM-KVS based micro-batch streaming

systems running for a long period suffer from significant

delays, regardless of CPU specifications. A key factor

contributing to these delays is the synchronous nature of

the commit operation.

3.2 Problem 2: overhead in remote
checkpointing

In High Performance Computing (HPC) applications and

streaming systems, remote checkpointing is often carried

out on remote machines to ensure fault tolerance [31–34].

This study aims to quantify the overhead incurred when

stream checkpointing is performed on remote nodes.

Figure 5 illustrates the latency of four key operations—

Get, Compaction, L.Ckp (LSM checkpointing), and S.Ckp

(stream checkpointing))—which affect the 99th percentile

tail latency when checkpointing is performed either locally

or remotely. In both cases, checkpointing was conducted

on worker nodes with low-end CPUs. The x-axis represents

the checkpointing location (local or remote), while the

y-axis uses a different scale for clarity.

As shown in Fig. 5, checkpointing on a remote node

results in a noticeable increase in latency for compaction

and stream checkpointing operations. Compaction on the

remote node takes 7 s, approximately 6.7� longer than on

the local node. Likewise, stream checkpointing on the

remote node has a latency of 2.5 s on the remote node, a

36.8-fold increase compared to local checkpointing. This

increase is primarily due to network overhead, as the

checkpointing data must be stored in the remote DFS.

Additionally, compaction is further delayed because files

need to be transferred between local and remote nodes,

requiring read, process, and send operations across loca-

tions. The get operation also experiences latency when

executed remotely since the state data must be fetched

1 Note that the y-axis in both figures uses a different scale.
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from the remote node during a query. It takes around 4.1 s

on the remote node, compared to just 0.2 s locally, making

it about 20 times slower. However, the LSM checkpointing

latency remains relatively low, 121 ms for remote and 34

ms for local checkpointing, as it is performed on the local

node where the LSM-KVS resides. As a result, LSM

checkpointing is not impacted by the location of the stream

checkpointing, leading to minimal differences between

local and remote configurations at the 99th percentile tail

latency.

In summary, remote checkpointing significantly increa-

ses the latency of operations such as get, compaction, and

stream checkpointing, which degrades tail latency and

overall performance. In contrast, local checkpointing

shows only slight latency increases. This analysis confirms

that remote checkpointing introduces considerable latency

overhead, negatively affecting system performance.

4 Design and implementation

4.1 Overview of MISA architecture

We propose MISA, a micro-batch streaming system based

on LSM-KVS that integrates asynchronous commit and

state preloading mechanisms. MISA aims to achieve two

key objectives: (i) reducing tail latency by overlapping

query processing with asynchronous commit tasks. (ii)

Enhancing access to persistent data during query execution

and minimizing stream checkpointing time through the

state preloading mechanism. MISA is implemented on the

JAVA-based micro-batch streaming framework, Apache

Spark Structured Streaming, using RocksDB as its state

store.

Figure 6 presents the architecture of MISA, which

comprises two main components: Streaming Processor and

MISA Controller. Streaming Processor manages query

processing and initiates commit tasks as threads, while

MISA Controller executes these tasks asynchronously.

The flow of MISA operates as follows. Once the query

processing for the ith micro-batch is completed, Streaming

Processor sends a signal to MISA Controller. At the same

time, the results are written to the sink, and the system

immediately begins the iþ 1th micro-batch. Upon receiv-

ing the signal, MISA Controller initiates the commit

asynchronously via the commit thread �. The contents of

the memtable are then flushed to the LSM-KVS `, with

the flushing operation explicitly triggered by calling the

flush function through the Java Native Interface (JNI).

Once the flushing operation is completed, the commit

thread calls the JNI function to perform LSM checkpoint-

ing, capturing a snapshot of the LSM-KVS ´. If com-

paction is triggered within LSM-KVS at this time, it

proceeds independently via a dedicated compaction thread.

However, running compaction and LSM checkpointing

simultaneously can compromise data consistency. There-

fore, MISA ensures that LSM checkpointing and com-

paction do not occur concurrently by locking the LSM-

KVS during checkpointing.

Regardless of compaction, once the LSM checkpointing

is completed, the commit thread proceeds with the stream

checkpointing ˆ on the local machine, followed by send-

ing an acknowledgment signal (Ack) to the Streaming

Processor ˜. Meanwhile, the commit thread creates a

stream checkpointing thread to copy the checkpoint files to

the remote DFS asynchronously Þ. Finally, MISA Con-

troller sends an Ack to the currently executing iþ 1th
micro-batch þ, indicating that the commit is complete.

To simplify the explanation of the MISA architecture,

Algorithm 1 provides a pseudocode that outlines the

asynchronous commit workflow of MISA. Details on how

MISA overlaps with other stream processing and the state

preloading mechanism are covered in Sects. 4.2 and 4.3.

4.2 Overlapping flow

Figure 7 illustrates how MISA overlaps with micro-batch

processing to improve its performance. The overlapping

scenarios are categorized into three cases. Case I represents

a scenario with no compaction, while Case II and Case III

involve compaction being triggered. In all cases, the flow

prior to commit remains the same.

As stream processing starts, data is continuously

ingested and organized into micro-batches. A DAG is then

created for query planning. Once the query is ready for

execution, the micro-batch data is processed alongside the

previously generated state to perform the actual query (�–

Þ). Up to this point, the process is identical to that shown

in Fig. 2 of Sect. 2.2.

Fig. 5 Operations influencing the 99th percentile tail latency

depending on the checkpointing location. L.Ckp refers to LSM

checkpointing, while S.Ckp represents stream checkpointing. All

experiments were performed in a low-end CPU environment

Cluster Computing (2025) 28:420 Page 7 of 19 420

123



After the query execution finishes, the commit task

begins asynchronously þ while the sink operation for the

micro-batch continues ¼. Following this, the next micro-

batch processing starts. During the commit task, the

flushing, LSM checkpointing, and stream checkpointing

operations are executed sequentially (½ * ). Since these

steps are independent, they must be completed in order.

This process represents Case I in Fig. 7, where commit

tasks and micro-batch processing can overlap for improved

performance.

If compaction occurs, two possible scenarios exist

depending on when it is triggered. In Case II, compaction is

triggered before LSM checkpointing. Here, compaction

must be completed first, followed by LSM checkpointing.

Thus, the commit task proceeds in the order of ½, , �,

and . During this process, subsequent tasks may be

delayed due to the longer time required for compaction,

potentially pushing the start of ˆ beyond its intended time.

Consequently, ˜ may have to wait until the entire commit

task is finished. In Case III, compaction is triggered after

LSM checkpointing. In this case, LSM checkpointing can

proceed immediately without waiting for compaction,

reducing delays.

Stream checkpointing and compaction have no depen-

dencies between each other. Once the target file is flushed

and the LSM checkpointing is completed, compaction can

proceed using a copy of the file, while stream check-

pointing continues simultaneously, as it only depends on

the completion of LSM checkpointing. To take advantage

of this, MISA enables the commit thread of the MISA

Controller to overlap with the compaction thread managed

within LSM-KVS. This allows the two operations not only

to overlap with each other but also with ongoing micro-

batch processing.

Typically, compaction takes longer than stream check-

pointing but shorter than micro-batch processing. This

arrangement ideally allows commit tasks to be completely

hidden, enabling each micro-batch to be processed imme-

diately after the previous one without any delays.

By isolating the commit task from micro-batch pro-

cessing and separating the compaction process within the

commit, the time spent on commits does not count toward

the micro-batch processing duration. The overlapping

portion of the commit occurs between the steps of writing

the results to the sink and reading the micro-batch data

during the actual query execution of the next micro-batch.

4.3 State preloading

In traditional systems, stream checkpointing is executed

directly on a remote node, leading to remote I/O overhead

for every state access. When stream checkpointing is per-

formed directly on DFS to save a file, micro-batch

streaming is executed using the state stored at this remote

location. This approach introduces additional overhead, not

only from the stream checkpointing process itself but also

from compaction and state fetching (i.e., get operations)

required for query execution, leading to increased latency.

In contrast, The state preloading mechanism proposed in

MISA minimizes network overhead involved in all state

processing by directly performing stream checkpointing

locally. This technique initially writes checkpoint data

Fig. 6 An overview of MISA architecture. S. Ckp. denotes stream checkpointing. In the LSM-KVS and MiSA Controller boxes, checkpoint()

refers to LSM checkpointing (db.checkpoint()) and stream checkpointing, respectively

420 Page 8 of 19 Cluster Computing (2025) 28:420

123



locally and then hierarchically transfers files to DFS using

the stream checkpoint thread. Transferring the check-

pointing file to DFS is to safeguard against data loss due to

failure. MISA Controller accomplishes this by modifying

the read path for these operations from remote storage to

local storage through orchestration between the stream

checkpoint thread and the commit thread.

MISA Controller ensures that stream checkpointing

during a commit occurs on the local file system. It gener-

ates the current version of the checkpoint file using the

snapshot created during LSM checkpointing. Once stream

checkpointing is finished, it sends the first Ack to

Streaming Processor. Subsequently, the checkpoint files are

transferred to the remote file system through a stream

checkpoint thread. After the transfer to the DFS is com-

plete, the stream checkpoint thread sends an Ack to the

commit thread. Upon receiving this Ack, MISA Controller

then sends the second Ack to Streaming Processor.

Streaming Processor receives two Acks for the follow-

ing reasons: the first Ack is required to read the state for the

next micro-batch, while the second Ack is necessary to

trigger the next commit, thus enabling its execution. In the

event of a failure during local stream checkpointing that

results in data loss, the most recent stream checkpoint

version can be retrieved from the remote node, ensuring

fault tolerance.

4.4 Keeping consistency

Asynchronous commit can introduce consistency issues.

Figure 8 shows three scenarios that uphold the execution

order of the system to prevent these consistency problems.

Figure 8a illustrates a scenario where micro-batch pro-

cessing and commit tasks can overlap. As explained earlier,

the commit occurs asynchronously after the execution of

the ith query. The sequence of operations within the commit

includes flushing, LSM checkpointing, and stream check-

pointing. All three of these operations must be completed

before the state reading operation for the next iþ 1th
micro-batch processing. Here, stream checkpointing spe-

cially refers to the checkpointing performed to a local

directory (i.e., up to the first Ack). If stream checkpointing

is not yet finished, the state reading operation will be

delayed, waiting for its completion and acknowledgment,

thereby ensuring that the correct state generated from the

previous processing is accessed.

Figure 8b depicts the required order of operations when

compaction occurs. If compaction is initiated after the

flushing operation, it will be executed in the background

thread of LSM-KVS, allowing it to run concurrently with

stream checkpointing. However, compaction must be

completed prior to the iþ 1th commit, which occurs after

the execution of the iþ 1th query. During state retrieval,

the SST file from stream checkpointing must be accessed,

and if compaction is not finished, this could lead to slower

read performance. Therefore, if compaction is not com-

pleted before the next commit, the commit task will pause

until compaction is finished to ensure faster state reading.

Figure 8c shows the order that must be followed when

copying checkpoint files to the remote DFS after stream

checkpointing. Once stream checkpointing is performed in

the local directory, the checkpoint file is copied to DFS in

the background. This operation is required to be completed

before the iþ 1th commit, as depicted in Fig. 8c. While it

is not critical for the file to be copied to DFS before the

next commit, doing so is essential for state retrieval in the

event of a failure. Furthermore, to guarantee that each

checkpoint version is stored in DFS, this copy operation

must be finalized before the commit associated with the

Algorithm 1 MISA
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stream checkpointing. As shown in Fig. 8c, if the

acknowledgment confirming the successful copy to DFS is

not received prior to the next commit, the system will

pause until the checkpoint file is successfully copied,

ensuring the preservation of each checkpoint version.

4.5 Failure handling

Since MISA performs commits through an asynchronous

thread, failure handling is required. The following scenar-

ios may arise during an asynchronous commit: a failure

during stream checkpointing and after stream checkpoint-

ing. Here, a failure is defined as the termination of the

commit thread. In both scenarios, the query may indefi-

nitely await an Ack due to the absence of a response. To

prevent this, system status is periodically monitored using a

heartbeat mechanism.

In the first scenario, failure occurs during stream

checkpointing. If the system does not receive a heartbeat

signal, it detects a failure and checks for the presence of the

checkpoint file. If the checkpoint file is missing, it indicates

that stream checkpointing was not completed successfully.

In this case, the commit thread is recreated, and the commit

task is restarted.

In the second scenario, failure occurs after stream

checkpointing. The checkpoint file, that is state, has been

written locally, but the commit thread terminates before

sending an ack. If the heartbeat is not received, the system

detects a failure and checks for the checkpoint file. Since

the checkpoint file exists, the state is read and used to

proceed with query execution as usual.

Additionally, query execution is represented as a DAG,

with multiple operators arranged in sequence. In a DAG-

based execution model, operators are processed sequen-

tially on worker nodes, while the master node continuously

tracks the completion status of each operator. This tracking

allows the system to recover from intermediate failures by

restarting from the failed operator, as the master node

retains the success history of prior operators. This failure

recovery model is a default mechanism in DAG-based

streaming systems with a master/worker architecture. As

MISA follows this model, it can resume processing from

the failure point if a worker node fails, ensuring efficient

fault tolerance and minimizing reprocessing overhead.

4.6 Implementation

We implemented MISA on Apache Spark Structured

Streaming (version 3.2.3) [18] framework. Specifically, we

focused on one of the native core modules, Spark-

SQL [36], which performs various operations during the

commit task and while executing queries. The overall

system configuration was implemented using Scala lan-

guage [37], and we utilized Future [38], a standard Scala

library that supports asynchronous programming.

MISA’s design aims to make the commit process

(step þ in Fig. 2) asynchronous, enabling commits to

overlap with other tasks, and to asynchronously copy

checkpoint data to DFS. As a result, implementing these

concepts in existing systems is straightforward. MISA

achieves this by creating a separate thread each time the

original commit function is called, allowing for asyn-

chronous operation. Since transitioning to asynchronous

processing may disrupt the original synchronous sequence,

acknowledgments (acks) are used to ensure synchroniza-

tion. Additionally, the stream checkpointing path is modi-

fied to be local, with a thread that asynchronously copies

data to DFS and generates an ack to synchronize with the

main process. MISA also leverages built-in LSM-KVS

functions to monitor background tasks (e.g., compaction)

within LSM-KVS. These adjustments make integrating

MISA into existing systems easier.

Fig. 7 Three overlapping cases in MISA. T1, T2, and T3 represent the time axes in Case II and Case III. Case II and III write the ith state to the

state store and read the ith state during the iþ 1th execution like Case I
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5 Evaluation

5.1 Experimental setup

Configuration For the experiments, we set up a Spark

cluster with one master node and two worker nodes. Each

worker node hosted a Spark executor with 8 CPU cores and

48 GB of memory, and we used 8 data partitions to facil-

itate parallel processing. To evaluate the impact of differ-

ent CPU specifications on performance, we configured two

Spark clusters: one equipped with high-end CPUs and the

other with low-end CPUs. Detailed specifications can be

found in Table 3.

Workloads The workloads used in the experiments are

outlined in Table 2. We selected four stateful queries from

the real-world streaming benchmarks, the Linear Road

benchmark [30] and Cluster Monitoring benchmark [35].

LR2 includes a join operator that is both compute-intensive

and resource-demanding due to its 1-second sliding win-

dow. In contrast, LR4 use aggregate operators to compute

count rows, with sliding window set to 5 s to highlight the

differences between the queries. Additionally, LR4, having

larger sliding windows than LR2, result in lighter work-

loads Likewise, CM1 has a sort operator, making it

compute intensive, whereas CM2 uses aggregate to cal-

culate the average, resulting in lower computational

demands than CM1. We also set the trigger value to 3 s to

accumulate more records for each batch, as this value

controls the duration the streaming engine buffers incom-

ing records before processing.

Input traffic We generated random traffic with varying

numbers of records2 per second (records/sec). The record

count follows a normal distribution, with the average

converging to the specified traffic rate. Unless otherwise

noted, the traffic rate was set to 1500 records/sec, which is

adequate to demonstrate the challenges encountered by

existing micro-batch streaming systems. To achieve this

traffic, we adjusted the input from the Apache Kafka [10]

broker to attain an average of n records/sec.

Comparison targets To demonstrate the effectiveness of

our approach, we selected three comparison targets: vanilla

Spark and two optimized versions. We designated vanilla

Spark as the baseline (denoted as Baseline) since it is

one of the most widely used micro-batch streaming sys-

tems. This allows us to highlight the issues that arise when

using LSM-KVS as a state store. The other two comparison

targets include one that utilizes dynamic buffering (denoted

Fig. 8 a, b and c represent three scenarios to ensure consistency. Q.E. and R.S. denote Query Execution and Read State, respectively. L.Ckp and

S.Ckp denote LSM checkpoint and Stream checkpoint, respectively. The order of Flush, L.Ckp, and S.Ckp in commit is the same in both b and

c. Note that the micro-batch processing and commit arrows show sequences, not threads

Table 2 Query details of real-world streaming workloads used in experiments

Benchmark Notation Query details

Linear road [30] LR2 SELECT L.timestamp, L.vehicle, L.speed, L.highway, L.lane, L.direction, L.segment FROM SegSpeedStr

[range 30 (slide 1)] as A, SegSpeedStr as L WHERE (A.vehicle == L.vehicle)

LR4 SELECT timestamp, highway, direction, segment, COUNT(vehicle) as num Vehicle

FROM SegSpeedStr [range 20 slide 5] GROUPBY (highway, direction, segment)

Cluster

monitoring [35]

CM1 SELECT timestamp, category, SUM(cpu) as totalCpu

FROM TaskEvents [range 60 (slide 10)] GROUPBY category ORDERBY SUM(cpu)

CM2 SELECT jobId, AVG(cpu) as avgCpu

FROM TaskEvents [range 30 slide 1] WHERE (eventType == 1) GROUPBY jobId

2 The size of one record is 65 bytes.
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as zStream) and another that implements asynchronous

stream checkpointing (denoted as Async.Ckp). Both

modified versions of Apache Spark Structured Streaming

aim to optimize latency. However, we will show that their

methods are insufficient to address the latency issues in

micro-batch streaming system that use LSM-KVS. We

implemented these modifications using Apache Spark

Structured Streaming for comparison, and details are

summarized below.

• Baseline: LSM-KVS based vanilla Spark.

• zStream: LSM-KVS based vanilla Spark with

dynamic buffering mechanism [16].

• Async.Ckp: an implementation of Databricks’

approach in vanilla Spark.

In zStream [16], a dynamic buffering mechanism

using deadline is employed to control the batch size at

runtime. The deadline serves as the maximum time allowed

for query processing. Specifically, the engine continues to

buffer incoming records only as long as the current micro-

batch can be processed within this deadline. If the expected

processing time for the current micro-batch exceeds this

limit, buffering stops, and any remaining input records are

carried over to the next batch. Since the concept of a

deadline is similar to the trigger value in Apache Spark

Structured Streaming (i.e., dynamically adjusting the trig-

ger value), we set it to 3 s for comparison.

Async.Ckp aims to improve performance by shifting

the stream checkpointing of Apache Spark Structured

Streaming, which is usually done synchronously, to the

background. This approach, proposed by Databricks [17],

shares similarities with our method but has a significant

limitation: it only decouples the stream checkpointing

process, which is part of the commit task that we identify

as problematic. Since Databricks’ implementation is not

available as open source, we implemented this approach

using Apache Spark Structured Streaming to demonstrate

its limitations and to show how our solution surpasses it.

5.2 Overall performance

Figures 9 and 10 compare the execution time of each batch

in MISA and its comparison targets across the four queries

(LR2, LR4, CM1, CM2) for up to the 100th batch. The

experiment utilizes two types of traffic rates: 1500 records/

sec (normal) and 2500 records/sec (heavy). The x-axis

represents the batch number, while the y-axis indicates the

execution time for each batch. Throughout the experiment,

execution times for MISA and all comparison targets

fluctuate. We evaluate their performance by analyzing the

frequency and degree of these fluctuations, as well as the

overall trend.

Figure 9a illustrates the execution times of LR2 at a

traffic rate of 1500 records/sec. The figure shows that all

three comparison targets periodically experience sharp

spikes in execution time, with the peaks of these fluctua-

tions rising as the batch number increases. These fluctua-

tions are result from the regular triggering of compaction in

LSM-KVS, which delays subsequent tasks in the commit

process until compaction is complete. This unintended

consequence of using LSM-KVS as a state store empha-

sizes the importance of carefully considering LSM-KVS

operations when optimizing performance.

Notably, Async.Ckp exhibits a pattern similar to the

other two comparison targets, despite its consideration of

LSM-KVS. This suggests that its approach of decoupling

only the stream checkpointing, which is part of the commit

process, is inadequate for fully optimizing the system. In

contrast, while MISA also experiences fluctuations, its peak

values remain relatively stable, and the execution time does

not increase over time. Although it cannot completely

eliminate compaction time, the frequency and magnitude

of these fluctuations are significantly smaller and more

stable compared to the other three systems.

When the traffic rate for the same query is 2500 records/

sec (as shown in Fig. 10a), the systems behave similarly to

when the traffic rate is 1500 records/sec at least until

around the 55th batch. However, the effects are more

pronounced due to the increased volume of incoming data

and the computationally intensive join operator. Beyond

this point, while MISA continues to show stable perfor-

mance, the other comparison targets experience the previ-

ously mentioned vicious cycle more severely, leading to

delays so significant that further analysis becomes

impractical or irrelevant. Therefore, in the subsequent

experiments, we will focus on the results up to the 55th

batch for LR2 at a traffic rate of 2500 records/sec.

The LR4 displays similar patterns under both traffic

conditions(Figs. 9b, 10b). Unlike LR2, where all three

comparison targets exhibited progressively increasing val-

ues, LR4 maintains a consistent peak value. This consis-

tency is due to the lighter workloads of these two queries

compared to the more computationally intensive LR2. As a

result, the compaction time is shorter, and the overhead

from processing additional incoming data is minimal,

preventing the vicious cycle seen in LR2.

Table 3 Testbed specification

CPU (high-end) AMD Ryzen 9 3900X 12-core 3.80 GHz

CPU (low-end) AMD Ryzen 9 3900X 12-core 2.80 GHz

Memory DDR4, 64 GB

Storage Samsung SSD 970 EVO NVMe SSD

Ethernet 1 Gbps
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CM1 and CM2 exhibit similar spike patterns, reaching a

consistent peak value similar to LR4 under both traffic

conditions. However, execution time for both queries

shows an overall increasing trend regardless of traffic. In

particular, CM1, which is more compute-intensive than

CM2, shows a more apparent increase in execution time. It

is visible that the slope of the comparison systems becomes

steeper at a traffic rate of 2500 (Fig. 10c). Nevertheless,

MISA consistently achieves the best performance by

maintaining a stable execution time.

5.3 Tail latency and throughput

Figures 11 and 12 illustrate the Cumulative Distribution

Functions (CDFs) of latencies for MISA and the compar-

ison targets across the four queries at two traffic rates: 1500

records/sec and 2500 records/sec. In these figures, the

x-axis represents latency, corresponding to the execution

times of batches up to the 100th batch, while the y-axis

indicates the percentile of the cumulative distribution of

these execution times. The 99th percentile tail latency is

marked with a red dotted line in a inset figure.

Overall, as shown in these figures, MISA consistently

demonstrates lower and more stable latencies across dif-

ferent queries and traffic rates. In particular, the 99th per-

centile tail latency is significantly lower than those of the

comparison targets. For instance, in LR2 with a traffic rate

of 1500 records/sec, as shown in Fig. 11a, the latency for

MISA starts increasing around the 80th percentile, whereas

the comparison targets experience a sharp rise between the

35th and 65th percentiles. At the 99th percentile, MISA

achieves approximately a 2.6� speedup over the worst-

performing Baseline (3694 ms vs. 9729 ms).

It is notable that MISA outperforms zStream in terms

of the 99th tail latency, which was specifically designed to

reduce tail latency. We believe this is because MISA

achieves substantial performance gains by eliminating

unnecessary synchronization between the internal opera-

tions of the LSM-KVS and the streaming engine. In con-

trast, zStream focuses solely on optimizing the streaming

engine without addressing the LSM-KVS, limiting its

ability to achieve maximum optimization when using

LSM-KVS as the state store.

When the traffic rate increases to 2500 records/sec in

LR2, a similar pattern is observed as shown in Fig. 12a.

However, the higher traffic rate leads to more data being

processed per batch, causing the elbow to shift to a lower

percentile and increasing tail latency across all four

engines. For LR4 query, which involves relatively lighter

workloads, all four engines display similar patterns. Nev-

ertheless, MISA achieves up to 4.9� lower 99th percentile

tail latency compared to the other systems, with a more

gradual increase in latency. For Fig. 12c, d, the tail latency

of the comparison systems increases more rapidly as traffic

grows. In particular, CM1 experiences a sharper increase

than LR4 and CM2 at a traffic rate of 2500 records/sec due

to the additional computational load caused by the sort

operator. In contrast, MiSA exhibits minimal increases in

95th and 99th percentile tail latencies, maintaining a

latency close to its initial levels. For example, in the case of

Fig. 9 a, b, c, and d correspond to the benchmarks LR2, LR4, CM1, and CM2, which indicate specific queries. Execution times for the four

queries (LR2, LR4, CM1, CM2) at a traffic rate of 1500 records/sec on a high-end CPU. Note that figure a uses a different scale on the y-axis

Fig. 10 a, b, c, and d correspond to the benchmarks LR2, LR4, CM1, and CM2, which indicate specific queries. Execution times for the four

queries (LR2, LR4, CM1, CM2) at a traffic rate of 2500 records/sec on a high-end CPU. In LR2, the red dotted vertical line marks the 55th batch.
Note that figure a uses a different scale on the y-axis
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CM1, zStream and MISA are 5908 and 439 ms, respec-

tively, a decrease of about 13.4 times at 99th percentile tail

latency. This stability is achieved by eliminating the

commit latency required for state management, allowing

the computing time—which previously increased due to

the commit task—to remain constant, thereby enabling

efficient execution of stateful queries.

It is noteworthy that the tail latency of Async.Ckp

remains almost identical to the Baseline across all

queries. For instance, in Fig. 11c, Async.Ckp shows

slightly better tail latency than the Baseline at the 95th

and 99th percentiles, but in Fig. 12c, it is close to the

Baseline. This indicates that while hiding the stream

checkpointing, which is a part of the commit task, may

provide temporary improvements, tail latency ultimately

increases due to other operations within the commit task.

Furthermore, this demonstrates that the primary issue lies

in the cumulative overhead caused by sequential depen-

dencies within the commit task. Reducing only the final

step, such as stream checkpointing, does not address the

underlying problem of delays due to interdependent oper-

ations within the commit.

Figure 13 presents the average throughput for the four

queries at traffic rates of 1500 records/sec and 2500

records/sec. The average throughput is calculated by

dividing the batch size (in bytes) by the time taken to

process each batch, averaged over the first 100 batches.

Therefore, reducing the latency per batch directly increases

throughput.

Overall, MISA shows significantly higher throughput

than its comparison targets across all queries and traffic

types. The most dramatic difference is seen in Fig. 13c at a

traffic rate of 1500 records/sec, where MISA achieves

10.4x the throughput of the worst-performing zStream

(126.58 KB/s vs. 1327.05 KB/s). Even compared to the

engine with the highest throughput among the three,

Async.Ckp, MISA delivers 4.81� higher throughput

(170.99 KB/s vs. 1327.05 KB/s).

It is also worth noting the throughput differences across

the queries. In Fig. 13a, at a traffic rate of 1500 records/sec,

MISA achieves a throughput of 337.814 KB/s in LR2. This

increases to 1000.939 KB/s (2.96�) in LR4,

1327.05(3.93�) KB/s in CM1 and in 500.92 KB/s (1.48�)

CM2. Similarly, the performance improvement of MISA

compared to Baseline at the same traffic rate is 1.47� in

LR2, rising to 4.87� in LR4, 7.6� in CM1 and 5.1� in

CM2. These differences are due to variations in query

semantics. LR2 and CM1 involve join and sort operator,

respectively, which are more compute-intensive than win-

dowed aggregation in LR4 and CM2. This results in higher

batch processing times, which not only reduce throughput

but also limit the optimal performance of MISA, as the

Fig. 11 CDF of latencies for MISA and comparison targets across four queries at a traffic rate of 1500 records/sec on a high-end CPU. An inset

figure provides a detailed view of the 95th to 99th percentile latency. The red dotted-line represents the 99th percentile tail latency. Note that

figure a uses a different scale on the x-axis. b, c and d share the same y-axis label as figure a

Fig. 12 CDF of latencies for MISA and comparison targets across four queries at a traffic rate of 2500 records/sec on a high-end CPU. An inset

figure provides a detailed view of the 95th to 99th percentile latency. The red dotted-line represents the 99th percentile tail latency As discussed

in Sect. 5.2 regarding the LR2 query, figure a includes results only up to the 55th batch. Note that figure a uses a different scale on the x-axis. b,
c and d share the same y-axis label as figure a
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longer processing time reduces the opportunity for over-

lapping query execution and commit operations.

Meanwhile, the high throughput of MISA can be

explained by how throughput is calculated. Considering

that each record is 65 bytes, the total data ingested is 95.5

KB/sec at a traffic rate of 1500 records/sec. With a trigger

interval of 3 s, a single micro-batch buffers approximately

286.5 KB of input data. For a traffic rate of 2500 records/

sec, the input data per batch is similarly calculated to be

487.5 KB. Given this, MISA is the only system capable of

processing the ingested records within one second per

batch, maintaining low latency and high throughput.

5.4 Tradeoff between latency and throughput

To analyze the effect of the trigger value on MISA, we

evaluate MISA and all comparison targets across LR2 and

LR4 queries by varying the trigger value (or the deadline

for zStream) from 3 to 5 s. Figure 14 shows the corre-

lation between average latency and throughput for these

trigger values. We focus only on the results for LR2 and

LR4. In the figure, markers positioned further left and

higher up indicate better performance, signifying lower

latency and higher throughput.

Overall, Fig. 14 illustrates that MISA consistently

exhibits the lowest latency and highest throughput across

the two queries, regardless of the trigger value. As the

trigger value increases from 3 to 5 s, both average latency

and throughput rise across the two queries, which is typical

in micro-batch streaming systems. The increase in latency

results from the extended buffering time before processing

each batch, while the throughput improves due to the larger

volume of data processed in each batch.

In LR2, which involves a high-computation workload,

MISA consistently achieves higher throughput and signif-

icantly lower latency compared to the other targets,

regardless of the trigger value. While the three comparison

targets exhibit average latencies close to the trigger value,

MISA demonstrates significantly lower average latency.

However, the increase in throughput is less pronounced

than the rise in latency, due to the saturation of computing

resources during query execution, while larger batch sizes

contribute to higher latency, causing latency to rise more

sharply than throughput.

In contrast, LR4 involves a less computationally inten-

sive workload compared to LR2. Like in LR2, MISA

achieves the lowest latency and highest throughput in LR4,

regardless of the trigger value. However, unlike LR2,

where latency increases significantly in relation to

throughput, all four systems in LR4 show only a slight rise

in latency. While computing resources are saturated in

LR2, the underutilization of resources in LR4 allows

throughput to increase linearly as the batch size grows.

The rate of throughput increase due to the trigger

increment is most pronounced in Async.Ckp. For

example, when the trigger value shifts from 3 to 5 s,

Async.Ckp’s throughput increases by 77% compared to

a 51% rise for MISA. In MISA, the processing time grows

only slightly with the trigger value, resulting in smaller

batch accumulation compared to other systems. In contrast,

Async.Ckp experiences a more substantial increase in

Fig. 13 Average throughput of MISA and comparison targets across four queries under various traffic patterns on a high-end CPU. As discussed

in Sect. 5.2, the results in figure a for a traffic rate of 2500 records/sec are limited to the 55th batch. Note that the y-axis is presented on a

logarithmic scale for LR4, CM1 and CM2. b, c and d share the same y-axis label as figure a

Fig. 14 Correlation between average latency and throughput for LR2

and LR4 on a high-end CPU. For zStream, the deadlines are set to 3
and 5 s, respectively
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latency, leading to larger batch volumes and, consequently,

a higher rate of throughput growth.

5.5 Effect of state preloading

Figure 15 shows the execution time per batch for stream

checkpointing and get operations up to the 100th batch. By

comparing the performance of these two operations across

the Baseline and MISA , we aim to demonstrate that the

delay in the commit task is due to the synchronous nature

of the commit task and the remote checkpointing location.

The location of stream checkpointing in Baseline is

DFS, while the location of MISA is the local machine.

Figure 15a illustrates the execution time for the stream

checkpointing operation. While the execution time of the

Baseline approach increases with each compaction

cycle, MISA maintains a constant execution time

throughout. Additionally, execution time increases com-

pared to the initial batch due to the large number of files

generated during the compaction process compared to a

scenario where compaction is not performed. This outcome

is expected, as the baseline performs stream checkpointing

on a remote DFS, introducing network delays, whereas

MiSA performs checkpointing directly on the local

machine, thereby avoiding such delays. Furthermore,

MiSA’s state preloading technique asynchronously copies

locally checkpointing files to the DFS, eliminating addi-

tional overhead.

Figure 15b depicts the execution time for the get oper-

ation. Unlike the trends observed in Fig. 15a, the execution

time per batch continues to rise. The rise is due to the

growing number of states, which results in longer traversal

times to retrieve the necessary state. In contrast to

Baseline, which experiences a sharp rise in execution

time, MISA maintains stable performance, with its rate of

increase significantly lower than that of Baseline. This

indicates that state preloading effectively reduces execu-

tion time for each task while maintaining stability, enabling

fast processing and minimizing tail latency.

5.6 Overhead analysis

Table 4 presents an analysis of CPU and memory usage for

both Baseline and MISA on low-end CPU and high-end

CPUs, using the LR2 query at a traffic rate of 1500 records/

sec.

In a low-end CPU environment, MISA consumes

approximately 30% less memory compared to Baseline,

while utilizing about 10% more CPU. By executing query

and commit tasks concurrently, MISA leverages CPU

resources efficiently, resulting in relatively low overhead.

Conversely, in a high-end CPU environment, the dif-

ference in CPU usage between MISA and Baseline is

minimal. This is mainly due to the high-performance

CPU’s ability to effectively mitigate the demands of the

CPU-intensive compaction task. Additionally, MISA con-

sistently exhibits lower memory usage across both low-end

and high-end CPUs. Its capability to execute query tasks

more quickly than Baseline leads to smaller batch sizes,

which further contributes to the reduced memory

consumption.

In summary, MISA demonstrates efficient resource uti-

lization, even though its CPU usage rate may not be as high

as that of Baseline. Furthermore, MISA shows the

ability to deliver strong performance, even on low-end

CPUs.

6 Conclusion

This paper addresses the issues of performance degradation

when LSM-KVS is utilized as a state store in micro-batch

streaming systems. In these systems, the synchronous

commit task suspends the streaming engine, causing

increasing batch sizes and latency, ultimately degrading

system performance. We propose MISA, which implements

asynchronous commit and state preloading in LSM-KVS

based micro-batch streaming systems. MISA hides the

time-consuming synchronized commit task within the

critical path and performs hierarchical checkpointing to

both local and remote nodes. Experimental results show

that these mechanisms effectively reduce tail latency while

maximizing system throughput with minimal overhead.

Fig. 15 Execution times for stream checkpointing and get operations

per batch. The experiments were conducted using the LR2 query at a

traffic rate of 1500 records/sec on a high-end CPU

Table 4 Resource usage (%) of Baseline and MISA on low-end

and high-end CPUs

Low-end CPU High-end CPU

Baseline MISA Baseline MISA

CPU usage (%) 24.57 34.77 7.62 8.43

Memory usage (%) 44.49 12.74 18.37 7.27
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Our proposed mechanism has limitations; (1) When

compaction overlaps with LSM checkpointing, the result-

ing wait times reduce the benefits of overlapping commits,

offering minimal performance improvement. (2) Perfor-

mance may degrade as the number of partitions increases

due to higher CPU load from additional commit threads.

Therefore, carefully configuring the number of partitions is

essential when executing MiSA to achieve an optimal

balance between performance and resource utilization.
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33. Ni, X., Meneses, E., Kalé, L. V.: Hiding checkpoint overhead in

hpc applications with a semi-blocking algorithm. In: 2012 IEEE

International Conference on Cluster Computing, pp. 364–372

(2012)

34. Di, S., Bouguerra, M.S., Bautista-Gomez, L., Cappello, F.:

Optimization of multi-level checkpoint model for large scale

HPC applications. In: 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, pp. 1181–1190 (2014)

35. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google Cluster-Usage

Traces: Format ? Schema, vol. 1, pp. 1–14. Google Inc., White

Paper (2011)

36. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley,

J.K., Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A., et al.:

Spark sql: relational data processing in spark. In: Proceedings of

the 2015 ACM SIGMOD International Conference on Manage-

ment of Data, pp. 1383–1394 (2015)

37. Scala. https://www.scala-lang.org/

38. Scala-future. https://docs.scala-lang.org/overviews/core/futures.

html

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Kyuli Park received the B.S

degree in computer science and

engineering from Sogang

University, South Korea, in

2022 and the M.S degree in

computer science and engineer-

ing in Sogang University, in

2024. She is currently pursuing

Ph.D. degree in computer sci-

ence and engineering from

Sogang University. She is

interested in cloud computing,

streaming system and resource

management.

Dongjae Lee received the B.S

degree in computer science and

engineering as part of a double

major program from Sogang

University, South Korea, in

2024. He is currently pursuing

the M.S. degree with the

Department of Computer Sci-

ence and Engineering, Sogang

University. His current research

focuses on optimizing state

management in distributed

stream processing systems and

its interaction with key-value

store.

Yeonwoo Jeong received the

B.S. degree in computer soft-

ware from Kwangwoon

University, South Korea, in

2016 and the M.S degree in

computer science and engineer-

ing in Sogang University, South

Korea, in 2020. He is currently

pursuing Ph.D. degree in com-

puter science and engineering

from Sogang University. His

current research focuses on the

way of optimizing query pro-

cessing on distributed stream

processing systems.

Salim Hariri is a professor and

University of Arizona site

director of the NSF-funded

Center for Cloud and Auto-

nomic Computing. He founded

the IEEE/ACM International

Symposium on High Perfor-

mance Distributed Computing,

or HPDC, and is the co-founder

of the IEEE/ACM International

Conference on Cloud and

Autonomic Computing. Profes-

sor Hariri serves as editor-in-

chief of the scientific journal

Cluster Computing, which pre-

sents ‘‘research and applications in parallel processing, distributed

computing systems and computer networks.’’ Additionally, he co-

420 Page 18 of 19 Cluster Computing (2025) 28:420

123

https://www.scala-lang.org/
https://docs.scala-lang.org/overviews/core/futures.html
https://docs.scala-lang.org/overviews/core/futures.html


authored three books on autonomic computing, parallel and dis-

tributed computing, and edited Active Middleware service, a collec-

tion of papers from the second annual AMS workshop published by

Kluwer in 2000.

Sungyong Park is a professor in

the Department of Computer

Science and Engineering at

Sogang University, Seoul,

Korea. He received his B.S.

degree in computer science

from Sogang University, and

both the M.S. and Ph.D. degrees

in computer science from Syra-

cuse University. From 1987 to

1992, he worked for LG Elec-

tronics, Korea, as a research

engineer. From 1998 to 1999, he

was a research scientist at Tel-

cordia Technologies (formerly

Bellcore), where he developed network management software for

optical switches. His research interests include cloud computing and

systems, virtualization technologies, high performance I/O and stor-

age systems, and embedded system software.

Cluster Computing (2025) 28:420 Page 19 of 19 420

123


	Towards an asynchronous commit in micro-batch streaming systems with log-structured merge-tree based key-value store
	Abstract
	Introduction
	Background and related work
	LSM-KVS
	Micro-batch streaming system
	Persistent state management
	Related work

	Motivations
	Problem 1: synchronous commit
	Problem 2: overhead in remote checkpointing

	Design and implementation
	Overview of MiSA architecture
	Overlapping flow
	State preloading
	Keeping consistency
	Failure handling
	Implementation

	Evaluation
	Experimental setup
	Overall performance
	Tail latency and throughput
	Tradeoff between latency and throughput
	Effect of state preloading
	Overhead analysis

	Conclusion
	Author Contributions
	Data Availability
	References


