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ABSTRACT In streaming systems with a discrete CPU-GPU architecture, leveraging the strengths of both
processing units can significantly improve query performance. Existing studies assign entire queries to
either the CPU or GPU to reduce data transfer overhead and boost throughput. However, this coarse-grained
approach can limit performance for two main reasons. Firstly, PCle transfer overhead is minimal for small
data sizes, and the device preference of each operator within a query may change with variations in data size.
Secondly, it neglects performance fluctuations based on the placement location of consecutive operators
within the device. To address these issues, we propose dSTREAM, a distributed stream processing system
that dynamically maps queries at the operator level on discrete CPU-GPU architectures. dSSTREAM adapts
to runtime conditions by selecting the optimal device for each operator dynamically. Through dynamic
operator-level query mapping without prior knowledge, dSTREAM consistently achieves high performance.
Extensive evaluation has confirmed that dSSTREAM enhances average throughput by up to 45% and reduces
average latency by up to 42.5% across various types of stream SQL queries, regardless of traffic types.

INDEX TERMS Query planning, data stream processing, heterogeneous architectures.

I. INTRODUCTION

With the explosive growth of data, large-scale stream
processing applications such as traffic congestion monitoring
[1], real-time IoT data processing [2], real-time alarming
[3], and real-time advertising [4] have gained significant
attention. To enable scalable and efficient stream processing,
a variety of distributed stream processing systems (DSPS)
such as Spark Streaming [5], Storm [6], Flink [7], Heron
[8], and Samza [9] have emerged. These DSPS achieve high
performance by distributing data across shared clusters and
processing it in parallel.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hai Dong

In recent years, modern server hardware has evolved to
become heterogeneous, incorporating multi-core CPUs and
hardware accelerators such as GPUs. Furthermore, the latest
generation of the peripheral component interconnect express
(PClIe) interface such as PCle 5.0 [10] has become com-
monplace on modern motherboards. Additionally, low-cost
commodity GPU cards that provide computing performance
similar to server GPU cards are accessible to many industries.
Thanks to these features, discrete CPU-GPU architectures,
where two types of processors have separate memory
spaces, have been adopted as an attractive environment for
accelerating stream query processing in DSPS. Given that
query performance in DSPS heavily depends on the device
to which the query is mapped, inefficient query mapping
can degrade overall performance. Determining the most
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appropriate execution device for a query poses a critical
challenge [11], [12], [13], [14], [15], [16].

To tackle this challenge, a wide range of studies have
been proposed to identify the optimal computing device for
query execution. These studies can be broadly categorized
into two primary approaches. The first approach is coarse-
grained mapping [17], [18], [19], [20], which assigns entire
queries to either the CPU or GPU. This approach eliminates
data transition overhead (i.e., PCle transfer time) by mapping
queries to a single device. However, it overlooks the unique
device preference of each operator within a query, thus
limiting the potential performance gain from placing the
operator on the ideal device. The second approach is
fine-grained mapping [21], [22], which selectively assigns
each operator to an appropriate device based on a simple
cost model or pre-determined device preference. Among
them, FineStream [21] performs operator-level mapping on
integrated CPU-GPU architectures, where both the CPU
and GPU are integrated on the same chip. Leveraging the
fact that there is no data transition overhead via PCle
bus, FineStream independently places each operator on a
suitable device. However, this study is not directly applicable
to dedicated architectures, which inherently involve data
transition overhead. Crystal [22] is another fine-grained
approach based on the assumption that the device preference
of each operator does not change during runtime, which may
be unrealistic in practice.

Through an experimental study, we identified two main
factors that affect the device preference of each operator.

A. DYNAMIC DEVICE PREFERENCE OF OPERATOR BY
DATA SIZE

In streaming environments, data size can vary due to
fluctuating traffic. Consequently, the data size processed by
operators also fluctuates. For operators that only split datasets
and perform calculation without conditional branches, GPU
affinity increases as the data volume grows. However, as the
data size becomes extremely small, processing with CPUs
may be faster without copying the data to GPU memory
via PCle bus. Furthermore, we also observed that data
transition overhead in discrete CPU-GPU architectures is
not as severe as expected up to a certain data size and
has a negligible impact on the overall performance. This
suggests that the preferred device for each operator can shift
based on the dynamic data size at runtime. In other words,
there is a potential opportunity to map each operator to the
heterogeneous device that provides the best performance for
the specific data size encountered.

B. LOCATION OF CONSECUTIVE OPERATORS VARIES
PERFORMANCE

DSPS transform data to specific structures and store it in
memory (i.e., RDD in Spark [5], DataStream in Flink [7],
Parquet [23]) during query execution. This in-memory data
format allows subsequent operators to utilize data locality,
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thereby achieving better performance when mapped to the
same device. However, this data layout is only effective when
the operator is mapped to the same device as the previous
operator. For example, if an operator is executed on the
CPU and the subsequent operator is mapped to the GPU,
it is necessary to convert the data structure to a column-
friendly format [24]. This data transition degrades query
performance, resulting in inferior performance compared to
a case where successive operators are mapped to a single
device [25], [26].

Based on the above findings, this paper introduces an
online-based dynamic operator-level query mapping scheme
designed for discrete CPU-GPU architectures. This scheme
dynamically assigns the operators to the optimal device
based on a variety of conditions, thereby enhancing query
performance. Specifically, we present the following key
techniques. Firstly, we estimate the execution cost of an
operator by considering the dynamic data size and the
execution position of the preceding operators. Secondly,
we propose a lightweight device mapper to determine the
optimal query execution plan for mapping each operator to
an appropriate device. Thirdly, we implement a dynamic
operator-level mapping scheme in an online manner without
any prior knowledge to specify the device preference of an
operator.

We implemented dSTREAM with Spark Streaming [5].
To validate its effectiveness, we conducted comprehen-
sive experiments with real-world workloads under various
traffic scenarios. dSTREAM outperforms alternative meth-
ods, significantly increasing the average throughput by
up to 45% and reducing the average latency per query
by up to 42.5%.

The contributions of this paper are summarized as follows.

o dSTREAM identified that the input data size and the loca-
tion of the consecutive operators affected the dynamic
device preference of each operator (Section II-D).

o dSTREAM presented a dynamic operator-level query
mapping scheme for discrete CPU-GPU architectures
(Section III), adaptable to any DSPS at runtime,
with the goal of reducing latency and enhancing
throughput.

o dSTREAM performed operator-level query mapping in
an online manner without interrupting query processing
(Section III-B).

« We implemented dSTREAM (Section IV) on a real
system and evaluated its performance using real-world
workloads (Section V).

Il. BACKGROUND AND MOTIVATION

DSPS support SQL semantics, enabling users to exe-
cute sophisticated data transformations, aggregations, and
analytics. This section outlines the SQL semantics [27]
commonly employed across a range of DSPS. Furthermore,
we discuss the limitations of existing studies and report
several observations that drive the fundamental concepts
behind dSTREAM.
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A. DISTRIBUTED STREAMING PROCESSING SYSTEM

1) SQL SEMANTICS

Spark SQL [27] is a Spark module that allows users to
manipulate data by executing SQL queries. The query
execution plan in Spark SQL is generated based on user code.
Below is an example of a query to compute the frequency of
each word.

var fileInput = spark.readStream
.csv("file_path")
var wordCountQuery = filelnput
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

Code 1. Query example in Spark SQL (WordCount query).

In this example, a query is composed of three SQL APIs
(i.e., flatMap, map, and reduceByKey). Spark SQL analyzes
these APIs, matching them with suitable SQL operators such
as filter and aggregate. Each operator serves as a fundamental
unit for data manipulation. Consequently, users write various
queries composing multiple operators to obtain the desired
results.

2) DIRECTED ACYCLIC GRAPH FOR QUERY SCHEDULING

A Directed Acyclic Graph (DAG) delineates the sequence
of operations necessary for data processing by transforming
each query into a structured execution plan. Each query is
decomposed into multiple stages, where each stage consists
of a set of tasks that can be executed in parallel. Nodes
in the DAG represent a set of tasks, and edges establish
dependencies between stages. This structure enables Spark
to enhance query execution by minimizing data shuffling
and optimizing resource utilization. Additionally, the DAG
supports task lineage tracking, which is critical for fault
tolerance, allowing Spark to recompute only the tasks
affected by failures, rather than restarting the entire job.

3) SPARK EXECUTION MODEL ON HETEROGENEOUS
ARCHITECTURES

Spark Streaming [5] is a scalable and fault-tolerant stream
processing engine capable of processing real-time data
streams from various sources. Figure 1 illustrates the
interaction between the driver and secondary node in Spark
Streaming during the query execution process.

Upon query submission @, the driver node launches a
Spark driver, which subsequently launches executors on
secondary nodes. The Spark driver creates an execution plan
and coordinates with these executors to process the given
query. After initializing all necessary processes for query
execution, the streaming engine starts collecting datasets
from data sources. The engine buffers data over a specified
period to construct a micro-batch ®, which serves as a unit of
execution and represents a portion of the entire dataset.

Once the micro-batch construction is completed, the driver
analyzes the submitted query and generates a logical plan
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that defines the steps required to achieve the desired results,
without detailing how each operator in the query will be
executed. First, the driver parses the query to check for syntax
errors and creates an initial logical plan, which may reference
unvalidated columns and tables. Then, it verifies these
references, producing a resolved logical plan. Finally, the
driver optimizes the plan, such as by removing unnecessary
columns, to create the final logical plan.

After the logical plan is finalized, the driver creates a
physical plan ®, which outlines how the query will be
executed in the distributed computing environment. Based on
this physical plan, each operator is assigned to run on either
the CPU or the GPU, forming the final execution plan.

The current stream processing engine uses a coarse-grained
mapping approach where all operators in the DAG are
assigned to a single device @. Next, the scheduler divides the
selected execution plan into a series of stages to distribute
the datasets @. Each stage consists of multiple tasks that
execute identical computations, which is the smallest unit of
execution. These tasks are subsequently assigned to run on
either the CPU or the GPU on the executor to perform the
computations ®@. Upon completion of tasks within each stage,
the results are transmitted back to the driver. This process is
repeated until the application terminates.

B. DEVICE PREFERENCE OF OPERATOR

GPUs are commonly employed as co-processors alongside
CPUs in various practical applications, each offering distinct
advantages. CPUs optimize serial performance by utilizing
multiple high-complexity cores and extensive caches, with
the goal of maximizing implicit instruction-level parallelism
(ILP). On the other hand, GPUs focus on maximizing
data parallelism by executing massive numbers of threads
simultaneously, utilizing thousands of lightweight cores. Due
to these architectural features, each operator within a query
exhibits a preference for a specific processor [21], [28].

For example, the aggregate operator, which includes func-
tions such as sum, average, and count, can take advantage of
the massively parallel architecture of GPUs. This architecture
allows for the simultaneous execution of a large number
of simple operations across multiple processing units. As a
consequence, GPUs typically deliver superior performance
compared to CPUs, and this performance advantage tends to
scale with increasing data sizes. In contrast, the filter operator
makes decisions based on conditional statements that depend
on data dependencies and complex control flow. CPUs are
well-suited for handling conditional branches due to their
highly flexible execution pipelines and sophisticated branch
prediction mechanisms.

C. RELATED WORKS

To improve query performance on heterogeneous architec-
tures, several studies have proposed methods to determine the
most appropriate device for query execution [18], [19], [20],
[21], [22], [29], [30]. In this section, we categorize previous

8241



IEEE Access

G. Jung et al.: dStream: An Online-Based Dynamic Operator-Level Query Mapping Scheme

Query

£
&
o
ve)
O
S
[e]
o
o
i)
[0}
@
joo)
8
[e]
g
(\)
o
el
[0}
o
8
o
g
°
)
c
<
I}
e
c
Iy
(7]
x

SELECT ---
GF;C?%"‘B'Y Spark Driver Secondary
! CPU Operators : 5
! Scheduler
: 2 g - : Executor -
Construct Establish m |
. : a Batch Execution Plan dd 7 ~ | CPU Cores
o > | T "o Aoon |0 | Cwemey]
| B . —
Stream | o Mapping Decision I PCle
1| Logical Plan d |
: pro— d \ GPU Operaé;rs : Memory
L Project L .
: L Scan TABLE d O’ DDDD : GPU Cores
: d !
. g .

oo e e e o

FIGURE 1. Flow of Spark Streaming on discrete CPU-GPU architectures.

studies into two distinct methods: coarse-grained mapping
and fine-grained mapping.

1) COARSE-GRAINED MAPPING
A straightforward approach to mapping a query is to assign
all operators to a single device.

Spark-Rapids [17], an open-source library supported by
NVIDIA, enables Spark [5] to leverage GPUs for maximizing
query throughput. In Spark-Rapids, the entire query is
mapped to GPUs, and the selected device remains constant
throughout the query’s execution. GFlink [18] and G-Storm
[19] extend Flink [7] and Storm [6], respectively, to utilize
GPUs in query processing. These systems also map the
entire query to GPUs, thus avoiding data transition over-
head resulting from data movement between heterogeneous
devices. SABER [20] provides a hybrid stream processing
engine that executes SQL queries using all available CPU
and GPU cores. To achieve this, SABER views the query
as a series of data-parallel query tasks that can run on either
CPUs or GPUs. It schedules the query while monitoring the
throughput of each query task on a specific processor.

Overall, these aforementioned approaches overlook the
device preferences of individual operators, which enable
them to achieve superior efficiency on specific devices [28].

2) FINE-GRAINED MAPPING
Fine-grained mapping selectively assigns each operator to
heterogeneous devices based on its device preference.

FineStream [21] initially considers the static device
preference for each operator and performs operator-level
mapping at runtime on integrated CPU-GPU architectures.
This approach schedules each operator to heterogeneous
devices by considering the input data size according to
varying data ingestion rates. Since FineStream is designed
for integrated CPU-GPU architectures, it ignores the data
transition overhead between heterogeneous devices, which is
impractical for discrete CPU-GPU architectures.

Crystal [22] proposed an efficient operator-level mapping
for discrete CPU-GPU architectures, which utilizes the prede-
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fined device sensitivity of each operator. However, the query
plan in this approach is predetermined during compilation
stages and cannot effectively cope with dynamically changing
conditions such as user requirements and traffic fluctuations.

Recently, DYNO [30] introduced a dynamic operator-level
mapping algorithm that uses a tree-based machine learning
approach to assign queries to devices. However, the require-
ment for an additional GPU to train workloads makes a direct
comparison with dSTREAM challenging.

3) LIMITATIONS OF EXISTING STUDIES
Previous studies have inherent limitations that hinder optimal
performance.

One such limitation is the coarse-grained mapping, which
overlooks individual device preferences per operator [17],
[18], [19], [20]. It is widely acknowledged that each operator
in SQL queries exhibits distinct device preferences [21], [28].
Thus, exploiting only a single device during query processing
fails to optimize the performance further.

While the fine-grained mapping considers the device
preference of each operator, a specific study [21] focuses
on assigning each operator to heterogeneous devices, assum-
ing that transferring stream data from main memory to
GPU memory carries no additional cost. In discrete CPU-
GPU architectures, the state information generated by each
operator’s processing is transferred between heterogeneous
devices. Given that the size of state information varies
dynamically at runtime based on user needs and input data
size, the overhead of data transition needs to be carefully
considered.

Moreover, many studies employing static device prefer-
ences [17], [18], [19], [22] struggle to adapt to the changing
device preferences of operators during runtime. They often
establish a static table detailing the device preferences for
each operator through profiling or rely on GPU-specific
libraries that are pre-bound to GPUs. While these methods
can enhance query performance for traffic patterns similar to
those profiled, their capacity to guarantee such performance

VOLUME 13, 2025



G. Jung et al.: dStream: An Online-Based Dynamic Operator-Level Query Mapping Scheme

IEEE Access

TABLE 1. Summary of previous work on query mapping on heterogeneous architectures.

Previous work CPU-GPU Mapping Device Prior
Architecture  Granularity  Preference Knowledge
Spark-Rapids [17] Discrete Coarse-grained Static Yes
GFlink [18] Discrete Coarse-grained Static Yes
G-Storm [19] Discrete Coarse-grained Static Yes
SABER [20] Discrete Coarse-grained ~ Dynamic No
FineStream [21] Integrated Fine-grained Static No
Crystal [22] Discrete Fine-grained Static Yes
dStream(Ours) Discrete Fine-grained Dynamic No

under diverse conditions is limited. Table 1 summarizes the
differences between our study and existing studies.

D. MOTIVATIONS

1) LOW PCle OVERHEAD FOR SMALL DATA SIZES

In discrete CPU-GPU architectures, PCle transfer overhead
has been recognized as a performance bottleneck in query
processing. Before GPU processing takes place, stream data
needs to be transferred from host memory to GPU memory
via the PCle bus. Based on this, previous studies [17],
[18], [19], [20] allocated all operators to a single device to
eliminate data movement. However, our observation indicates
that the overhead is insignificant for small data sizes.

Figure 2 (a) shows the proportion of time needed for data
transfer via the PCle bus to the total execution time, which is a
leading factor of PCle transfer overhead. We used a synthetic
select-filter-expand query to investigate the overhead in query
processing, with detailed experimental settings outlined in
Section V-A. We further defined three operator mapping
cases: (1) mapping all operators to the GPU (Only GPU), (2)
mapping only the filter to the CPU (Filter on CPU), and (3)
mapping the filter and expand to the CPU and the select
to the GPU (Filter & Expand on CPU). In our experiment,
we generated traffic with a constant data size per second
to simulate a fixed-rate data inflow. To measure the PCle
transfer time during query processing, we utilized NVIDIA
Nsight Systems [31], which profiles various GPU metrics.

As shown in Figure 2 (a), the PCle transfer overhead ratio
increases with the data size. However, the PCle overhead
stays minimal (below 2.5%) when the data size is less
than 4 MB, regardless of the operator mapping scenario.
Even at a data size of 16 MB, the PCle overhead remains
low, indicating that the PCle overhead resulting from data
movement has a minimal impact on performance degradation.

Given that each operator in a query has distinct device
preferences as discussed in Section II-B and the PCle transfer
time between operators in discrete CPU-GPU architectures is
negligible, operator-level mapping offers new opportunities
for accelerating stream queries.

2) IMPACT OF DATA SIZE
The data stream frequently experiences irregular and unpre-
dictable fluctuations in input data size [32]. During promo-
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tional events or holiday sales, an e-commerce platform may
encounter spikes in data volume, leading to highly volatile
events and variations in data size. This indicates that each
operator processes different amounts of data. For example,
an operator that calculates averages can accelerate compu-
tation by distributing subsets of data across multiple GPU
cores. However, if the operator is instead mapped to the CPU
and the incoming data size is huge, utilizing the CPU may not
be efficient. Maintaining a fixed device preference for each
operator fails to guarantee optimal performance, especially as
data size fluctuates during runtime. Thus, it becomes crucial
to evaluate how dynamic data size influences the performance
of operators mapped to heterogeneous devices.

To explore the relationship between data size and the
performance of operators mapped to computing devices,
we used the identical query as described in Section II-D1.
Figure 2 (b) illustrates the changes in query processing time
with respect to data size and operator mapping scenarios.
The y-axis is the average processing time for the operator
mapping scenario, which has been normalized against the
Only GPU scenario. When the data size is small (i.e., less
than 8 MB), Filter & Expand on CPU exhibits the shortest
processing time. However, as the data size reaches § MB,
Filter on CPU surpasses the other cases. This suggests that
performance improves when both the CPU and GPU are
utilized rather than relying on a single device. Furthermore,
when the data size reaches 16 MB, performing all operators
on the GPU demonstrates the best performance. These results
indicate that the device preferences of each operator change
dynamically based on varying data sizes.

3) IMPACT OF LOCATION OF CONSECUTIVE OPERATORS
FineStream [21] proposed an operator-level query mapping
method for integrated CPU-GPU architectures. This study
assumed that there is no data transition overhead between
CPUs and GPUs. In contrast, in dedicated CPU-GPU
architectures that communicate data over a PCle bus, the data
transition overhead cannot be ignored.

To facilitate the execution of operators on GPUs, parallel
computing libraries such as CUDA [33] or OpenCL [34]
should be utilized. These libraries provide a comprehensive
set of built-in functions designed for GPU compatibility,
enabling data to be transformed into formats optimized for
GPU processing. However, when an operator is mapped to
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each target operator by the location of preceding operators.

a device different from its preceding operator, synchronous
data structure conversion is required. This can disrupt
seamless query execution and degrade overall performance.
Essentially, the query performance can vary based on the
devices to which the preceding and subsequent operators are
mapped.

To confirm the correlation between operator placement
and query performance, we conducted an experiment using
a synthetic query composed of filter, expand, and aggregate
operators. For the experiment, we also introduced two
terms: target operator and preceding operator. Here, the
target operator refers to an operator executed following its
immediately preceding operators. Figure 2 (c) presents the
throughput of each target operator (i.e., filter, expand, and
aggregate) when both the target operator and other preceding
operators are mapped to either CPUs or GPUs. In the figure,
itCPU-GPU indicates a scenario where the target operator
is mapped to the GPU while the preceding operators are
mapped to the CPU. Additionally, the throughput of each
target operator is normalized against the throughput in the
CPU-CPU case.

As shown in Figure 2(c), all operators have distinct
performance patterns. The throughput in the CPU-GPU case
with the expand operator exceeds that in the CPU-CPU
case by about 22 times. This is because the expand operator
duplicates rows and fills them with values without relying
on the results of other operations. This dependency-free
operation can be accelerated through the parallel execution
capabilities of thousands of GPU cores.

On the other hand, the aggregate operator exhibits a
different pattern. For instance, the GPU-CPU and GPU-GPU
cases with the aggregate operator outperform other cases.
This suggests that regardless of where the aggregate operator
is allocated, the optimal choice is to map the preceding
operators to the GPU. This finding highlights the sensitivity
of device preference to the location of preceding operators
and the target operator.

Ill. DESIGN OF DSTREAM
This section introduces dSTREAM, a dynamic operator-level
query mapping approach designed for discrete CPU-GPU
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TABLE 2. Notations used in dSTREAM.

Notation Description
Gy = (V,, E,) | A graph G, representing a physical plan consists of
a set V), of operators v and a set E,, of directed edges (u,v).
Gy = Vg, Eq) | A graph G4 comprises a set V; of operators v and a set £ of
directed edges (u,v).
i Sequence of operator.
j Sequence of batch in the index table according to batch size.
v.distance The accumulated cost from the source operator to the operator v.
v.T The predecessor of operator v maintains v.distance.
v.edges Directed edges with operators after operator v.
Oper(i, j) The i, operator executed in jy;, batch belonging to G.
Deu(i, j) The device that Oper (i, j) is performed on.
T(i,j) The final cost of Oper (i, j).
Tirans (i, 7) A estimated cost of data transition of Oper (i, j).
Tevec(is ) The j:, predicted execution cost by estimating the cost of processing
Oper(i,j — 1) and Oper(i, j).
0(i, 5) The latest execution time of Oper (4, j) in jy, batch.
Tinit Initialization costs associated with data transition.
Size(i, j) The data size of Oper (i, j).
BW PCle bandwidth between CPU and GPU.

architectures. We outline the architecture of dSTREAM and
describe two core modules in detail. The notations used to
explain our mechanism are summarized in Table 2.

A. OVERALL ARCHITECTURE

Figure 3 depicts the detailed system architecture and opera-
tional flow of dSTREAM. dSTREAM enhances Spark Streaming
with two key modules for operator-level query mapping: the
Monitor module and the Device Mapper module, illustrated
as two dotted rectangular boxes in the figure. The Monitor
module collects performance metrics of each operator from
the previous query executions and constructs the cost table
by estimating the mapping cost of each operator. The Device
Mapper module identifies an optimized execution plan with
the lowest mapping cost among the potential mapping cases
and triggers the scheduler to execute the query.

In dSTREAM, unbounded stream data is ingested in
real-time and continuously accumulated into a buffer. When
a query is submitted, dSTREAM constructs a batch unit of
execution called a micro-batch from the buffer.

VOLUME 13, 2025
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FIGURE 3. Overall architecture of dSTREAM.

Once the micro-batch is constructed, dSTREAM analyzes
the submitted query with user-defined operators and creates
a logical plan. This logical plan is then converted into a
physical plan, known as an execution plan DAG G, ©.
Next, the Device Mapper module extends the execution plan
DAG G, to include GPU-based operators, thereby creating
an extended graph G; ®. The module also updates the
cost of each edge between operators in G, by retrieving
the operator’s cost from the cost table managed by the
Monitor module ®. As a result, G4 represents all potential
operator mapping scenarios, with each set of operators
assigned to a specific device. Finally, the Device Mapper
module employs a DAG shortest path algorithm to identify
an optimized execution plan with the lowest cost among all
operator mapping scenarios @. When the optimal execution
plan is selected, dSTREAM delivers it to the scheduler for
parallel execution @. The Monitor module collects metrics
throughout the execution of a query. After the query finishes,
it leverages these metrics to estimate the cost for each
operator. These estimated costs are subsequently updated in
the cost table ®. The following subsection details the two
primary tables, the index table and the cost table, managed in
the Monitor module, and explains how these tables are used
to calculate the total operator mapping cost.

B. MONITOR MODULE

1) INDEX TABLE MANAGEMENT

The Monitor module maintains an index table to access the
cost table, with the index determined by the input batch size,
as shown in Figure 3. Since all metric values maintained in
the cost table depend on batch sizes, keeping information
for each batch size leads to high memory consumption.
Additionally, searching the cost table for each distinct batch
size can increase the processing time. To address these issues,
the Monitor module uses a separate cost table for each
range of batch sizes, enabling the Device Mapper module to
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retrieve the operator’s cost that previously achieved the best
performance for similar batch sizes.

For example, if the batch size is smaller than a configurable
threshold value, such as 1000 KB, the index is managed in
units of 100 KB. For batch sizes exceeding this threshold, the
index is managed in units of 1000 KB. Consequently, both
the current batch size of 185 KB and the previous batch size
of 129 KB in Figure 3 are handled under index 1 and utilize
the same cost table. Since the method of dividing batch sizes
can impact overall performance, we tuned the threshold value
to achieve optimal results prior to experimentation.

2) COST TABLE MANAGEMENT

The cost table in the Monitor module consists of eight entries
to estimate the operator mapping cost. The first entry is the
Oper(i, j), which corresponds to the operator type in the
execution plan DAG, where i denotes the execution order
of each operator within the DAG. Since the DAG contains
multiple operators, and may include multiple instances of
the same operator type, it is crucial to collect metrics
separately for each instance of the same operator, considering
their unique execution orders during query processing. For
instance, a query may include multiple instances of the filter
operator to extract data based on various conditions such as
< or #. Identical instances of operators can exhibit different
execution times and handle varying data sizes depending on
their position within the DAG. The j indicates the execution
order of batches within the same index value. If the current
batch number within any index is j, the batch number of
a similar size processed previously is j — 1. For example,
in Figure 3, if the batch number for the size of 185 KB is
J» the batch number for the size of 129 KB isj — 1.

The entries Dev(i, j — 1) and Dev(i, j) respectively indicate
the devices on which the iy, operator was executed during the
previous and current batch executions. If the iy, operator is
executed on a GPU in the current batch and was executed on
a CPU in the previous batch, then Dev(i, j) is set to GPU and
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FIGURE 4. Example of cost table management and cost estimation.

Dev(i, j— 1) is set to CPU, updating only the relevant metrics
associated with this configuration.

The entry 6(i,j) denotes the actual execution time of
the iy operator in the jy batch. In DSPS, operators are
generally processed using multiple partitions for map-reduce
programming [35], which allows for parallel processing of
each partition. As a result, the execution time for each
partition is measured, and the average of these values is stored
in the cost table.

The entry Size(i, j) represents the amount of data processed
by the iy operator in the jy batch. This entry is used to
estimate the cost of transferring data between CPUs and
GPUs via the PCle bus. As operators process a batch,
they generate different intermediate states, resulting in
fluctuations in the amount of data handled by each operator.
It is assumed that the dataset processed by the current
operator is identical to that of the same operator in the
previous execution, provided the batch sizes are similar.

Finally, the entries Texec(i,j — 1) and Teyec (i, j) correspond
to the estimated execution times of the iy operator for the
previous and current batch executions, respectively. After
updating all metrics, the final estimated cost T'(i,j) is
calculated using the formulas described in Section II1-B3 and
then updated in the cost table.

3) COST ESTIMATION

Based on the entries in the cost table, dSTREAM estimates
the total operator mapping cost to determine the optimal
placement for each operator. The cost of executing iy
operator 7 (i, j) ecution time Teye.(i, j) and data transition time
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Ttrans(i, j) as shown in Equation 1.
T(i,]') = Texec(i»j) + Ttranx(iaj) (1)

To calculate the estimated execution time Teyec(i, ),
we used the exponential moving average (EMA) [36], which
computes a weighted average of historical trend values and
recent observations over time. In contrast to a simple moving
average (SMA), which assigns equal weight to all data within
the window, EMA uses an exponentially decreasing weight
for older values. By weighting recent data more heavily,
EMA provides a responsive measure of trends, making it
ideal for applications where rapid response to recent changes
is essential. That is, Teyec(i, ) is calculated as the sum of
Texec(i, j — 1) and 0(i, j) as shown in Equation 2.

Texec(ivj) = ,3 * Texec(i:j - 1) + (1 - ﬁ) * 9(19]) (2)

The estimated execution time Texec(i,j) depends on
whether it focuses on recent or historical trends. The
hyperparameter 8 represents the weight assigned to current
observations relative to historical trends. We set 8 to 0.5,
as this value demonstrated the most stable performance across
multiple experiments. A detailed explanation for choosing a
B of 0.5 is provided in Section V-E.

Data transition occurs when the previous operator and
the current operator run on different devices. Therefore,
Ttrans(i, j) represents the time required to transfer data
over the PCle bus between these heterogeneous devices.
We calculated the data transition time Ty4,4(i, j) as the sum of
an initialization time 7Tj;,;; and the data transfer time as shown
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in Equation 3, where BW is the PCle bandwidth between the
CPU and the GPU.

Ttrans(i’ ]) =
Size(i, j)

Tinic + W if Dev(i — 1,)) # Dev(i, )),

0, if Dev(i — 1, j) = Dev(i, ),

3

Figure 4 illustrates how the Monitor module updates its
cost table when the current operator Join is the 5, operator
in the execution plan DAG. Assuming the size of the j,
batch is 185 KB and the size of the j — 1, batch is 129 KB,
both batches use the same index (i.e., index 1) and share the
same cost table. Firstly, the Device Mapper module retrieves
all metrics from the cost table that were updated during
the processing of the j — 1, batch and updates the cost of
directed edges in the extended graph G; @. Once all costs
have been updated, the Device Mapper module determines
an optimized execution plan by computing the shortest path
in the DAG. In this scenario, the mapping case where the
4, operator is mapped to the GPU and the 5, operator
is mapped to the CPU represents the execution plan with
the minimum cost (i.e., 15.1). Secondly, the Device Mapper
module executes the query based on the optimized execution
plan and updates the corresponding entries . For example,
0(5,j) is updated from 15 to 20, and Size(5, j) is also updated
from 250 to 330. Next, the cost of executing the 5,, operator
T(5,)) is calculated using Equation 1 @. In this case, the
estimated execution time Toyec(5, j) becomes 17.15 because
the previously estimated execution time Teyec(5,j — 1) was
14.3 in the cost table, and the actual execution time 6(5, j) is
20 (assuming B is 0.5). The data transition time Tr4n5(5, j) 1S
calculated as 0.8 using the amount of data processed by the
operator Size(5, j), which is 330. Therefore, T'(5, j) becomes
17.95 by adding 17.15 and 0.8. Once all calculations are
completed, Texec(5,j) and T'(5, j) are updated in the cost table
®. The final cost, T(5,j), is used by the Device Mapper
module to calculate the optimized execution plan for the
upcoming batch j + 1. This process enables the Monitor
module to estimate the cost of each operator with minimal
overhead, even without prior knowledge. The additional
overhead of our modules are discussed in Section V-F.

C. DEVICE MAPPER MODULE
1) EXTENSION OF EXECUTION PLAN DAG
A primary function of the Device Mapper module is to
extend an execution plan DAG G, into an extended graph G,
incorporating both CPU and GPU-based operators.

Assume the execution plan DAG G,=(V),, E,,) consists of
a set of vertices V), and a set of directed edges E,, where
each vertex in V), denotes an operator and each edge in E),
indicates the antecedent relationship between any operators
u and v in V). Using this graph, the Device Mapper module
constructs a new graph Gy=(Vy4, E;) by extending V) to
V4 and assigning a corresponding cost to each extended
edge in Ej;. For example, let S denote the subset of V), that
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Algorithm 1 DAG shortest path algorithm

Input: sortedList - Linked list preserving topological
order of graph G4
fetchCost(u, v) - A function that fetches the
cost of v’s edges from the cost table

Output: Q - List for optimized plan

1 Create startVertex where startVertex.distance = 0 and
startVertex.m = NIL

// Initialize all vertices in the sortedList
foreach vertex v € sortedList do
v.distance < o0
v.r < NIL
if v.edges is empty then
add a directed edge (startVertex, v) to
L startVertex.edges

N S R W

8 Insert startVertex onto the front of the sortedList

9 // Shortest path estimation
10 foreach vertex u € sortedList do

1 foreach vertex v € u.edges do

12 cost < fetchCost(u, v)

13 if v.distance > u.distance + cost then
14 v.distance = u.distance + cost

15 L VT < U

16 // Find a shortest path
17 currentVertex < last elements of the sortedList
18 while currentVertex is not null do
19 insert currentVertex.mw to Q
L currentVertex <— currentVertex.mw

represents operators capable of running only on CPUs. Each
vertex v € § is extended to v, € Vy, while each vertex
v € V, — § is extended as either vep, or vy, € Vy. Here,
Vepu Tepresents a CPU-based operator, and vy, represents a
GPU-based operator. The set of edges E), is also extended to
E,4 based on the outcomes derived from the updated vertex
set V.

Note that the new graph G, includes a single source
vertex (a vertex with zero in-degree) and a single sink
vertex (a vertex with zero out-degree). The source vertex
is intentionally added as a dummy operator to optimize
the search operation, while the sink vertex represents a
materialize operator that exclusively runs on the CPU. As a
result, the maximum number of vertices and edges in Gy
is 2 x |Vp| and 4 x (|V,|—1), respectively. It is also worth
noting that G; maintains a DAG structure, consistent with
the original graph G, being structured as a DAG.

2) FINDING AN OPTIMIZED PLAN
In the Device Mapper module, quickly finding the best
execution plan among several candidates is crucial. This is
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FIGURE 5. The process of device mapper module.

because the process of creating the best execution plan occurs
synchronously within the critical path. As the time to find
the optimal execution plan increases, processing latency also
rises. Therefore, it is imperative to calculate the cost of the
execution plan as early as possible. Additionally, depending
on the query type, operator mapping can be complex. This
increases time complexity and ultimately prolongs the search
for the best execution plan.

The graph G4 can have up to four edges per operator,
resulting in 4/Y?! possible combinations. For example,
in Figure 4, the 4y, operator of G, is extended to both CPU
and GPU-based operators in G4, each connected to two 5y,
operators via gray dotted lines. Consequently, the two 4y,
operators of G, have four edges in total.

To optimize the search for the optimal path, the Device
Mapper module employs a DAG shortest path algorithm
with topological sorting [37]. This approach is chosen
because the time complexity of the shortest path algorithm
for a DAG G=(V, E) with a single source is @(V+E).
As part of this strategy, a dummy vertex, referred to
as startVertex, is inserted before the source vertices. For
example, in scenarios involving the join operator, which takes
two datasets as input and may have multiple source vertices,
the Device Mapper module includes a dummy vertex labeled
startVertex. This dummy vertex is connected to the source
vertices to facilitate efficient path-finding. As a result, each
source vertex uniformly recognizes startVertex as its only
antecedent vertex. This enables the Device Mapper module
to leverage the single-source DAG shortest path algorithm.

The Device Mapper module also utilizes the relaxation
technique [37], which is employed for predicting the shortest
path in a DAG. This technique involves updating the shortest
distance to a vertex when a shorter path is discovered through
the edge currently under consideration. To implement this
technique, each vertex v € V; maintains attributes v.distance,
v.r, and v.edges. Here, v.distance represents an upper bound
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on the shortest path from the source s to v, while v.7r denotes
the predecessor that maintains the shortest path to v. The set
of all possible edges from vertex v to its direct descendants
w1, W2, ..., wy is denoted as v.edges. Initially, the cost of the
operators is set to zero to establish metrics for different paths.
Details of the algorithm can be found in Algorithm 1.

Figure 5 illustrates how Device Mapper module determines
an optimized execution plan. When the micro-batch is con-
structed, dSTREAM generates an execution plan DAG denoted
as G, and extends it to Gy as detailed in Section I1I-C1 @. In
G, each operator, except for the materialize operator, can be
assigned to either a CPU or GPU device. For instance, the first
operator in Gy, is assigned to vé;; or v;;',’u in G4. Additionally,
a dummy vertex startVertex is added as a predecessor to
both v} and v, . The distance for all operators, except for
startVertex, is 1n1t1ahzed to oo and their predecessor () is set
toNIL! ®@.

After the extended graph is created, the Device Mapper
module employs the DAG relaxation technique to identify
the minimum cost path. When v;,;’u connects to vﬁ% , the
relaxation is performed @. Since the distance from v;,;,’u to
vg‘j is 6, which is less than the initial distance with oo,
the distance of Vﬁ,";if is updated to 6, and its predecessor
;f,’u In the subsequent step, the Device Mapper
module applies relaxation from VLI,[S)L to vﬁ% @. Here,
the sum of the distance from véf,;
?;')Z, which is 4, is less than 6. Consequently, both the
distance to vgz‘ui and its predecessor 7 are updated to 4 and

3;,;, respectively. This process iterates through all vertices,
continually updating distances and predecessors to determine
the shortest path. Upon finishing the DAG shortest path

algorithm, the optimized execution plan is established by

is set to v

and the cost to reach
v

INIL represents a null or empty value.
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tracing back from the sink vertex’s 7 @. Finally, dSSTREAM
executes the query based on the optimized plan ®.

With these features, the Device Mapper module finds the
optimized execution plan through the DAG shortest path
algorithm within a reasonable time by leveraging the fact that
the extended graph Gy is a DAG.

IV. IMPLEMENTATION

We implemented dSTREAM on Spark Streaming [5] v3.2.3,
which supports SQL-based optimized query processing.
To enable the dynamic operator-level query mapping on
discrete CPU-GPU architectures, we modified Spark SQL
[27]. This module is responsible for establishing the query
execution plan and mapping each operator to the appropriate
computing device.

Additionally, we integrated the Spark-Rapids library [17]
to implement the Device Mapper module. This library pro-
vides GPU-compatible functions for each operator. To collect
performance metrics from each operator at runtime, we uti-
lized Spark accumulator. The accumulator is a global mutable
variable that can be used to aggregate data across multiple
tasks in parallel. This shared variable supports union and
commutative functions, ensuring accurate metric collection,
even when operations are partitioned in parallel [38].

We implemented the overall system components of
dSTREAM using the Scala language. The source code is
available at https://github.com/siblue202/dStream.

dSTREAM performs operator-level query mapping by lever-
aging the fact that all query operators form a DAG. Although
it was implemented in Spark Streaming, we anticipate that the
main concepts proposed by dSTREAM can be easily applied to
various DSPS that support SQL and operator-based queries.

V. EVALUATION

A. EXPERIMENTAL METHODOLOGY AND SETUP

This section compares the overall performance of dSTREAM
with existing coarse-grained and fine-grained mapping tech-
niques on discrete CPU-GPU architectures.

1) EXPERIMENTAL CONFIGURATIONS

We conducted a series of experiments using a Spark cluster
consisting of one driver node and two secondary nodes. This
configuration was chosen as it is commonly used in existing
studies and sufficient to demonstrate the feasibility and
effectiveness of our core design. Each secondary node ran a
Spark executor with 8 CPU cores and 48GB of memory, using
8 data partitions to enable parallel processing. Both dSSTREAM
and the comparison targets were executed on the Oracle
JVM 8 with the G1 garbage collector. Detailed hardware
configurations can be found in Table 3.

2) WORKLOADS AND STREAM TRAFFIC TYPES

The workloads and query details used for our experiments are
summarized in Table 4. We utilized two real-world streaming
benchmarks: the Linear Road Benchmark (LRB) [39] and the
Cluster Monitoring Benchmark (CMB) [40].
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TABLE 3. Hardware configurations.

CPU AMD Ryzen 9 3900X 12-core 3.80 GHz
GPU NVIDIA GeForce RTX 3070
Memory || DDR4, 64 GB
Storage || Samsung SSD 970 EVO NVMe SSD
Ethernet || 1 Gbps

For example, LR1 query includes a join operator, which is
compute-intensive. To execute a join, the streaming engine
must locate and co-locate matching keys from different
datasets, leading to substantial data movement across sec-
ondary nodes. In contrast, CM queries involve aggregate
operators, such as counting rows and computing averages.
These operators typically work on a single dataset, allowing
them to perform calculations locally on each partition and
then combine the results with minimal data movement.

We set watermark [41] on all queries to prevent the
state generated during stream processing from growing
indefinitely. This means that the streaming engine waits for
up to the watermark duration for late data to arrive for a given
window before finalizing the results. In our experiments,
the watermark duration was set to 60 seconds. Additionally,
we generated both random and constant traffic to observe
performance patterns under different traffic scenarios. The
detailed description of the traffic scenarios is as follows.

« Random traffic describes a scenario where datasets of

varying sizes arrive at regular intervals every second.
The sizes follow a normal distribution, so the average
size converges to the specified traffic rate. We used a
normalized random traffic rate of 256 KB for the LR1
and CM1 workloads and 4 MB for the LR2 and CM2
workloads.

o Constant traffic describes a scenario where a fixed
dataset size arrives at regular intervals every second. For
the LR1 and CM1 workloads, the dataset size gener-
ated every second ranges from approximately 25 KB
to 1024 KB. For the LR2 and CM2 workloads, the
dataset size ranges from approximately 1 MB to 16 MB.

In both traffic scenarios, all queries receive varying
amounts of data. To simulate a practical streaming system,
we utilized Kafka [42] as the message broker. The Kafka
producer sends chunks of the dataset to the message broker,
while the Kafka consumer stores the dataset in the local
file system of the driver node. The streaming engine on the
secondary node then fetches the datasets from the message
broker and begins processing the queries. Each experiment
was repeated ten times, with each run lasting thirty minutes.
The final results were determined by averaging the outcomes
of these ten repetitions.

3) COMPARISON TARGETS
To evaluate the effectiveness of dSSTREAM’s design approach,
we selected two coarse-grained mapping approaches that map
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TABLE 4. Query details of real-world streaming workloads used in our experiments.

Benchmark Notation

Query Detail

SELECT L.timestamp, L.vehicle, L.speed, L.highway, L.lane, L.direction, L.segment

I;{Ez‘zr LRI EROM SegSpeedSir [range 30 (slide 5)] as A, SegSpeedStr as L WHERE (A.vehicle == L.vehicle)
[39] LR2 SELECT timestamp, highway, direction, segment, COUNT(vehicle) as num Vehicle
FROM SegSpeedStr [range 30 slide 15] GROUPBY (highway, direction, segment)
Cluster M1 SELECT timestamp, category, SUM(cpu) as totalCpu
.. FROM TaskEvents [range 30 (slide 30)] GROUPBY category ORDERBY SUM(cpu)
Monitoring -
[40] CM2 SELECT jobld, AVG(cpu) as avgCpu .
FROM TaskEvents [range 30 slide 5] WHERE (eventType == 1) GROUPBY jobld
o B  dStream [0 Only CPU [J Only GPU B  Static Preference
g 2 2 2 2
]
kS 1.5
g0 1
< 0.5
g 0 0 0 0
Z 128KB 256KB 512KB 2MB 4MB SMB 128KB 256KB 512KB 2MB 4MB SMB

Traffic (Bytes/sec)
(b) LR2

Traffic (Bytes/sec)
(a) LR1

Traffic (Bytes/sec)
(d) CM2

Traffic (Bytes/sec)
(c) CM1

FIGURE 6. Normalized average latency of four queries under a random traffic scenario. A random record is generated every second so that its average
converges to each traffic rate. The results are normalized to the average latency of dSTREAM. The targets with the lowest latency are marked with an
asterisk (*). Targets with latency within 5% of the best-performing target are also marked with an asterisk.

E B dStream [] Only CPU [ Only GPU
+ 2
o0
: |
2 1.5
=
3 ! 7
5D
z 0.5
E 0 0
£ 128KB 256KB 512KB 2MB 4MB SMB
Traffic (Bytes/sec) Traffic (Bytes/sec)
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Yl Static Preference

0 0
128KB 256KB 512KB 2MB 4MB SMB
Traffic (Bytes/sec) Traffic (Bytes/sec)
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FIGURE 7. Normalized average throughput of four queries under a random traffic scenario. A random record is generated every second so that its
average converges to each traffic rate. The results are normalized to the average throughput of dSTREAM. The targets with the highest throughput are
marked with an asterisk (*). Targets with latency within 5% of the best-performing target are also marked with an asterisk.

an entire query to either the CPU or the GPU, along with one
fine-grained mapping approach that assigns each operator
to a suitable heterogeneous device based on static device
preferences.

We determined the static device preference for each
operator by profiling each query based on traffic rate and
collecting the device preferences that exhibited optimal per-
formance for each operator. Leveraging this prior knowledge
of static device preferences per operator, the fine-grained
mapping approach performs the operator-level mapping for
comparison. The three approaches used for the comparison
are outlined below.

e Only CPU represents a coarse-grained mapping
approach where entire queries are assigned to the CPU.

o Only GPU denotes a coarse-grained mapping approach
where entire queries are assigned to the GPU.
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« Static Preference represents a fine-grained mapping
approach that assigns each operator to an appropriate
device based on static device preference. This approach
is used in FineStream [21] and Crystal [22].

B. AVERAGE LATENCY AND THROUGHPUT

In this section, we analyze the average latency and throughput
of dSTREAM compared to other approaches under different
traffic scenarios.

1) AVERAGE LATENCY UNDER A RANDOM TRAFFIC
SCENARIO

Figure 6 shows the average latency according to traffic rate
under a random traffic scenario. The x-axis represents the
traffic rate in bytes per second, and the y-axis represents the
normalized average latency based on dSTREAM. Latency is
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FIGURE 8. Normalized average latency of four queries under a constant traffic scenario. The results are normalized to the average latency of dSTREAM.
The targets with the lowest latency are marked with an asterisk (*). Targets with latency within 5% of the best-performing target are also marked with an
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FIGURE 9. Normalized average throughput of four queries under a constant traffic scenario. The results are normalized to the average throughput of
dSTREAM. The targets with the highest throughput are marked with an asterisk (*). Targets with throughput within 5% of the best-performing target

are also marked with an asterisk.

defined as the total duration from the creation of a batch to
the completion of the query processing. Lower values indicate
better performance.

Overall, dSTREAM outperforms the comparison targets
regardless of the traffic rate and query type. In Figure 6
(a), dSTREAM shows a decrease in average latency of
approximately 13.8%, 18.7%, and 16% compared to Only
CPU, Only GPU, and Static Preference, respectively, when
the traffic rate is 128 KB. As the traffic increases to 512 KB,
dSTREAM achieves a significant reduction in average latency,
with a decrease of up to 30.6%. Despite this, the average
latency of Only GPU is not significantly different from that
of dSTREAM. This is because the LR1 query includes a
join operator, which is computationally intensive and time-
consuming. Only GPU speeds up the computation of the
join operator by distributing large amounts of data across
many GPU cores. Similarly, dSSTREAM efficiently maps the
join operator to GPUs as much as possible through its Device
Mapper module.

In contrast, dSSTREAM shows comparable performance with
other comparison targets across all traffic rates, as shown in
Figure 6 (c). Note that the CM1 query uses the sort operator
to organize the results of aggregated data in sorted order
and stores them as an intermediate state, which consumes
a significant portion of the total duration. The streaming
engine accumulates the state at runtime until the watermark
duration expires. As the state size increases, so does the
time it takes to manage the state. The sort operator in Spark
operates internally as the Timsort algorithm [43], which uses
insertion sort involving frequent, small-scale swaps that result
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in scattered memory access patterns. Due to this feature,
Spark typically forces the sort operator to run only on CPUs.
This indicates that the performance gains from dynamic
operator-level query mapping are diluted by the necessity of
running the sort operator exclusively on CPUs.

2) AVERAGE THROUGHPUT UNDER A RANDOM TRAFFIC
SCENARIO

Figure 7 shows the average throughput across different traffic
rates in a random traffic scenario. Once again, the results
indicate that dSSTREAM achieves higher throughput compared
to the other comparison targets. In Figure 7 (a), dSSTREAM
increases the throughput by up to about 18% (128 KB), 25%
(256 KB), and 45% (512 KB) compared to Only CPU, Only
GPU, and Static Preference, respectively.

Interestingly, dSTREAM exhibits different performance
characteristics based on the query type. While Figure 7
(c) shows that dSTREAM’s throughput improvements are not
significantly superior to the comparison targets, Figure 7
(d) highlights a notable increase of up to 70% compared to
Only CPU. These differences stem largely from the inherent
characteristics of the queries. For instance, the CM1 query
includes a sum operator that aggregates values by key,
updating a single variable with each new value insertion.
Because the sum operator is not computationally intensive,
the benefits of dynamic operator-level mapping are not
evident, regardless of the traffic rate. In contrast, the CM2
query involves an average operator, which performs more
complex computations. This operator initially stores values
for each key in an array list, computes the total sum, and
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FIGURE 10. The cumulative distribution function (CDF) of tail latency per query under a random traffic scenario. An inset figure provides a detailed view

of the 954, to 99, percentile latency.

then calculates the average. As traffic rates fluctuate, causing
a significant increase in the number of values stored in the
array list, the computational workload grows substantially.
Consequently, dSTREAM significantly enhances performance
by efficiently mapping compute-intensive operators to the
most suitable device, thereby accelerating their execution.

3) AVERAGE LATENCY UNDER A CONSTANT TRAFFIC
SCENARIO

To evaluate dSTREAM’s effectiveness under various traffic
scenarios, we conducted experiments using the same work-
loads under a constant traffic scenario.

Remarkably, dSTREAM consistently demonstrates low
latency across a wide range of traffic scenarios for all queries.
However, it does not consistently achieve the lowest latency
in all cases. In Figure 8 (a), Only CPU shows the lowest
latency when the traffic rate is 64 KB. This suggests that
for small data sizes, it is efficient to run operators solely on
the CPU, avoiding the overhead of data transfer associated
with offloading operators to the GPU. However, as the
traffic rate increases, latency sharply rises. This is because
coarse-grained mapping assigns the operator to a specific
device without considering the varying sizes of incoming
data.

In contrast, dSTREAM achieves latency reductions of
approximately 36.7% and 42.5% for data sizes of 256 KB
and 1 MB, respectively. Our Device Mapper module consults
the cost table to determine the cost associated with each
operator that has previously achieved optimal performance
for similar batch sizes. This enables the establishment of an
optimal query execution plan at runtime, effectively reducing
latency even amid traffic fluctuations.

In addition to variations in data size, the placement of
consecutive operators within the device also plays a crucial
role in performance optimization. In Figure 8 (c), dISTREAM
and the two coarse-grained mapping approaches exhibit
similar latency at all traffic rates, while Static Preference
shows higher latency at 256 KB and 1 MB. As noted earlier,
the CM1 query is not compute-intensive. For queries with low
computational demands like CM1, assigning the entire query
exclusively to a single device can enhance performance.
Although dSTREAM employs operator-level query mapping,
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it effectively considers data transition overhead and strate-
gically devises a query execution plan to minimize these
potential issues. By dynamically adapting to fluctuations
in data size and transition overhead, dSTREAM consistently
delivers robust performance across diverse scenarios.

4) AVERAGE THROUGHPUT UNDER A CONSTANT TRAFFIC
SCENARIO

As shown in Figure 9 (a)-(d), dSTREAM also demonstrates
superior throughput compared to the comparison targets.
For example, in Figure 9 (a), dSTREAM achieved up a 38%
increase in throughput compared to Only CPU, Only GPU,
and Static Preference at 256 KB. While some comparison
targets occasionally exhibit slightly higher throughput, the
maximum difference is 7% or less, observed particularly with
Only CPU (LR1 workload at 64 KB). Since the incoming
data size remains constant rather than random, other methods
also handle the workload reliably. Nonetheless, the marginal
difference emphasizes that dSTREAM consistently delivers
robust performance.

5) SUMMARY

dSTREAM consistently outperforms the comparison targets
in terms of average latency and throughput across various
traffic rates and query types in both traffic scenarios.
This superior performance is attributed to the effectiveness
of our design approach. Unlike other comparison targets,
dSTREAM employs dynamic operator-level query mapping,
which dynamically assigns each operator to the proper
device based on runtime conditions. Furthermore, dSTREAM
optimizes device assignments by considering varying input
data sizes and the placement of consecutive operators.
This capability allows dSTREAM to excel in enhancing
performance, especially for scenarios with fluctuating traffic
conditions and compute-intensive query types.

C. TAIL LATENCY

In latency-sensitive applications, prolonged response times
can significantly deteriorate user experiences [44]. Therefore,
minimizing tail latency is a critical objective in DSPS.
DSPS typically retrieve data from sources and process it.
When bursts of traffic occur due to fluctuations, query
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processing times increase. Meanwhile, data continues to
accumulate in the data source until the previous query
processing completes. This accumulation affects subsequent
query processing times, resulting in high tail latency [45].

1) TAIL LATENCY UNDER A RANDOM TRAFFIC SCENARIO
Figure 10 illustrates a cumulative distribution function
(CDF) of the tail latency per query under a random traffic
scenario. Typically, the 95,, and 99;, percentiles are used
to measure tail latency, representing the longer response
times experienced by a small fraction of requests [46], [47].
To enhance clarity, we include a nested figure that highlights
the tail latency from the 95, to the 99, percentiles.

As shown in Figure 10, dSSTREAM reduced the 95;,/99;, per-
centile latency for most queries compared to the other targets.
The LR1 query, in particular, showed the most remarkable
improvement. In Figure 10 (a), the 95, percentile tail latency
of dSTREAM is reduced by 36% and 28% compared to Only
CPU and Only GPU, respectively. Additionally, dSTREAM
decreased tail latency by 27% compared to Static Preference.
The comparison targets, which fail to account for dynamic
data sizes at runtime, are unable to effectively mitigate the
surge in tail latency due to traffic fluctuations.

In contrast, for the CM1 query, dSTREAM shows no
significant difference in the 95;/99;, percentile latency
compared to the other targets. This is because the time-
consuming sort operator is executed on the CPU, limiting
the effectiveness of dynamic operator-level query mapping
in reducing tail latency.

2) SUMMARY

In addition to improving average latency and throughput,
dSTREAM effectively reduces tail latency compared to the
other targets. dSSTREAM maintains a cost table that estimates
the cost of mapping operators to either CPUs or GPUs at
runtime. Using this cost table, dISTREAM determines the query
execution plan with the least cost path among all operators,
thereby minimizing tail latency as much as possible.

D. DYNAMICS OF OPERATOR MAPPING

Given that query performance significantly depends on the
optimal mapping of each operator to a specific device, it is
crucial to analyze how effectively operators are assigned
to the most appropriate devices at runtime. This section
evaluates the effectiveness of dynamic operator-level query
mapping proposed in dSTREAM. We used the LR2 query and
measured the operator-device mapping ratio of all methods
according to traffic rate under a constant traffic scenario.

1) OPERATOR-DEVICE MAPPING RATIO

Figure 11 illustrates the operator-device mapping ratio based
on the traffic rate. The x-axis represents the traffic rate in
bytes per second, while the y-axis shows the mapping ratio
between the heterogeneous devices. A mapping ratio closer to
100% for both computing devices indicates that a substantial
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number of operators are mapped to the respective device.
However, the mapping ratio of Only GPU does not reach
100% because, as detailed in Section III-C, a materialize
operator is exclusively executed on the CPU. Note that in
Figure 8 (b), Only CPU and Only GPU exhibit the lowest
latency at traffic rates of 1 MB and 16 MB, respectively.
These results indicate that mapping operators to the CPU
at 1 MB and to the GPU at 16 MB are optimal choices.
Given that dSTREAM demonstrates similar performance to
Only CPU at 1 MB and Only GPU at 16 MB, it is interesting
to explore how dSTREAM dynamically assigns operators.

FH dStream ] Only GPU
(CPU) [ Only CPU 4 Static Preference
100
X T5¢ — _—
e L. g
0
2 25t 2 B | U 7,
a,
g 2 H
s 75 L L L
100
(GPU) 1MB 4MB 16MB
Traffic (Bytes/sec)

FIGURE 11. Mapping ratio between CPU and GPU for the LR2 query under
a constant traffic scenario. The y-axis represents the mapping ratio, which
indicates the proportion of operators in the query assigned to each
device.

As shown in Figure 11, dSTREAM predominantly assigns
operators to the CPU at 1 MB and shifts to the GPU at 16 MB,
achieving performance similar to Only CPU and Only GPU,
respectively. SSTREAM demonstrates a gradual increase in the
mapping ratio to the GPU, reaching 22%, 36%, and 68%,
respectively, as the traffic rate escalates from 1 MB to 16 MB.
This explains dSTREAM’s capability to adapt to the dynamic
device preferences of each operator in response to increasing
data sizes. It contrasts with Static Preference, which does not
sufficiently account for these variations in device preferences
across different data sizes.

2) SUMMARY

Dynamic operator-level query mapping in dSTREAM effec-
tively adapts to the varying device preferences of each
operator in response to runtime changes in data size. This
capability enhances overall performance by dynamically
optimizing operator assignments, thereby mitigating the
impact of traffic fluctuations.

E. SENSITIVITY ANALYSIS OF COST ESTIMATION

The estimated execution time of operators is highly sensitive
to the value of the hyperparameter B, as discussed in
Section III-B3. This section explains why we set § to 0.5 to
optimize dSTREAM’s performance. To illustrate this, we used
the LR2 query, which handled an average of 4 MB of data per
second under a random traffic scenario and varied § for each
experiment. A 8 value close to O places more emphasis on the
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FIGURE 12. Average latency of the LR2 query over time in a random
traffic scenario. The time represents the completion point of the last bath
in a series of 10 consecutive batches.

current execution time of each operator, while a 8 value near
1 relies more on historical trends for estimating execution
time.

1) SENSITIVITY OF g

Figure 12 presents the average latency of dSTREAM for three
different 8 values (0,1, 0.5, and 0.9) across batch sequences.
To smooth out significant fluctuations in latency for each
batch, we calculated the average latency over ten consecutive
batches. The x-axis of the graph represents the time at which
the last batch of 10 consecutive batches ended. The y-axis
denotes the average latency of 10 consecutive batches.

As shown in Figure 12, dSTREAM with a 8 of 0.1 does
not converge and fluctuates significantly. This suggests that
relying too heavily on current observations can lead to
inaccurate estimations of execution time and sub-optimal
operator mappings. On the other hand, while dSTREAM with a
B of 0.9 experiences less fluctuation, it does not consistently
achieve low latency. This indicates that depending solely on
past trends or current data is insufficient for maintaining
stable performance under varying traffic conditions. By bal-
ancing historical trends and current observations with a 8 of
0.5, dSTREAM effectively lowers average latency over time.
This approach enables accurate cost estimation and optimal
operator mapping to the most suitable device for execution.

2) SUMMARY

For workloads with fluctuating traffic, incorporating both
past and current trends for estimating execution time provides
a reliable prediction of future values. By setting 8 to
0.5, dSTREAM effectively estimates operator execution times
and maintains low latency. This balanced method ensures
consistent performance improvements over time.

F. OVERHEAD ANALYSIS

dSTREAM collects historical metrics to update the cost table
and uses this table to determine the optimal query execution
plan. These additional phases have been integrated into the
original Spark Streaming framework. This section analyzes
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TABLE 5. Time taken for each phase of query processing, represented in
milliseconds (ms). The grey rows indicate the additional overhead
introduced by dSTREAM. The total overhead duration refers to the sum
of the time taken by the phases highlighted in the gray rows.

Phase LR1 LR2 CMl1 CM2
Create graph 0.128 0.109 0.154 0.109
Find shortest path 0.008 0.011 0.01 0.01
Map device 0.306 0.059 0.138 0.071
Collect metrics 0.128 0.112 0.119 0.114
Execute query 1291 431 2797 341
Total overhead duration 0.57 0.291 0421 0.24

the time taken for each phase during query processing to
assess the overhead incurred by these additional phases.

1) EXECUTION TIME AND OVERHEAD IN QUERY
PROCESSING

Table 5 presents the time measurements of four queries
(LR1,LR2, CMI1, and CM2) from the experiment comparing
average latency under a random traffic scenario, as dis-
cussed in Section V-B. The gray-colored rows represent
the additional time incurred by dSTREAM. Overall, the extra
phases in dSTREAM account for less than 1% of the total
workload time. For instance, in the LR1 query, the total
query execution time is approximately 1291.57 ms, with the
additional overhead from dSTREAM being only 0.57 ms. This
negligible overhead demonstrates that dSTREAM enhances
query processing efficiency with minimal impact.

2) SUMMARY

dSTREAM integrates two core modules into the original Spark
Streaming framework to implement a dynamic operator-level
query mapping scheme, considering varying data sizes and
the placement of consecutive operators. These modules
enhance overall query processing performance in dSTREAM
while introducing less than 1% overhead.

VI. CONCLUSION

In this paper, we present dSTREAM, a stream processing
system designed to dynamically adapt to each operator’s
device preference in discrete CPU-GPU architectures at
runtime. dSTREAM efficiently updates the cost table entries
online without requiring prior knowledge and determines
the optimal operator-level query execution plan by selecting
the mapping with the lowest cost from all possible options,
with minimal overhead. Our extensive experiments with
two real-world workloads show that dSTREAM consistently
outperforms other comparison targets, particularly in envi-
ronments with fluctuating traffic conditions and compute-
intensive queries.

Our novel operator-level query mapping technique is
applicable to a wide range of stream queries composed of
SQL operators. Moreover, dSTREAM is designed to optimize
query performance across different DSPS platforms that
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support operator-based queries. In future work, we plan to
develop a system that determines the optimal operator-level
query mapping while ensuring each query meets its deadline.

ACKNOWLEDGMENT
(Gyeonghwan Jung and Yeonwoo Jeong contributed equally
to this work.)

REFERENCES

(1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

H. Yamaoka, K. Itakura, E. Takahashi, G. Nakagawa, J. Michaelis,
Y. Kanemasa, M. Ueki, T. Matsumoto, R. Take, S. Tanie, and D. Inoue,
“Dracena: A real-time [oT service platform based on flexible composition
of data streams,” in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII),
Jan. 2019, pp. 596-601.

M. R. Hoseiny Farahabady and A. Y. Zomaya, “Geo-distributed analytical
streaming architecture for IoT platforms,” in Proc. IEEE Int. Conf. Cluster
Comput. (CLUSTER), Sep. 2024, pp. 263-274.

W. D. Xu, M. J. Burns, F. Cherqui, and T. D. Fletcher, “Enhanc-
ing stormwater control measures using real-time control technology:
A review,” Urban Water J., vol. 18, no. 2, pp. 101-114, Feb. 2021.

H. Nasiri, S. Nasehi, and M. Goudarzi, “Evaluation of distributed stream
processing frameworks for IoT applications in smart cities,” J. Big Data,
vol. 6, no. 1, pp. 1-24, Dec. 2019.

M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, ‘“‘Structured streaming: A declarative API for
real-time applications in apache spark,” in Proc. Int. Conf. Manage. Data,
May 2018, pp. 601-613.

M. H. Igbal and T. R. Soomro, “Big data analysis: Apache storm
perspective,” Int. J. Comput. Trends Technol., vol. 19, no. 1, pp. 9-14,
Jan. 2015.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bull. Tech. Committee Data Eng., vol. 38, no. 4, pp. 1-12, 2015.
S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
May 2015, pp. 239-250.

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta,
and R. H. Campbell, “Samza: Stateful scalable stream processing at
LinkedIn,” Proc. VLDB Endowment, vol. 10, no. 12, pp. 1634-1645,
Aug. 2017.

S. N. Nag, “Technical analysis of PCle to PCle 6: A next-generation inter-
face evolution,” World J. Eng. Technol., vol. 11, no. 3, pp. 504-525, 2023.
V. Rosenfeld, S. BreB, and V. Markl, “query processing on heterogeneous
CPU/GPU systems,” ACM Comput. Surv., vol. 55, no. 1, pp. 1-38,
Jan. 2023.

X. Cheng, B. He, and C. T. Lau, “Energy-efficient query processing on
embedded CPU-GPU architectures,” in Proc. 11th Int. Workshop Data
Manage. New Hardw., May 2015, pp. 1-7.

P. Chrysogelos, “Efficient analytical query processing on cpu-gpu
hardware platforms,” 2022. Accessed: Jul. 29, 2022. [Online]. Available:
http://infoscience.epfl.ch/record/296204

K. Zhang, J. Hu, and B. Hua, “A holistic approach to build real-time
stream processing system with GPU,” J. Parallel Distrib. Comput., vol. 83,
pp. 44-57, Sep. 2015.

J. Liu, F. Zhang, H. Li, D. Wang, W. Wan, X. Fang, J. Zhai, and X. Du,
“Exploring query processing on CPU-GPU integrated edge device,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4057-4070, Dec. 2022.
T. De Matteis, G. Mencagli, D. De Sensi, M. Torquati, and M. Danelutto,
“GASSER: An auto-tunable system for general sliding-window streaming
operators on GPUs,” IEEE Access, vol. 7, pp. 48753-48769, 2019.

A. S. Found. Spark-rapids. Accessed: Nov. 4, 2024. [Online]. Available:
https://nvidia.github.io/spark-rapids/

C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, “GFlink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big
data,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1275-1288,
Jun. 2018.

Z.Chen, J. Xu, J. Tang, K. A. Kwiat, C. A. Kamhoua, and C. Wang, “GPU-
accelerated high-throughput online stream data processing,” IEEE Trans.
Big Data, vol. 4, no. 2, pp. 191-202, Jun. 2018.

VOLUME 13, 2025

(20]

(21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

[33

[l

(34]

(35]

(36]
(37]

(38]

(39]

(40]

[41]

(42]

(43]

A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa,
and P. Pietzuch, “SABER: window-based hybrid stream processing for
heterogeneous architectures,” in Proc. Int. Conf. Manage. Data, Jun. 2016,
pp. 555-569.

F. Zhang, L. Yang, S. Zhang, B. He, W. Lu, and X. Du, “FineStream:
Fine-grained window-based stream processing on CPU-GPU integrated
architectures,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC),
Jul. 2020, pp. 633-647.

A. Shanbhag, S. Madden, and X. Yu, “A study of the fundamental
performance characteristics of GPUs and CPUs for database analytics,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 1617-1632.
D. Vohra, Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-
Related Frameworks and Tools, 1st ed. USA: Apress, 2016.

J. A. Stratton, S. S. Stone, and W.-M. W. Hwu, “Mcuda: An efficient
implementation of cuda kernels for multi-core cpus,” in Proc. 21th Int.
Workshop Lang. Compil. Parallel Comput., 2008, pp. 16-30.

Y. Ohno, S. Morishima, and H. Matsutani, “Accelerating spark RDD
operations with local and remote GPU devices,” in Proc. IEEE 22nd Int.
Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2016, pp. 791-799.

Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data transfer
matters for GPU computing,” in Proc. Int. Conf. Parallel Distrib. Syst.,
Dec. 2013, pp. 275-282.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark SQL:
Relational data processing in spark,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data, 2015, pp. 1383-1394.

S. Lee and S. Park, “Performance analysis of big data ETL process over
CPU-GPU heterogeneous architectures,” in Proc. IEEE 37th Int. Conf.
Data Eng. Workshops (ICDEW), Apr. 2021, pp. 42-47.

Y. Zhang and F. Mueller, “GStream: A general-purpose data streaming
framework on GPU clusters,” in Proc. Int. Conf. Parallel Process.,
Sep. 2011, pp. 245-254.

S. Oh, G. E. Moon, and S. Park, “ML-based dynamic operator-level
query mapping for stream processing systems in heterogeneous computing
environments,” in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER),
Sep. 2024, pp. 226-237.

K. Iyer and J. Kiel, “GPU debugging and profiling with NVIDIA parallel
Nsight,” in Game Development Tools, 2016, pp. 303-324.

Y. Cheng, Z. Hao, R. Cai, and W. Wen, “HPC2-ARS: An architecture
for real-time analytic of big data streams,” in Proc. IEEE Int. Conf. Web
Services (ICWS), Jul. 2018, pp. 319-322.

NVIDIA. Cuda(compute Unified Device Architecture) Toolkit. Accessed:
Dec. 12, 2022. [Online]. Available: https://developer.nvidia.com/cuda-
toolkit

K. Group. Opencl(open Computing Language). Accessed: Oct. 24, 2024.
[Online]. Available: https://www.khronos.org/opencl/

J. Dittrich and J.-A. Quiané-Ruiz, “Efficient big data processing in Hadoop
MapReduce,” Proc. VLDB Endowment, vol. 5, no. 12, pp. 2014-2015,
Aug. 2012.

H. J. Stuart, “The exponentially weighted moving average,” J. Quality
Technol., vol. 18, no. 4, pp. 203-210, 1986.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2022.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Workshop Hot Topics Cloud Comput. (HotCloud), 2010, pp. 1-7.

A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,
M. Stonebraker, and R. Tibbetts, “‘Linear road: A stream data management
benchmark,” in Proc. 30th Int. Conf. Very large Data Bases, vol. 30, 2004,
pp. 480—491.

C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format+ schema,” Version 2.1, Google, Mountain View, CA, USA,
Tech. Rep., Nov. 2011. Accessed: Nov. 17, 2014. [Online]. Available:
https://github.com/google/cluster-data

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: Fault-
tolerant stream processing at Internet scale,” in Proc. VLDB Endowment,
Aug. 2013, vol. 6, no. 11, pp. 1033-1044.

K. M. M. Thein, “Apache Kafka: Next generation distributed messaging
system,” Int. J. Sci. Eng. Technol. Res., vol. 3,no. 47, pp. 9478-9483, 2014.
N. Auger, C. Nicaud, and C. Pivoteau. (2015). Merge Strategies:
From Merge Sort to TimSort. [Online]. Available: https://hal.science/hal-
01212839

8255



lE E E ACCGSS G. Jung et al.: dStream: An Online-Based Dynamic Operator-Level Query Mapping Scheme

[44] P. Tennage, S. Perera, M. Jayasinghe, and S. Jayasena, “An analysis of
holistic tail latency behaviors of Java microservices,” in Proc. IEEE 21st
Int. Conf. High Perform. Comput. Commun., Aug. 2019, pp. 697-705.

[45] S.Lee, Y. Jeong, K. Park, G. Jung, and S. Park, “ZStream: Towards a low
latency micro-batch streaming system,” Cluster Comput., vol. 26, no. 5,
pp. 2773-2787, Oct. 2023.

[46] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding long
tails in the cloud,” in Proc. 10th USENIX Conf. Networked Syst. Design
Implement, Berkeley, CA, USA. USENIX Association, 2013, pp. 329-342.

[47] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74-80, Feb. 2013.

GYEONGHWAN JUNG received the B.S. degree
in computer science from Sangmyung University,
South Korea, in 2019, and the M.S. degree in
computer science and engineering from Sogang
University, South Korea, in 2024. He is currently
a Researcher with LG Electronics, South Korea.
His current research interest includes optimizing
web engine. His research interests include cloud
computing, resource management, and parallel
and distributed systems.

YEONWOO JEONG received the B.S. degree in
computer software from Kwangwoon University,
South Korea, in 2016, and the M.S. degree in
computer science and engineering from Sogang
University, South Korea, in 2020, where he is
currently pursuing the Ph.D. degree in computer
science and engineering. His current research
interest includes the way of optimizing query pro-
cessing on distributed stream processing systems.

KYULI PARK received the B.S. and M.S. degrees
in computer science and engineering from Sogang
University, South Korea, in 2022 and 2024,
respectively, where she is currently pursuing the
Ph.D. degree in computer science and engineering.

DONGIJAE LEE received the B.S. degree in com-
puter science and engineering from Sogang Uni-
versity, South Korea, in 2024, where he is currently
pursuing the M.S. degree with the Department of
Computer Science and Engineering. His current
research interest includes optimizing state man-
agement in distributed stream processing systems
and its interaction with key-value store.

HONGSU BYUN received the B.S. degree in
computer science and engineering from Sogang
University, South Korea, in 2021, where he is
currently pursuing the integrated M.S. leading to
Ph.D. degrees with the Department of Computer
Science and Engineering. His research interests
include operating systems, file and storage sys-
tems, parallel and distributed systems, and high
performance computing.

SUYEON LEE received the B.S. and M.S. degrees
from Sogang University, South Korea. She is
currently pursuing the Ph.D. degree in computer
science with Georgia Institute of Technology.
Her research interests include control planes of
distributed systems to accelerate data-intensive
applications, focusing on the intersection of net-
working and memory subsystems. Her recent
works include disaggregated memory systems,
near-data/memory computing, and CXL.

SUNGYONG PARK (Member, IEEE) received
the B.S. degree in computer science from Sogang
University, Seoul, South Korea, and the M.S. and
Ph.D. degrees in computer science from Syracuse
University. He is currently a Professor with the
Department of Computer Science and Engineer-
ing, Sogang University. From 1987 to 1992, he was
with LG Electronics, South Korea, as a Research
Engineer. From 1998 to 1999, he was a Research
Scientist with Telcordia Technologies (formerly

8256

Her research interests include cloud computing,
streaming systems, and resource management.

Bellcore), where he developed network management software for optical
switches. His research interests include cloud computing and systems,
virtualization technologies, high performance I/O and storage systems, and
embedded system software.

VOLUME 13, 2025



