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The data movement in large-scale computing facilities (from compute nodes to data nodes) is categorized

as one of the major contributors to high cost and energy utilization. To tackle it, in-storage processing (ISP)

within storage devices, such as Solid-State Drives (SSDs), has been explored actively. The introduction of

computational storage drives (CSDs) enabled ISP within the same form factor as regular SSDs and made it

easy to replace SSDs within traditional compute nodes. With CSDs, host systems can offload various opera-

tions such as search, filter, and count. However, commercialized CSDs have different hardware resources and

performance characteristics. Thus, it requires careful consideration of hardware, performance, and workload

characteristics for building a CSD-based storage system within a compute node. Therefore, storage archi-

tects are hesitant to build a storage system based on CSDs as there are no tools to determine the benefits

of CSD-based compute nodes to meet the performance requirements compared to traditional nodes based

on SSDs. In this work, we proposed an analytical model-based storage capacity planner called CsdPlan for

system architects to build performance-effective CSD-based compute nodes. Our model takes into account

the performance characteristics of the host system, targeted workloads, and hardware and performance char-

acteristics of CSDs to be deployed and provides optimal configuration based on the number of CSDs for a

compute node. Furthermore, CsdPlan estimates and reduces the total cost of ownership (TCO) for building a

CSD-based compute node. To evaluate the efficacy of CsdPlan , we selected two commercially available CSDs

and four representative big data analysis workloads.
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1 INTRODUCTION

High-performance computing (HPC) simulations on large-scale supercomputers (e.g., the ex-
ascale Frontier machine [1], No. 1 on the Top500 list as of December 2022) routinely produce vast
amounts of result output data [4]. Examples of such applications include astrophysics, climate,
combustion, and fusion. The data generated from these applications are managed by a parallel

file system (PFS) such as Lustre [34], as shown in Figure 1(a). Deriving insights from output data
stored at PFS often involves performing a sequence of data analysis tasks. The data analysis tasks
are performed either by a single server or a small cluster (Analysis nodes in Figure 1(a)) in an offline
manner. The critical attributes required by these tasks include parallel I/O for high performance
in accessing the data from storage systems. However, these tasks suffer from huge data movement
costs, leading to both performance and energy inefficiencies.

To overcome this, a few solutions have been proposed to perform data analysis on a set of ded-
icated analysis nodes, where in-transit output data is analyzed before being written to the PFS,
as shown in Figure 1(b) [46]. Although it reduces the redundant I/Os, it might cause interference
at the simulation nodes1 which leads to slowing down the simulation jobs. Importantly, it still
suffers from massive data transfer between the simulation node and the analysis node. Therefore,
HPC facilities have started looking at the potential of adopting storage devices within the sim-
ulation nodes, which provides an opportunity for adopting in-storage processing solutions [23].
In-Storage Processing (ISP) is one of the state-of-the-art paradigms that use internal resources
(e.g., CPU, FPGA, and DRAM) to run data analysis tasks inside a storage device [13, 22, 24, 39, 41].
ISPs not only improve the energy efficiency of the system but also reduce the data movement
between the host and storage devices. A prime example of a commercially available ISP is the
Computational Storage Drive (CSD). Recently, SK Hynix and Los Alamos National Labora-

tory (LANL) have demonstrated the world’s first Key-Value Computational Storage Device

(KV-CSD) to accelerate data analysis tasks of HPC simulations [2].
Moreover, several vendors have introduced commercial CSDs, including Samsung’s

SmartSSD [36], NGD system’s Newport CSD [32], and ScaleFlux’s Computational Storage [37].
The adoption of CSD within simulation nodes will play a vital role in analysis nodes where data
analysis tasks can be offloaded to CSDs. Figure 1(c) shows a representative HPC system where
each simulation node has local CSD(s). However, adopting CSDs naively does not benefit due to
the distinct hardware and performance characteristics of commercially available CSDs. A typical
hardware architecture of a CSD embeds an accelerator (FPGA) or an embedded CPU within a
storage device to perform analysis tasks. CSDs can be classified based on the support of the
operating system on top of the device. For instance, Newport SSD of the NGD systems [32] runs
an embedded OS, whereas SmartSSD [36] does not. A CSD with built-in support of an embedded
OS runs the analysis task from user space and benefits from the ease of programmability and
manageability through exploiting the traditional features of OS, such as supported libraries,
multitasking, and well-defined hardware abstractions.

On the other hand, a CSD, without OS support, benefits from executing the analysis kernel
directly on the FPGA accelerator, just like a bare-metal application, and avoiding the software

1Simulation nodes are the compute nodes, and we will use these terms interchangeably from here after.
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Fig. 1. Three approaches for HPC workload processing: (a) traditionally using simulation node and separate

analysis node, (b) in-transit approach where analysis nodes play a role of staging area and perform data

analysis tasks, (c) integrating CSD into simulation node instead of analysis node [39].

overhead caused by OS. The kernel developers with these CSDs can design and develop their anal-
ysis kernels with the supported platform. For instance, an analysis kernel for SmartSSD [36] to be
executed on the FPGA accelerator is implemented using OpenCL programming at the Vitis plat-
form [11] provided by Xilinx. CSDs are packaged in the same form factor as regular SSDs and can
easily replace traditional block-based SSDs. Several works [40–42] attempted to build a CSD-based
storage system and executed big data applications using CSDs and showed their performance ben-
efits. However, the performance characteristics of CSDs vary from vendor to vendor thus, adopting
CSDs becomes a challenging task for storage architects within HPC facilities. For instance, stor-
age architects have to decide whether to adopt CSDs with an embedded ARM processor (Newport
CSD) or an FPGA-based accelerator (SmartSSD), as both CSDs have different computational power
and programming interfaces. Moreover, the internal and external I/O bandwidth vary significantly
depending on the interconnect and network protocol implementation (for more details, refer to
Section 2.3). Furthermore, the performance efficiency of CSDs is highly dependent on the nature
of the workload (from being compute-intensive to I/O-intensive). Previous works put strenuous
efforts into identifying the optimal number of CSDs to meet performance requirements for specific
workloads [40, 41], thus, making the adoption of CSDs even more challenging.

Therefore, in this work, we propose a model-based storage capacity planning tool (CsdPlan)
which allows storage designers/architects to find the break-even point (BEP) effectively without
having to run experiments on all storage combinations manually. To the best of our knowledge,
this work is the first to find workload-specific BEP using real commercial CSDs. This paper makes
the following specific contributions.

• We propose an analytical model-based capacity planner for CsdStore, called CsdPlan . CsdPlan

finds the optimal number of CSDs in CsdStore, where CsdStore outperforms a traditional ap-
proach. Our model can be extended and adopted for large-scale systems with multiple compute
nodes over the network.
• We developed a mathematical model for the CsdPlan , which takes the performance characteris-

tics of the CSD and the workload patterns of the applications as input and provides the optimal
number of CSDs required to outperform the traditional compute node with SSDs. The CsdPlan

can give the “rule-of-thumb” to storage architects/administrators of CsdStore while making
storage capacity planning decisions.
• We performed an extensive evaluation of our proposed CsdPlan to account for various hard-

ware characteristics, such as computing power and I/O bandwidth with several real-world work-
loads. Specifically, CsdPlan finds the optimal break-even point (BEP) for big data analysis work-
loads. For instance, the BEP for Vector Addition workload would be 5 for SmartSSDs, while it
would be 1 if the computing power of the FPGA accelerator is significantly improved, like 5×.
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• We studied the total cost of ownership (TCO) savings in CsdStore using CsdPlan . For exam-
ple, in the Array Merge workload, CsdPlan suggests that the traditional compute node with 12
SSDs and the CsdStore with 2× slower CPU and 6 Newport CSDs have the same throughput.
According to our CSD pricing assumption, CsdStore can reduce CPU and storage costs by up
to 55%, compared to a traditional approach.

This paper is organized as follows. Section 2 introduces the background knowledge of CSD
and the motivation for our proposed CsdPlan . Section 3 shows an overview of CsdStore and
the mathematical analysis model of CsdPlan , and Section 4 analyzes the performance char-
acteristics of CSD and extensive evaluation results of CsdPlan . Finally, Section 5 gives the
conclusion.

2 BACKGROUND AND MOTIVATION

In this section, we present the background of computational storage drives (CSDs), the related
work for storage capacity provisioning, and the motivation for this study.

2.1 Computational Storage Drives

In-Storage Processing (ISP) uses the SSD’s internal hardware resources such as CPU and mem-
ory for out-of-core execution inside the SSD [15, 18, 21, 22, 27, 28, 30, 35, 44, 45]. The ISP not only
frees up CPU and memory resources on the host, but also reduces the cost of moving data between
the host and the device. SSDs that support ISPs are called CSDs. In the meantime, there have been
many studies on the design and performance optimization of CSDs. Biscuit [18] facilitates develop-
ment by defining protocols for near-data processing using the ISP and supporting a full-featured
standard library and the latest C++ standards. Willow [38] has extended the meaning of SSD to a
function that applications can use without damaging the file system by adding a programmable
feature to the storage device. Specifically, several researches investigated to accelerate database ap-
plications with ISP on SSDs. FCAccel [44] integrated a column-oriented field-programmable-gate-
array-based acceleration engine into an SSD to offload SQL operators to the SSD. Aquoman [45]
is an SSD with a general analytic query processor, prototyped in an FPGA for ISP on the SSD.
Smart SSD [22] provides MapReduce [16] framework that can execute a user’s customized job or
database query inside SSD.

2.2 Storage Capacity Provisioning

There have been several storage capacity provisioning studies that cost-effectively design compute
nodes using SSDs instead of HDDs [14, 25, 26, 31]. Among these, especially Narayanan et al. [31]
investigated the role of SSDs in enterprise compute nodes using multiple real-world data-center
traces. Their work explores the cost-benefit trade-offs of various SSD and HDD configurations. Kim
et al. [25] investigated the problem of finding the optimal storage configuration for compute nodes
employing both SSDs and HDDs while meeting performance requirements. They also studied the
issue of designing the dynamic placement of workload in the hybrid storage configurations. On the
other hand, our work is different from these works. We explored the problem of cost-benefit trade-
offs of various CSD configurations for big data workloads. Since CSDs are much more complex
devices than SSDs, finding the design requirements, such as the number of CSDs when building
the CSD-array-based computational node is not an easy task. We explored the computational and
I/O processing performance of commercial CSDs. We found that (i) the performance spectrum of
CSDs is very broad (not comparable to SSDs), and (ii) even CSDs have different performance trends.
More details on these are given in the next section.
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Table 1. Hardware Specifications of Representative CSDs

ISP Engine External I/O BW Internal I/O BW

Smart SSD2 [43] ARM Cortex R4 @ 400 MHz 0.55 GB/s 1.5 GB/s

Willow [38] FPGA @ 125 MHz 2 GB/s 4 GB/s

Biscuit [18] ARM Cortex R7 @ 750 MHz 3.2 GB/s 4 GB/s

2.3 Motivation

Table 1 shows the hardware specifications of representative CSDs. In Table 1, all CSDs have differ-
ent computing engines (e.g., FPGAs or low-power CPUs), but they all have much higher internal
I/O bandwidth than external I/O bandwidth. However, the real performance of the kernel of ap-
plications is dependent on the workload patterns, that is, depending on whether the kernel is
compute-intensive or I/O-intensive. Additionally, the application’s I/O bandwidth also depends
on whether it is external I/O or internal I/O. To verify these, we conducted several experiments
and measured the execution times and I/O bandwidths over two commercial CSDs (SmartSSD and
Newport CSD).

Figure 2 shows the results of the execution times for two represented analysis kernels, Array
Merge and Count. A detailed description of the analysis kernels and the input data size are pro-
vided in Section 4. In Figure 2(a), the execution times are normalized with the host system using a
single CPU core and equipped with traditional SSD. For Count, we observe that SmartSSD exhibits
a slightly lower execution time than Newport CSD. Also, we observe that the execution times of
SmartSSD and Newport CSD were about 1.6× and 1.7× worse than that of the host system, re-
spectively. Through this, it can be seen that the performance difference between FPGA and ARM
processors is small for the Count kernel. On the other hand, for Array Merge, we observe that the
execution times of SmartSSD and Newport CSD were 28× and 2.8× higher than that of the host,
respectively. SmartSSD showed significantly higher execution time compared to the host as well
as the Newport CSD. In the Array Merge kernel, the reason why CSD has a much higher execution
time than the host system is that Array Merge is a more CPU-bounded workload than Count and
requires a system with high computational power. On the other hand, CSD is a system with signif-
icantly lower computational power than the host CPU. Since the Count kernel is an I/O-intensive
workload, the execution time is not significantly different from that of the host system.

Next, we measured the internal and external bandwidths of Newport CSD and SmartSSD. To
measure the external I/O bandwidth of each CSD, we ran the FIO benchmark [12] on the host.
However, due to the difference in hardware design between SmartSSD and Newport CSD, the in-
ternal I/O bandwidth measurement method is as follows: For the Newport CSD, to measure internal
and external I/O bandwidth, we performed an FIO benchmark [12] on the host and CSD side. The
FIO benchmark was configured by using the libaio engine3, direct option on, 1 MB request size, 64
queue depth, and sequential pattern. For the SmartSSD, for internal I/O bandwidth measurement,
we used a bandwidth measurement kernel program [6] with a request size of 64 MB. Figure 2(b)
shows the I/O bandwidth measurements for SmartSSD and Newport CSD. We define Rtx as the

ratio of the internal I/O bandwidth to the external I/O bandwidth (Rtx =
BWInternal

BWExternal
). If Rtx is greater

than 1, it means that the internal I/O bandwidth is higher than the external I/O bandwidth.
In the results for SmartSSD, we observe that for reads, the external bandwidth is about 1.18×

higher than the internal bandwidth (Rtx = 0.84), but, for writes, the internal bandwidth is about

2Here, Smart SSD is the research prototype name of the cited paper, which is different from SmartSSD, a commercial CSD.
3Linux-native asynchronous I/O access library
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Fig. 2. (a) Comparison of execution times of Count and Array Merge workloads against CSDs and host

CPU. Execution time is normalized to the execution time of the host system.(b) Comparison of internal and

external I/O bandwidths of CSDs.

1.36× higher than the external bandwidth (Rtx = 1.36). This is due to the hardware limitations of
the SmartSSD, the maximum internal bandwidth is bound to the bandwidth of the PCIe bus con-
necting the SSD and the FPGA. In the results for Newport CSD, we observe, surprisingly, that the
external bandwidth is 2.28× and 1.33× higher than the internal bandwidth for both read and write
workloads, respectively (Rtx = 0.43, 0.75). The NGD system explained that the internal compo-
nents of Newport CSD (DRAM, NAND, etc.) are connected through high-speed interconnect but
did not disclose detailed hardware specifications [17]. These results show a different observation
from the observations in the literature where the internal I/O bandwidth of CSD is higher than the
external I/O bandwidth [18, 38, 39, 43].

To summarize our observations, each CSD shows different performances depending on their
computing power, I/O bandwidth, and workload characteristics. Therefore, when building a com-
pute node based on a CSD-array, storage architects should design in careful consideration of each
SSD’s hardware and workload characteristics. Therefore, this study aims to offer a software tool
that provides storage architects with guidance when building the CSD-array-based node in terms
of the optimal number of CSDs for CSD-based compute nodes.

3 CAPACITY PLANNING FOR CSDSTORE

This section presents an overview of CsdStore and details of how to build a CsdPlan for CsdStore

and how system architects/administrators can use it.

3.1 Overview of CsdStore

CsdStore is a cluster of CSDs and leverages the compute capabilities of each CSD to provide better
performance than the traditional storage server approach. Several recent studies have shown the
potential of CSD-array for HPC, big data and AI workloads [17, 40, 42]. However, one of the main
problems for system architects with CSD-arrays is the lack of planning tools for how to efficiently
build CSD-array based on their requirements. For instance, with varying computation resources,
system architects are not able to identify the number of CSDs to be installed in a CSD-array. Thus,
it is possible that a system architect might over- or under-provision the CSD-array’s resource when
designing a cluster.

CsdStore provides CsdPlan as a software tool to the system architects. CsdPlan , which pro-
vides guidelines on how to efficiently build a compute node using CSDs, on a limited budget. We
envision CsdPlan to be a tool that would enable system architects to provision the CSD-array
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Fig. 3. CsdStore and CsdPlan’s overview description. Yellow boxes indicate values that system architects

should measure.

based computational node in performance-effective ways. Figure 3 depicts an overview of the Cs-

dPlan where a system architect is required to measure the initial performance characteristics of
the host and CSDs. CsdPlan employs a break-even point (BEP) decision-maker based on math-
ematical formulations to make its storage provisioning decisions. CsdPlan finds the BEP where
the performance of data analysis in a CSD-array configuration outperforms the traditional storage
server approach. system architects can understand the effectiveness of the CSD-array system by
considering both the BEP found with CsdPlan and the budget to be used for the storage server im-
plementation. For example, with CsdPlan , a CsdStore with higher performance than a traditional
storage server can be built at a lower cost.

3.2 CsdPlan: Capacity Planning

CsdPlan is a software module that provides guidelines to system architects when building a com-
putational node. CsdPlan takes input as the computation and I/O performance parameters of a
CSD for applications and outputs the minimum number of required CSDs for CsdStore. CsdPlan

required the following two steps to be performed by the system architect:

• Step 1: The system architect selects the CSD to be deployed at the CSD-array and targets applica-
tions that will be running on that cluster. As the CsdPlan takes the performance characteristics
as input, thus a system architect is required to measure the performance of the CSD to obtain
the computational and I/O processing capabilities of the corresponding CSD.
• Step 2: Once the performance characteristics are obtained from Step 1, the system architect in-

puts them to the CsdPlan , which determines the minimum number of CSDs required to achieve
optimal performance on a CSD-array that is higher than the traditional storage server approach.

Our CsdPlan’s solver is built on top of mathematical system modeling and is described in detail
in the following subsection.

3.2.1 System Modeling. In this subsection, we provide details of performance modeling of Csd-

Plan for SSD system and CSD system as follows: We first define a system equipped with a single
device:

• SSD system (n): A traditional compute node where a host is equipped with a single block-based
SSD and uses the host n cores and memory for analysis.
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• CSD system: A compute node equipped with commercial CSDs where it utilizes the CSD’s
resources for analysis.

The execution time is considered the performance metric in our model.
The execution time of the SSD system (n) (TSSD(n)) for the kernel (W ) can be modeled as the sum

of the data transfer time (TSSD-tx) and the computation time (TSSD(n)-comp.). Thus,

TSSD(n) = TSSD-tx +TSSD(n)-comp. (1)

We assume that the host system is comprised of n cores and the workload is equally divided
between all the cores. The data transfer time stays the same regardless of the number of cores
in the host system. The sequential execution time is presented as TSSD-comp. , thus according to
Amdahl’s law [19], the execution time over n cores would be:

TSSD(n)-comp. =
1

n
·TSSD-comp., n ≤ Max Cores (2)

On the other hand, the performance model for the CSD system will be:

TCSD = TCSD-tx +TCSD-comp. (3)

Moreover, the resources of the host system are classified as normal and overloaded based on the
workload. For instance, if the kernel is being executed in parallel to other applications at the host
system/machine and the execution time of the kernel is greatly affected. This is due to resources
being shared between the kernel and other applications and thus leading to resource contention.
We call this situation an overloaded condition. On the other hand, if the kernel is being executed
with the desired resources from the host machine, it will be considered a normal condition.

Applications running parallel to the kernel are categorized as: CPU-, data-, or memory-intensive.
If an application is CPU-intensive, then the computational resources are exhausted, thus affecting
the computation time of the kernel. On the other hand, if an application is data-intensive, then the
I/O resources are being shared, thus leading to significant increase in data transfer time. However,
if an application is memory-intensive, then both computation and data transfer times are affected
due to high I/O overhead by frequent disk swapping in the virtual memory system. Therefore,
we extend the execution time model of each system in overloaded conditions by applying the
slow-down factor (the rate of increase in time) to the computation time and data transfer time.
Assume that the slow-down factors of data transfer time and computation time are sdtx and sdcomp. ,
respectively. The execution time of the SSD system can be modeled as follows:

TSSD(n) = sdtx·TSSD-tx + sdcomp. ·TSSD(n)-comp. (sdtx, sdcomp. ≥ 1) (4)

The CSD systems, unlike SSD systems, run the kernel on CSD, so their execution time is not
affected by overload conditions. Therefore, the slow-down factor for each term of the CSD system
is always 1. Thus, the execution time of the CSD system is simply modeled as to Equation (3).

Now, we extend this performance model to a system comprised of an array of devices. We as-
sume that the data required for workload execution is uniformly distributed and stored in the
device array. We consider two systems as follows:

• SSD-array system (n) (TSSD(n)-array): The host is equipped with an array of block-based SSDs
and uses the host CPU’s n cores and memory to run analysis kernels.
• CSD-array system (TCSD-array): The host is equipped with an array of CSDs and uses the CSD’s

CPU and memory instead of the host’s resources to run the analysis kernel.

An array ofm SSDs can theoretically reduce the data transfer time to 1
m

until the bus connected
to the host becomes a bottleneck [29] Therefore, we set the number of SSDs (MSSD) as klimit so that
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the disk I/O becomes a bottleneck in the SSD-array system. Thus, the SSD-array system model is
extended as follows:

TSSD(n)-array =
1

MSSD
·sdtx·TSSD-tx + sdcomp. ·TSSD(n)-comp. (5)

MSSD =
⎧⎪⎨⎪⎩

m if (m < klimit)

klimit else
(6)

Unlike the SSD-array system, since each CSD has the computational capability, both the data
transfer time and computation time of the CSD-array system are reduced to 1

m
. In addition, since

each CSD does not share the connected bus, there is no bottleneck as the number of CSDs increases.
The CSD-array system model is extended as follows:

TCSD-array =
1

MCSD
·TCSD-tx +

1

MCSD
·TCSD-comp. (7)

3.2.2 Solver: Finding the Break-Even Point. CsdPlan deploys a solver to find the BEP for the
number of CSDs in a CSD-array-based compute node. Our proposed solver takes the performance
characteristics of the CSDs as input and generates an optimal number of CSDs as output. This
optimal number of CSDs is referred to as the BEP, where the CSD-array will outperform the tra-
ditional compute node. Therefore, we derive the mathematical model of (TSSD(n)-array > TCSD-array)
as follows:

TSSD(n)-array > TCSD-array

⇒ sdtx

M
·TSSD-tx + sdcomp. ·TSSD(n)-comp. >

1

M
·TCSD-tx +

1

M
·TCSD-comp.

sdtx·TSSD-tx +M ·sdcomp. ·TSSD(n)-comp. > TCSD-tx +TCSD-comp. (Multiply both sides by M)

M ·sdcomp. ·TSSD(n)-comp. > TCSD-tx +TCSD-comp.−sdtx·TSSD-tx (Subtract sdtx·TSSD-tx from both sides)

M >
TCSD-tx +TCSD-comp. − sdtx·TSSD-tx

sdcomp. ·TSSD(n)-comp.
(Divide both sides by sdcomp. ·TSSD(n)-comp.)

MCSD >
TCSD-tx +TCSD-comp. − sdtx·TSSD-tx

sdcomp. ·TSSD(n)-comp.
(To find BEP, M = MSSD = MCSD)

Therefore,

MCSD ≥
⌈
TCSD-tx +TCSD-comp. − sdtx·TSSD-tx

sdcomp. ·TSSD(n)-comp.

⌉
4 (8)

If the host resource is not overloaded, sdtx = 1, sdcomp . = 1, then the following holds.

MCSD ≥
⌈
TCSD-tx +TCSD-comp. −TSSD-tx

TSSD(n)-comp.

⌉
(9)

Impact of Computing and I/O Performance: The increase or decrease of the computational
power of CSD determines the change in kernel execution time. Additionally, the internal I/O band-
width of the CSD can be higher or lower than the external I/O bandwidth. CSD’s computing power
and internal I/O bandwidth are determined by how the device is manufactured. In Table 1, the inter-
nal I/O bandwidth of CSD is higher than the external I/O bandwidth. On the other hand, as shown

4( � �) is least integer function
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in Figure 2(b), the internal I/O bandwidth of CSD can be lower than the external I/O bandwidth.
Therefore, we model the BEP (NCSD) according to the change of CSD’s computational power and
internal I/O bandwidth as follows.

S (TCSD-tx, TCSD-comp. ) =

⌈
TCSD-tx +TCSD-comp. −TSSD-tx

TSSD(n)-comp.

⌉
(10)

To simplify the formula, we define the following ratios:

R (n)comp. =
TSSD(n)-comp.

TCSD-comp.
, R (n)SSD =

TSSD-tx

TSSD(n)-comp.

Then,

TCSD-tx +TCSD-comp. −TSSD-tx

TSSD(n)-comp.
=

TCSD-tx

TSSD(n)-comp.
+ R−1

(n)comp.−R (n)SSD

We assumed that the SSD system uses the CSD as a block device.

Rtx =
BWInternal

BWExternal
=

Data Size/BWExternal

Data Size/BWInternal
=

TSSD-tx

TCSD-tx
, TCSD-tx = R−1

tx ·TSSD-tx

Then,

TCSD-tx

TSSD(n)-comp.
+ R−1

(n)comp.−R (n)SSD

=
R−1

tx ·TSSD-tx

TSSD(n)-comp.
+ R−1

(n)comp.−R (n)SSD

(
TCSD-tx = R−1

tx ·TSSD-tx

)

= R−1
tx ·R (n)SSD + R

−1
(n)comp.−R (n)SSD

(
R (n)SSD =

TSSD-tx

TSSD(n)-comp.

)

=
(
R−1

tx − 1
)
·R (n)SSD + R

−1
(n)comp. (Distributive Law)

Therefore, Equation (8) is transformed as follows.

S (Rtx, R (n)comp. ) =
⌈(
R−1

tx − 1
)
·R (n)SSD + R

−1
(n)comp.

⌉
(11)

Finally, the BEP cannot be smaller than 1, so set the minimum value to 1 as follows.

S (Rtx, R (n)comp. ) = max
(⌈(

R−1
tx −1

)
·R (n)SSD + R

−1
(n)comp.

⌉
, 1

)
(12)

By adjusting the two variables in the above function, we can estimate the change in BEP when
building a CSD-array-based compute node.

Impact of Ratio Parameter: We have found the BEP as a function of the computational power
and I/O bandwidth of the CSD system. Meanwhile, sinceRtx andR (n)comp. are the performance ratio
of the SSD system and the CSD system, we can also find the BEP as the performance of the SSD
system changes. The computing power and I/O bandwidth of an SSD system depend on the host
CPU and mounted SSD, respectively. For example, if R (n)comp. and Rtx become smaller in an SSD
system by using a more powerful CPU or an SSD with higher I/O bandwidth, the BEP will increase.

4 EVALUATING CSDPLAN

This section presents an evaluation of CSD and CsdPlan . To this end, in Section 4.2, CSD perfor-
mance characteristics are first evaluated to obtain the parameters required for CsdPlan use, and
then CsdPlan is evaluated from Section 4.3.
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Table 2. Host Server Specifications

CPU AMD EPYCTM 7352, 24 Cores (48 Threads), 2.3 GHz (Up to 3.2 GHz)

Socket 2 NUMA Node

Memory 256 GB (64 GB × 4) DRAM DDR4 3200 MHz

OS Centos 7.92.2009 (Core) / Linux Kernel 4.14

Table 3. CSD Specifications

SmartSSD [36] Newport CSD [32]

Storage Capacity 3.84 TB 8 TB

Host Interface PCIe Gen3×4 (U.2) PCIe Gen3×4 (U.2)

In-Storage

Processing

Engine

Xilinx Kintex Ultrascale+ KU15P ARM Cortex-A53 1.0 GHz, 4 Cores

4 GB DDR4 DRAM, 4.325 MB BRAM 8 GB DDR4 DRAM

Clock : 300 MHz OS : Linux Kernel 4.14

4.1 Experiment Setup

We implemented our proposed BEP solver, CsdPlan , using Python, and the source code is less
than 100 lines. CsdPlan takes an extremely short time (in terms of seconds) to find an optimal
BEP for CSD-array. However, the initial evaluation of CSD for the workload may require some
effort, depending on the accuracy of the CSD’s performance characterization.

For evaluation, we build two systems with two AMD EPYCTM 7352 CPUs with 24 cores and
256 GB DRAM, running CentOS 7 where each of the systems has SmartSSD and Newport CSD, re-
spectively. SmartSSD does not have an OS installed and runs the kernel using an FPGA accelerator.
On the other hand, Newport CSD runs a Linux-based embedded OS using an ASIC-based 64-bit
general-purpose CPU and runs the kernel on it. Detailed specifications of the host server and each
CSD are shown in Table 2 and 35.

To evaluate the efficiency of our proposed CsdPlan for CsdStore, we selected four widely
adopted analysis kernels from big data applications. The analysis kernel and their corresponding
workload working set size (in parenthesis) are listed below:

• Count (4.8 GB): Counts specific values in one integer array
• Vector Addition (4.8 GB): Calculates the sum of each element of two integer arrays and creates

one large integer array
• Array Merge (4.8 GB): Takes two sorted integer arrays as input, removes duplicate elements,

merges them, and creates a new merged array
• Page Rank (0.2 GB6): Performs Page Rank algorithm [33] for graph data processing using the

rank values of pages stored in one float-type two-dimensional array and one float-type one-
dimensional vector

4.2 Performance Characterization of CSDs

Our proposed CsdPlan relies on system architects to evaluate the performance characteriza-
tion of the CSDs. Thus, in this subsection, we present the evaluation steps for the performance

5The memory used for In-Storage Processing is separate from the memory required by the controller for the NAND flash

operation of SSD.
6The execution time of Page Rank is extremely long and increases exponentially as the working set increases, so the

working set is smaller than other workloads.
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Fig. 4. Impact of parallel computation by either multiple CUs used or multi-threading. All experiments were

normalized to the throughput when using one CU or thread.

characterization of CSD and the process of analyzing the results for selected big data workloads.
To this end, the throughput was shown by measuring the data transfer time and computation time
when offloading the analysis kernel in CSD. The kernel offloading overhead from the host side to
CSD is considered to be not that significant in our experiment setup, thus, we did not take into
account that overhead. Data transfer time is the time for loading the working set from NAND in
the CSD to memory, and computation time is the time for computing the working set loaded in the
memory of the CSD. When processing a working set of 4.8 GB, Newport CSD has 8 GB of memory,
so it processes the workload with 1 I/O, and SmartSSD has 4 GB of memory, so it processes with
2 I/O.

4.2.1 Impact of Parallel Computation. The CSDs in our system, SmartSSD, and Newport CSD,
have the capability to perform parallel computation. SmartSSD is an FPGA-based CSD and employs
multiple computation units (CUs), up to 15 CUs. A CU is a computing instance created within
the FGPA to execute the kernel. Meanwhile, the Newport CSD is equipped with a quad-core ARM
processor, enabling multi-kernel execution by multi-threading on Linux OS. We first present the
evaluation results of SmartSSD with an increasing number of CUs with selected big data workloads,
and then we discuss the performance of Newport CSD in detail.

SmartSSD’s Results: Figure 4(a) shows the throughput improvement (Speed-up) of SmartSSD
with an increasing number of CUs (up to 15 CUs in our case). To fully exploit the performance
characteristics of SmartSSD’s FPGAs, we applied several performance optimization techniques,
such as local memory buffers, loop pipelining, and array partitioning, to evaluate big analysis ker-
nels [7–11]. In Figure 4(a), the throughput of the Count and Vector Addition kernels improve up to
5 CUs by 2.2× and 2.0× respectively, after which the throughput is saturated. The main reason for
saturating throughput is that the CU executes the kernel after the data loaded in DRAM is copied
to BRAM (Block RAM), and the memory copy from DRAM to BRAM becomes the bottleneck.
BRAM [5] is an FPGA’s on-chip RAM, which can process data loaded in local memory faster than
DRAM. Therefore, using BRAM is more effective than using DRAM at the expense of memory
copy overhead. However, when many CUs access BRAM at the same time, BRAM access becomes
a bottleneck. On the other hand, Page Rank is a CPU-intensive workload, and there is almost no
bottleneck caused by the memory copy mentioned above. Thus, the Page Rank shows perfect scal-
ing as the number of CUs increases, improving up to 13.6×. Array Merge shows a gradual increase,
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Fig. 5. Computation time ratio of execution time for each workload of SmartSSD, Newport CSD and host

CPU(1).

but only up to 1.6×. Like Page Rank, Array Merge is a CPU-intensive workload, but the algorithm
has a lot of if-else statements for merge operations, which is the main impediment to performance
gains.

Newport CSD’s Results: Figure 4(b) shows the evaluation results of the Newport CSD with
multithreading enabled within analysis kernels. Since Newport CSD is equipped with 4 CPU cores,
we conducted experiments with up to 4 threads by mapping each execution thread to each core
(one-to-one mapping). All workloads used in each evaluation were written in parallel programs to
enable multithreading. The results in Figure 4(b) are similar to those in Figure 4(a). As shown in
Figure 4(b), throughput scales up to 4 threads for all workloads. The throughput of Count, Vector
Addition, Array Merge, and Page Rank has been improved up to 1.4×, 1.3×, 1.7×, and 3.1×, respec-
tively. However, a notable observation is that Page Rank linearly scaled in SmartSSD (as shown in
Figure 4(a)), but it only linearly scaled up to 3 threads in Newport CSD (as shown in Figure 4(b)),
and thereafter, throughput improvement is slightly reduced (Figure 4(b)).

Furthermore, in SmartSSD, throughput is improved in the order of Page Rank, Count, Vector
Addition, and Array Merge. In contrast, in Newport CSD, throughput is improved by Page Rank,
Array Merge, Count, and Vector Addition, showing different results. The reason is that SmartSSD’s
FPGA needs to apply various optimization techniques to achieve optimal throughput. The kernel
code of an FPGA is more complex that is different from the code that runs on a typical ASIC-based
processor. Therefore, the trend of throughput improvement may vary between kernels/workloads.

4.2.2 Workload Classification. As observed in Figure 4, the more parallel processing of the
workload computation, the higher the throughput. However, as explained in Amdahl’s law [19],
the throughput improvement has a limit bound to the data transfer time that cannot be further
reduced. Therefore, we analyze computation and I/O ratios for each workload. Figure 5 shows the
computation time ratio to total execution time (CTR) for each workload. CTR values vary
depending on the system. For the convenience of explanation, based on the CTR value of the host
system, we classify workloads with a CTR of less than 0.5 as I/O-intensive workloads and other-
wise as compute-intensive workloads. For example, Page Rank is a completely compute-intensive
workload.

4.2.3 CSD vs. Host System. Now we compare the throughput of a single CSD with the host
system7. Figure 6 shows the evaluation results for all workloads. Throughput was normalized to

7Hereafter, we use the host system and SSD system interchangeably.
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Fig. 6. Throughput comparison for each workload on SmartSSD, Newport CSD, and host systems. Through-

put is normalized to the throughput of Newport CSD. In Host(n), n represents the number of active cores on

the host system.

Newport CSD. Each CSD is configured to achieve maximum throughput using multiple computa-
tional units (refer to Figure 4). The host system used a SmartSSD as a block device. We limit the
number of cores for the host system to 4, and each configuration is represented as Host(1), Host(2),
and Host(4) in Figure 6.

In Count and Vector Addition, SmartSSD has about 3× higher throughput than Newport CSD.
This is because both Count and Vector Addition are I/O intensive workloads, and although New-
port CSD’s computation latency is lower than SmartSSD’s, throughput is more affected by internal
I/O bandwidth (SmartSSD’s internal I/O BW is higher, refer to Figure 2). In addition, Host(1) has
a higher throughput of about 5× than Newport CSD. When compared to SmartSSD and Host(1),
Host(1) has up to 1.3× and 2× higher throughput than SmartSSD. On the other hand, as the num-
ber of active cores increases in the host system, the workload throughput improves by about 20%
per core. This is because it is bound to the data movement time between the host and the SSD.

In Array Merge and Page Rank, unlike observed in Count and Vector Addition, Newport CSD
shows 2.2× and 10× higher throughput than SmartSSD because Newport CSD has higher computa-
tional power than SmartSSD. Although Array Merge is an I/O-intensive workload, it requires suf-
ficient computational power as well. Thus, we can categorize the Array Merge kernel as compute-
and I/O-intensive workload. Also, as expected, the workload throughput of the host system is
higher than that of CSD. However, it is noteworthy that the throughput of the host system is ob-
served to be significantly higher in Page Rank. This is because Page Rank is a completely compute-
intensive workload, and computational performance has the greatest impact on throughput. There-
fore, the host system, which has the highest computational power, exhibits a significantly higher
workload throughput than any CSD.

4.3 Evaluating CsdPlan Solver

Finding the Break-Even Point (BEP): CsdPlan finds different BEPs depending on the workload,
CSD-array, and host configurations. To evaluate CsdPlan , we assumed that the host’s system sup-
ports PCIe 3.0 up to 32 lanes (1.0 GB/s × 32 = 32 GB/s), and each SSD uses 4 GB/s of bandwidth [29].
So, klimit of Equation (6) is set to 8.

Figure 7 shows each workload’s throughput for various host configurations (1, 4, 16, or 64 active
cores) and CSD-array systems with SmartSSD or Newport CSD. Throughput was normalized to
a single Newport CSD. For all workloads, CSD-array systems increase throughput linearly as the
number of devices increases. The host, on the other hand, has higher throughput with an increasing
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Fig. 7. Evaluation to find the break-even point for normal conditions. In all results, throughput is normalized

to the throughput of a single Newport CSD system for each workload. In Host(n), n represents the number

of active cores on the Host. CSD-N and CSD-S denote CSD-array system (Newport CSD) and CSD-array

system (SmartSSD), respectively.

number of cores and storage devices (shown in x-axis of Figure 7) except Page Rank, but the host’s
throughput improvement was limited to 8 SSDs due to klimit being 8. Since Page Rank is a compute-
intensive workload, an increase in I/O throughput with an increasing number of storage devices
does not lead to an improvement in throughput (more details on Page Rank are provided below).

Before analyzing the results, for convenience of explanation, we assume that Host(‘a’, ‘b’) is a
host system with ‘a’ cores and ‘b’ devices, and CSD-N(‘c’) is a CSD-array system composed of ‘c’
Newport CSDs, and CSD-S(’c’) is a CSD-array system composed of ‘c’ SmartSSDs. In Count, Host(1,
1) has higher throughput than CSD-S(1). However, when the number of storage devices is 2, Host(1,
2) and CSD-S(2), the throughput meets for both configurations. This is because CSD-S has higher
internal bandwidth, which leads to higher throughput with an increasing number of devices. On
the other hand, in CSD-N, the increase in throughput is lower than CSD-S as the number of devices
increases, but the throughput increases gradually. Thus, CSD-N meets Host(1) when the number
of devices reaches 12. As expected, Host(1) faces a limit in throughput scalability due to the PCIe
bandwidth bottleneck, and eventually, CSD-N becomes higher than Host(1). In addition, the host
is equipped with a high-performance CPU, as shown in Table 2, and when the workload is running
a single thread, the CPU is very under-utilized. Therefore, as the number of cores increases at the
host side, the throughput increases and the BEP value also increases. Host(4) meets CSD-S(8), and
Host(16) meets CSD-S(13). However, the degree of improvement in throughput is reduced. This is
because the workload execution time is bound to the data transfer time.

Array Merge is a mix of compute and I/O intensive workloads. That is, Array Merge requires
a system with high computational power as well as high I/O throughput. Therefore, as shown in
Figure 7(c), in both CSD-N and CSD-S, the increase in throughput is not higher than that of the
host system as the number of devices increases. In Figure 7(c), Host(1) and CSD-N meet when
the number of devices is 12. CSD-S shows lower throughput than CSD-N. This is because the
computational power of SmartSSD is lower than that of Newport CSD. If the number of cores in
the host increases, the host and CSD-array do not meet in 16 devices (refer to Host(4), Host(16),
and Host (64) in Figure 7(c)). In other words, for Array Merge, 16 or more CSDs are required for
the CSD-array system to achieve higher throughput than the host system. In summary, for I/O-
intensive workload (Count, Vector Addition and Array Merge), the host system’s performance is
limited by the PCIe bandwidth, where CSD-array catches up with host.

Finally, Page Rank is a completely compute-intensive workload. As shown in Figure 7(d), in the
host system, the throughput increases with the number of cores, whereas the number of devices
has little effect. However, in 64 cores, the throughput increases with the number of devices. This
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Fig. 8. Example of change in maximum throughput of Host(16) according to kl imit in Count.

is because the computation time is so low that the data transfer time affects the throughput. On
the other hand, CSD-N and CSD-S increase the workload throughput as the number of devices
increases. As mentioned earlier, BEP increases as the number of cores in the host increases.

Figure 8 shows an example of the maximum throughput of Host(16) according to kl imit of Equa-
tion (6) in Count. In the legend, ’n’ in k-limit(n) means the kl imit value. The ’n’ in k-limit(n) repre-
sents the value of kl imit . As the number of devices increases, the throughput of kl imit (8) improves
to 8 devices, while the throughput ofkl imit (12) andkl imit (16) improves to 12 and 16 devices, respec-
tively. Therefore, the BEP value also increases. The kl imit (8) meets CSD-S(13), while kl imit (12) and
kl imit (16) meet after CSD-S(16). As such, CsdPlan can find BEP changes according to the number
of devices that cause PCIe bottlenecks in various host systems.
Impact of CSD Parameters: The factors that determine the workload throughput in CSD are
computational power and internal I/O bandwidth. CsdPlan can estimate the change in the BEP
for Host(n) according to the change in the values of these two factors. In Equation (12), an increase
in Rtx or R (n)comp. means an increase in internal I/O bandwidth or computational power of CSD,
respectively. In this experiment, we assumed a Host(n) system where n is 1 (one active core on the
server) and conducted experiments and analysis.

Figure 9(a)-(d) shows the results for SmartSSD. SmartSSD has internal I/O bandwidth that meets
the needs of each workload to some extent but has lower computational power. Therefore, increas-
ing I/O bandwidth does not impact the BEP for compute-intensive workloads, such as Page Rank,
while increasing the computational power does. On the other hand, for I/O intensive workloads,
such as Count, SmartSSD shows sufficient internal I/O bandwidth and computational power. Thus,
changing any factor does not impact much in throughput. Vector Addition is also an I/O intensive
workload, but increasing computational power does impact the BEP because SmartSSD has low
computational power. Furthermore, Array Merge is a combination of compute and I/O intensive
workloads. Thus, increasing both computational and I/O bandwidth will have a great effect on
lowering the BEP.

Figure 9(e)-(h) shows the result for Newport CSD. Newport CSD has relatively higher compu-
tational power than SmartSSD but has lower internal I/O bandwidth. As shown in Figure 9, in
I/O-intensive workloads such as Count, Vector Addition, and Array Merge, an increase in the in-
ternal I/O bandwidth has a great effect on lowering the BEP. However, in Vector Addition and
Array Merge, computational power also tends to be affected. That is, Newport CSD has higher
computational power than SmartSSD, but it is still lower than the host. Finally, Page Rank, again,
is a completely compute-intensive workload, so increasing I/O bandwidth has little effect on low-
ering BEP.

CsdPlan can find the BEP values that change according to the hardware parameters (computa-
tional power and internal I/O bandwidth) of the CSD. Figure 10 visually shows the BEP values that
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Fig. 9. Analysis of reduction in the number of devices (BEP) by varying CSD’s computational power or

internal I/O bandwidth.

Fig. 10. Finding the values of BEP according to the change of internal I/O bandwidth and computation power

of CSD for Vector Addition with the Newport CSD-array.

CsdPlan finds. The x-axis means internal I/O bandwidth, the y-axis means computational power,
and the z-axis means BEP (the number of devices) that CsdPlan finds. As shown in Figure 10, a
3D plane (drawn by a 3D function of z = f (x ,y)) shows the changes in BEP values for x and y
(blue plane). Also, the points where the green plane and the blue plane intersect in the figure are
all combinations of hardware parameters corresponding to BEP = C where C is a constant. For
example, in the Figure 10, C is 4. In the figure, four combinations that satisfy BEP = 4{(2, 7, 4), (3,
4, 4), (4, 3, 4), (8, 2, 4)} are marked with red stars.

Moreover, the results presented in Figure 10 can be considered as the design guideline for CSD
manufacturers. The two factors impacting the performance of CSD are: internal I/O bandwidth
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Fig. 11. Comparison of the performance of analysis kernels for SSD system and CSD system under overload

condition. In order to simulate the overload condition of the host machine, the amount of physical memory

available to the analysis kernel is limited.

and computational power, and both are required to be improved. CSD has very low computational
power compared to the host CPU. In order to improve the performance of CSD, it is necessary to
install a processor with higher computational power.

4.4 CsdPlan Solver in Overload Situations

As mentioned in Section 3.2, the host system can be overloaded due to excessive resource usage
by applications co-located on the host. In this section, we show how CsdPlan finds the BEP of a
CSD-array-based system under such an overloaded host system.

First, as described in Section 4.2, the system architect should perform a performance character-
ization of the host system under overloaded conditions. An overload situation can occur for some
reasons; lack of CPU cycles, insufficient memory, I/O bandwidth, or a mixture of these. In big data
applications, overloaded situations often occur due to insufficient memory, thus, we consider it as
the main cause here as well. In this subsection, we provide guidelines to system architects for the
experiments to be performed in overloaded conditions.

The goal of the experiment is to find the optimal values of slow-down factors (mentioned in
Equation (8)) and find BEP in various overloaded conditions. For this experiment, we simulate
the overloaded condition on the host system by controlling the amount of physical memory by
adopting mlock ()8 to limit the available memory to the analysis kernel. We simulated with 2 GB
to 10 GB of available memory for analysis kernels.

Results: Figure 11 shows the comparison results of throughput according to the size of the
host’s available memory for the three systems and shows the host’s two slow-down factors (sdcomp. ,
sdtx) from Equation (8). An increase in sdcomp. and sdtx means the degradation of computational
power and data transfer time of the host, respectively. Here, we use the Host(1), CSD-N, and CSD-S
notations used in Section 4.3. All system’s throughputs were normalized to the Host(1)’s through-
put under normal conditions. In Figure 11(a)-(c), the Host(1) throughput is significantly reduced
when the host’s available memory is less than the dataset size, and host’s slow-down factors are
significantly increased. In Count, only sdtx increases significantly because it is an I/O-intensive
workload. Vector Addition and Array Merge are also I/O-intensive workloads, but sdcomp. and sdtx

grow together. This is because both have much computation compared to Count and is fatally
affected when the host’s memory is insufficient. On the other hand, CSDs throughput are not af-
fected by the availability of resources on the host. In Figure 11(d), the Host(1)’s throughput and

8mlock() locks part or all of the calling process’s virtual address space into RAM, preventing that memory from being paged

to the swap area.
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Fig. 12. Results of finding deceleration factors and break-even points according to available DRAM size.

slow-down factors does not change at all, no matter how much memory is available. This is be-
cause the size of the dataset for the Page Rank workload is small. All datasets are loaded into
memory, so disk swapping does not occur at all in the virtual memory system.

Figure 12 shows the change of BEP according to the host’s available memory for each workload.
The result was calculated by substituting the slow-down factor used in Figure 11 into Equation (8).

In the Count, Vector Addition, and Array Merge (except for Newport CSD’s Count and
SmartSSD’s Array Merge), the BEP is 1 when the host’s available memory is smaller than the
dataset size and increases rapidly when the host’s available memory begins to exceed the dataset.
This shows that the host’s resource (memory) actually has a significant effect on the slow-down
factor, and our proposed modeling from Equation (4) is well applied.

The parts marked in yellow in Figure 11 and 12 correspond to the case where the BEP is 1. In all
cases, the BEP included in the parts marked in yellow in Figure 11 is equally included in Figure 12.
This means that our proposed modeling works well. Through this result, it is possible to analyze
the effectiveness of CSD according to the change of host resources using CsdPlan .
Impact of Host’s Overloading: CsdPlan can find the BEP value according to the change in the
host’s slow-down factors. For this, CsdPlan uses the following function:

Soverload (sdtx, sdcomp. ) = max
(⌈
sd−1

comp. ·
{(
R−1

tx − sdtx

)
· R (n)SSD + R

−1
(n)comp.

)}⌉
, 1

)
(13)

The above function extends Equation (8) and has a form similar to Equation (12). Here we show
that CsdPlan uses the above function to find the value of BEP according to host’s two slow-down
factors. For the experiment, we assumed a Host(n) system where n is 1.

Figure 13(a)-(d) shows the results for SmartSSD. The result is similar to Figure 9(a)-(d). In this
evaluation, the decrease in the computational power of the host almost coincides with the increase
in the computational power of the SmartSSD in Figure 9 (red line). On the other hand, for Vector
Addition and Array Merge in Figure 9, the increase in SmartSSD’s internal I/O bandwidth has a
limit to the BEP reduction, but the decrease in the host’s I/O bandwidth has an almost linear effect
on the BEP. In Figure 9, since BEP reduction is evaluated when the total execution time of the
SmartSSD is reduced, the total execution time of the workload is bound to the computation time.
However, in this evaluation, since BEP reduction was evaluated when the total execution time
of the host’s workload increases, the total execution time of the workload continues to increase
according to the decrease in the I/O bandwidth of the host. Page Rank is completely compute-
intensive, so BEP is not affected by the reduced host’s I/O bandwidth.

Figure 13(e)-(h) shows the results for Newport CSD. Unlike SmartSSD, this result is not similar
to Figure 9(e)-(h). This is because Newport CSD has lower I/O bandwidth and computing power
compared to the host. Note that the host system uses SmartSSD as a block device, so the I/O
bandwidth is similar to SmartSSD. Overall, BEP is exponentially affected by the reduction in host
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Fig. 13. Analysis of reduction in the number of devices (BEP) by varying host’s slow-down factors.

Fig. 14. Finding the values of BEP according to the change of host’s slow-down factors for Vector Addition

with the Newport CSD-array.

computational power, while it is linearly affected by the reduction in I/O bandwidth. The reason is
that, in Equation (13), the value of the Soverload function is inversely proportional to sdcomp. , whereas
it is in direct proportional relationship to sdtx. In Count, Vector Addition, and Array Merge, BEP
is more affected by the reduction in computational power than the reduction in I/O bandwidth of
the host and reverses after ×7 in Figure 13 The inversion value is dependent on the performance
difference between CSD, host, and workload characteristics. Page Rank is completely compute-
intensive, so BEP is not affected by the reduced host’s I/O bandwidth.

In addition, CsdPlan finds BEP for the combination of two factors (sdtx, sdcomp.), as shown in
Figure 10. Figure 14 visually shows the BEP values that CsdPlan finds. The x-axis means I/O
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Fig. 15. In Array Merge of Newport CSD, BEP reduction is according to the computational power of the host

CPU. On the x-axis, ’n’ in ×sn indicates n times slower.

Table 4. The Total Cost of Ownership when Building a Compute Node with Baseline SSDs and CSD

System
CPU-Part Storage-Part Total

Cost

Perf. /

$

Capacity /

$Name Perf. (Mark) Slow Down Cost SSD/CSD Cost

SSD-system AMD EPYS 7351 39999 - $1828 12×SSD $1200 $3028 13.2/$ 8.10 GB/$

CSD-system (A) AMD EPYS 7452 20471 Appx. ×2 $1399 6×CSD $660 $2059 19.4/$ 5.96 GB/$

CSD-system (B) AMD EPYS 7251 14935 Appx. ×3 $485 8×CSD $880 $1365 29.3/$ 12.00 GB/$

bandwidth (sdtx), and the y-axis means computational power (sdcomp.), and the z-axis means BEP
(the number of devices) that CsdPlan finds. In the figure, the explanation of BEP is the same as
that of Figure 10. For example, sketch red stars.

4.5 Analysis of Total Cost of Ownership

In this subsection, we will discuss the total cost of ownership (TCO) for building a compute node
using CsdPlan . The cost of building a server consists of installation costs and recurring costs. We
compare the cost of building a compute node using SSDs and CSDs where we only consider the
cost of host CPU and storage among the installation costs and ignore the recurring cost. Also,
we consider a system with the same throughput for processing workloads for both systems. CSD-
system can improve throughput through internal resources, so using a low computational power
CPU for the host would reduce the cost.

Figure 15, in Array Merge of Newport CSD, shows the difference (DIFF ) between the BEP and the
initial BEP value (12) according to the decrease in computational power of the host CPU. The x-axis
represents the slowdown factor of computational power, and the DIFF represents the difference in
the number of CSDs required to meet the performance requirement of the SSD system for the CSD
system. For instance, the CSD-system with 2× slower host CPU only requires 6 Newport CSDs to
meet the performance requirements, while the CSD-system with 3× slower host CPU only requires
8 Newport CSDs.

Table 4 shows an example of a cost comparison between the SSD-system and CSD-system (A and
B) related to Figure 15. The first part of Table 4 represents the adopted CPUs in all three systems.
“Mark“ in the table represents the score evaluated using Passmark, a widely used software tool for
CPU benchmarking [3]. We considered a system with AMD EPYC 7351 and 12 SSDs as the baseline
compute node. For CSD-systems, we considered the low-power CPUs from the same lineup, AMD
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EPYC 7452 (approximately 2× slower) and AMD EPYC 7251 (approximately 3× slower), as CSDs
have considerable computation resources.

The second part of Table 4 shows the storage devices employed in all three systems. The SSD-
system is equipped with 12 SSDs while CSD-system (A) and CSD-system (B) have a varying num-
ber of CSDs based on the BEP values from CsdPlan . The commercially available CSDs are rel-
atively expensive compared to SSDs. Thus, we assume that the prices of CSDs would become
affordable once adopted by the system architect actively. For this comparison, we consider the
following cost model for SSD and CSD: (i) The price of the 2 TB SSD is $100 [20], and (ii) The
cost of processor-equipped SoC for CSD is 10% higher, so the price of CSD is $110. Comparing
the total cost according to our model, the performance/$ for CSD-system (A) and CSD-system (B)
are 19.4/$ and 29.3/$, respectively, which is about 1.47× and 2.21× higher than the SSD-system.
On the other hand, in terms of Capacity/$, CSD-system (A) shows a decrease to 5.96 GB/$, which
is 0.27× less than the SSD-system, while CSD-system (B) exhibits an increase to 12 GB/$, which
is 1.48× higher. CSD-system (A) experiences a decrease in storage capacity’s efficiency compared
to the total cost, despite reduced CPU cost. Therefore, storage architects should comprehensively
consider both performance/$ and capacity/$ when configuring compute nodes, enabling them to
evaluate the effectiveness of CSD and reduce the Total Cost of Ownership (TCO).

5 CONCLUSION AND FUTURE WORK

HPC facilities have started looking at the potential of adopting storage devices within the simu-
lation nodes which provides an opportunity for adopting in-storage processing solutions within
simulation nodes to perform data analysis tasks. With the advent of CSDs, there are opportunities
for building CSD-array-based computing nodes called CsdStore. With CSDs, data analytic tasks
are offloaded to the device where data resides and, reducing the cost of data movement optimizing
the performance, energy utilization, and total cost of ownership. However, adopting CSDs naively
does not benefit due to the distinct hardware and performance characteristics of commercially
available CSDs. Therefore, in this work, we formulated and implemented a storage capacity plan-
ner, called CsdPlan , that takes into account the hardware and performance characteristics of CSDs,
host systems, and workloads to provision CsdStore in a cost-effective manner. CsdPlan finds the
optimal number of CSDs (BEP) to outperform a traditional compute node with block-based SSDs.
We demonstrated the efficacy of our proposed CsdPlan through two commercial CSDs – SmartSSD
and Newport CSD – and showed how CsdPlan effectively finds optimal BEP. Our proposed solu-
tion also tracks changes in BEP according to the change in hardware parameters of host and CSD
systems (i.e., computational power and I/O bandwidth).

The simulation node can adopt a CSD and SSD combination system (CSD-SSD system). In this
case, CsdPlan’s capacity planner alone is not sufficient to find the optimal BEP according to the
workload. In the CSD-SSD system, the degree of performance improvement due to parallel pro-
cessing varies according to the number of SSDs and CSDs. In addition, the size of the workload
executed by the CSD-SSD system can be dynamically changed depending on the situation, and
several different workloads can be executed simultaneously. Therefore, in this case, sophisticated
workload analysis is required considering the number of SSDs as well as the performance char-
acteristics of CSDs. We will expand CsdPlan as future work to explore technologies that allow
CSD-SSD systems to have optimal performance in dynamic workloads.
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