
Evaluation of Erasure Coding and Opportunistic
Offloading Algorithms using DPU in Distributed

Storage Systems
Junghyun Ryu∗, Hongsu Byun∗, Myungcheol Lee†, Jinchun Choi†, Youngjae Kim∗‡

∗Dept. of Computer Science and Engineering, Sogang University, Seoul, South Korea
†Electronics and Telecommunications Research Institute, Daejeon, South Korea

Abstract—In this paper, we explore accelerating Erasure Cod-
ing by applying the BlueField-3 DPU to distributed storage
systems. First, we evaluated the performance of Erasure Coding
when executed on the CPU and DPU, respectively. The evaluation
results showed that the DPU had a execution time approximately
10.5 times slower than the CPU. This finding indicates that
unconditional offloading is not beneficial; instead, offloading
should be considered opportunistically when the CPU is busy
and not be able to handle Erasure Coding tasks effectively. Based
on this, we propose an opportunistic algorithm for offloading
Erasure Coding to the DPU. Our future work is to refine the
proposed offloading algorithm and apply it to distributed storage
systems using DPUs to improve the performance of Erasure
Coding.

I. INTRODUCTION & BACKGROUND

The Data Processing Unit (DPU) is a solution designed to
optimize computing resources and accelerate data processing
tasks within servers [1]. DPUs enhance overall system per-
formance by performing data processing tasks independently
from the CPU or GPU. This offers significant advantages,
especially for large-scale data processing tasks such as AI, ma-
chine learning, and big data analytics [2]. DPUs can accelerate
specific tasks using its hardware accelerators, such as Erasure
Coding, encryption, and compression [3]. Figure 1 illustrates
the overall architecture of the NVIDIA BlueField-3 DPU. The
hardware Erasure Coding accelerator can be controlled via the
DOCA (Data Center-on-a-Chip Architecture) interface from
the host [4]. DOCA is a software framework developed by
NVIDIA aimed at maximizing the performance, security, and
efficiency of data center infrastructure. DOCA provides a suite
of APIs, libraries, and tools to leverage the full capabilities of
NVIDIA BlueField DPUs. Through DOCA, it is possible to
offload, accelerate, and isolate data center services, enhancing
overall system performance and security.

Distributed storage systems like Hadoop File Sys-
tem (HDFS) and Ceph are highly scalable and durable storage
systems designed to handle large-scale data [5]. These sys-
tems provide essential infrastructure for big data analytics,
cloud computing, and AI applications. The replica storage
method commonly adopted to ensure reliability in distributed
storage systems is inefficient for processing large volumes of
data due to its additional storage consumption. Consequently,
approaches have been made to implement Erasure Coding

‡Y. Kim is the corresponding author.

Erasure Coding
Accelerator

PCIe 
Switch

Arm 
Subsystem

DPU

Network

NIC 
Subsystem

CPU StorageMemory

OS

Host Server

Fig. 1. An architecture of BlueField-3 DPU[3].

based on Reed-Solomon codes to achieve space efficiency
and build reliable storage systems [6]. For instance, in HDFS
using (6, 3) Erasure Coding can save approximately 60% of
storage capacity compared to the 3× replication method [7].
However, Erasure Coding is a computation-intensive task
based on matrix multiplication, which introduces additional
overhead. We aim to reduce the workload on the CPU by
offloading computation-intensive tasks, Erasure Coding, to the
DPU to mitigate the computational overhead in distributed
storage systems. There is little research ever done on Era-
sure Coding with DPU; this is the first work to study the
offloading possibilities and utilize DPU for such purposes.
We evaluated Erasure Coding performance on both the CPU
and DPU. The results showed that the DPU had a execution
time approximately 10.5× slower than the CPU. Based on
the results, we can see that there is no benefit to simply
offloading all Erasure Coding tasks to the DPU. Therefore, we
propose an opportunistic Erasure Coding offloading algorithm
that dynamically offloads Erasure Coding tasks based on the
state of the CPU to efficiently utilize computational resources
on the CPU and DPU.

II. DESIGN & PRELIMINARY RESULT

Experiment Setup. To evaluate the Erasure Coding perfor-
mance of the CPU and DPU, we measured the Erasure Coding
execution time based on different file sizes. The specifications
of the host server and the Bluefield-3 DPU are shown in
Table I. The parameters for the Erasure Coding were set to
(128, 32), where 128 represents the number of data chunks
and 32 represents the number of parity chunks. We assessed
Erasure Coding on two systems:



Fig. 2. Erasure Coding execution time comparison: Host CPU vs. DPU.

• CPU: The host CPU performs Erasure Coding on data
loaded into the host memory and then stores the results in
the host’s SSD. The Erasure Coding library used was Intel’s
ISA-L [8]. Erasure Coding task was executed by binding it
to a single CPU core.

• DPU: DPU performs Erasure Coding using the Erasure
Coding accelerator of the BlueField-3 on data loaded into
the host memory and then stores the results in the host’s
SSD. DOCA was used for the execution of Erasure Coding.

Results. Figure 2 shows the differences in Erasure Coding
execution times between the CPU and the DPU. Encoding
was performed on files of 8MB, 16MB, 32MB, 64MB, and
128MB. The DPU was 13.3× slower than the CPU for an
8MB file, and 10.5× slower for a 128MB file. This finding
indicates that unconditional offloading is not beneficial; in-
stead, offloading should be considered opportunistically when
the CPU is busy and not be able to handle Erasure Coding
tasks effectively. There is a trade-off between freeing host
resources and Erasure Coding execution time. Therefore, we
suggest two approaches: 1) Given the inefficiency of simply
offloading to the DPU Erasure Coding accelerator, Erasure
Coding should be offloaded opportunistically when the host
CPU is busy; 2) In addition to utilizing the DPU Erasure
Coding accelerator, it is possible to fully leverage the ARM
cores of the DPU for a hybrid hardware/software approach,
offloading opportunistically as in the first approach. In this
paper we explore and propose only the first approach.
Offloading Algorithm using DPU. Algorithm 1 illustrates
the preliminary design of offloading algorithm for determining
the execution location(CPU or DPU) of Erasure Coding. The
ECPollingThread function polls the queue where Erasure
Coding requests arrive and decides the execution location
based on the situation. If the CPU is busy, the Erasure Coding
execution is offloaded to the DPU. Otherwise, it operates in
one of three modes based on the admin-configurable status.
1 In latency-sensitive scenarios, Erasure Coding is executed

on the CPU to achieve the fastest response. 2 If not, the

TABLE I
TESTBED SPECIFICATIONS.

Type Host Server BlueField-3

CPU Intel Xeon Silver 4410Y
48-Core, 3.9GHz

Armv8.2 + A78 Hercules
16-Core, 2.0GHz

Memory DDR4, 16 GB * 4 (=64 GB) DDR5, 32 GB (On-board)
OS Ubuntu 22.04.4 Ubuntu 22.04.3

Algorithm 1 Resource-aware Erasure Coding Offloading
1: QueueECRequest ← queue where EC requests arrive
2: function ECPOLLINGTHREAD
3: while True do
4: if isCpuBusy then
5: // EC offloaded to DPU
6: QueueECRequest.dequeue() → DPU
7: else
8: switch status do
9: case isLatenySensitive

10: QueueECRequest.dequeue() → CPU

11: case isAsyncECAllowed
12: QueueECRequest.dequeue() → DPU

13: case isHybrid
14: // α and β represent the number of EC tasks
15: QueueECRequest.dequeue(α) → CPU
16: QueueECRequest.dequeue(β) → DPU

DPU is asynchronously requested to perform Erasure Coding,
allowing the Host Server to focus on other tasks. 3 Lastly,
hybrid execution can be requested, where α and β represent
the number of Erasure Coding tasks executed by the CPU
and DPU, respectively, with their values dependent on system
performance.

III. CONCLUSION

To explore the utility of DPUs in distributed storage sys-
tems, we investigated offloading Erasure Coding tasks to the
DPU. Experimental results showed that executing Erasure
Coding on the DPU through DOCA increased the execution
time by approximately 10.5× compared to the host server.
Therefore, we propose an opportunistic offloading algorithm in
the form of pseudo-code to efficiently utilize all computational
resources.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grants funded by the Korea government (MSIT) (No. 2021-0-
00136, Development of Big Blockchain Data Highly Scalable
Distributed Storage Technology for Increased Applications in
Various Industries).

REFERENCES

[1] “What is a dpu data processing unit.” https://blogs.nvidia.com/blog/
whats-a-dpu-data-processing-unit/, 2020.

[2] X. Wei, R. Cheng, Y. Yang, R. Chen, and H. Chen, “Characterizing
off-path smartnic for accelerating distributed systems,” in 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23),
pp. 987–1004, 2023.

[3] “NVIDIA DOCA Overview.” https://docs.nvidia.com/doca/sdk/nvidia+
doca+overview/index.html, 2024.

[4] “DOCA erasure coding.” https://docs.nvidia.com/doca/sdk/doca+erasure+
coding/index.html, 2024.

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[6] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[7] “Evaluation erasure coding hadoop 3.” https://db-blog.web.cern.ch/blog/
emil-kleszcz/2019-10-evaluation-erasure-coding-hadoop-3, 2019.

[8] Intel Corporation, “ISA-L: Intelligent Storage Acceleration Library.”
https://github.com/intel/isa-l, 2015. Accessed: 2024-07-01.

https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
https://docs.nvidia.com/doca/sdk/nvidia+doca+overview/index.html
https://docs.nvidia.com/doca/sdk/nvidia+doca+overview/index.html
https://docs.nvidia.com/doca/sdk/doca+erasure+coding/index.html
https://docs.nvidia.com/doca/sdk/doca+erasure+coding/index.html
https://db-blog.web.cern.ch/blog/emil-kleszcz/2019-10-evaluation-erasure-coding-hadoop-3
https://db-blog.web.cern.ch/blog/emil-kleszcz/2019-10-evaluation-erasure-coding-hadoop-3
https://github.com/intel/isa-l

	Introduction & Background
	Design & Preliminary result
	Conclusion
	References

