
Ensuring Compaction and Zone Cleaning Efficiency through
Same-Zone Compaction in ZNS Key-Value Store

Sungjin Byeon1, Joseph Ro1, Jun Young Han2, Jeong-Uk Kang2, and Youngjae Kim 1,†
1Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea

2Samsung Electronics Co.
{sjbyeon, josephro12, youkim}@sogang.ac.kr, {jy0.han, ju.kang}@samsung.com

Abstract—In this paper, we address inefficiencies in compaction
algorithms within ROCKSDB for ZNS SSD, with a focus on the
performance and lifetime issues arising from excessive copying
of value data. To overcome these challenges, we propose an inno-
vative compaction algorithm that considers the SSTable layout,
termed Same-Zone Compaction. This algorithm aims to selectively
choose SSTables predominantly located within the same zone
during the compaction process, maximizing the generation of
deleted SSTables in that zone after the merge-sort operation.
Following this, newly created SSTables are strategically allocated
to zones expected to have high deletion rates in future com-
pactions, enhancing the frequency of Same-Zone Compaction. We
introduce two algorithms: the Zone-Aware Compaction Victim
Selection Algorithm (ZACA) and the Compaction-Aware Zone
Allocation Algorithm (CAZA). Implemented in ROCKSDB v7.4
with ZenFS v2.1, our comprehensive evaluation using micro-
benchmarks and YCSB benchmarks shows that ZACA and
CAZA together reduce Zone Cleaning overhead by 80%, im-
prove PUT(k,v) performance by 1.16x, and extend the lifespan
of ZNS SSDs by 8.6%.

I. INTRODUCTION

The Zone Namespace SSD (ZNS SSD) [1]–[3] divides
the logical address space into fixed-size zones, each only
allowing sequential writes to optimize NAND flash memory
utilization [4]. This coarse-grained management at the zone
level eliminates the need for over-provisioning space and in-
device garbage collection [3], [5]. However, to create free
space on ZNS SSDs, the ZNS file system operated by the host
(e.g., ZenFS [6]–[8]) must perform Zone Cleaning (ZC) [9].
ZC involves replicating valid data from one zone to another
and then using the zone-reset command to delete the source
zone, turning it into an empty zone [1], [7], [10], [11]. This
process of copying valid data during ZC introduces the Write
Amplification (WA) issue [12].

Meanwhile, LSM-tree-based key-value stores like
ROCKSDB [13] are considered optimal for ZNS SSDs
due to their log-structured tree structure, which facilitates
sequential writes [12], [14]. LSM-TREE operates on top
of the ZNS file system mentioned earlier and performs
compaction by merge-sorting SSTable/SST files, deleting
invalid data, and creating an ordered tree composed of unique
key-value pairs. This compaction process, similar to ZC,
involves significant reading and writing of SSTables, which
introduces the Write Amplification (WA) issue.

†Y. Kim is the corresponding author.

In addressing WA concerns, ZenFS has implemented the
Lifetime-based Zone Allocation (LIZA) algorithm. This algo-
rithm estimates the lifetime of SSTables based on the level
of LSM-TREE at which the SSTable is placed and places
SSTables with same lifetime into the same zone. However,
relying solely on the LSM-TREE level to predict SSTable
lifetimes can lead to inaccuracies, resulting in the co-location
of SSTables with different actual lifetimes in the same zone.
Consequently, these SSTables may not be deleted simultane-
ously during compaction, leading to increased WA due to the
need to copy valid data during Zone Cleaning.

Additionally, ROCKSDB selects SSTables for compaction
based solely on their size, without considering the layout of
SSTables (i.e., information about the zones where SSTables
are placed). This results in two issues. Firstly, compaction
involving multiple SSTables triggers read I/O from various
zones. Since SSTables are scattered across multiple zones, this
results in random read I/O, which is slower than sequential
reads from SSTables within a single zone [15], [16] (Refer to
Figure 4). Consequently, the execution speed of compaction
is degraded due to this random read I/O. Secondly, after
compaction, the SSTables involved in the compaction process
need to be deleted. However, the deleted files are scattered
across multiple zones. As will be explained later, during
ZenFS’s Zone Cleaning (ZC), this dispersion of SSTable files
lead to the generation of numurous valid data copies, thereby
diminishing the efficiency of ZC.

To address these challenges, we propose a compaction
technique that takes into account the layout of SSTable in
ROCKSDB. The first key idea involves selecting a group
of SSTables located in the same zone for merge-sort. This
strategy, which we refer to as Same-Zone Compaction, aims
to maximize the number of SSTables deleted in the zone
after the merge-sort operation. The second key idea is to
allocate a zone for a newly created SSTable after the merge-
sort in compaction, with the anticipation that the zone has
a number of SSTables likely to be deleted together in the
future. This strategy is designed to facilitate numerous Same-
Zone Compactions. To implement these ideas, we propose the
following two algorithms.

Firstly, we introduce the Zone-Aware Compaction Victim
Selection Algorithm (ZACA), which selects SSTables based
on their zone layout and prioritizes those with the highest
Ssame (§V). The Ssame is a metric that quantifies how many

SSTables participating in a compaction are located in the same
zone. However, ZACA presents challenges such as increased
merge-sort time and write stall time compared to the baseline
algorithm, named the Size-based Compaction Victim Selection
Algorithm (SICA). ZACA shows positive effects on ZC
Efficiency. However, it can increase the size of compaction
victims, leading to an increase in write stalls. To address these
challenges, we propose the Adaptive Compaction Controller
(ACC). The ACC dynamically switches between invoking
SICA and ZACA based on a predefined free space threshold.
When free space is under the threshold, ZACA turns on
as Zone Cleaning is urgent. It reduces the valid data copy
overhead of ZenFS’s ZC and ROCKSDB’s write stall, thereby
enhancing the performance of PUT(k, v) operations.

Secondly, we present the Compaction-Aware Zone Allo-
cation algorithm (CAZA) (§VI). Initially introduced in our
previous study [17], CAZA strategically allocates zones where
many SSTables are likely to be deleted simultaneously in the
future to newly created SSTables. The core strategy idea is
to allocate the zone with the highest overlap of the key-range
among SSTables. This paper extends the CAZA algorithm
by incorporating the size of SSTable and leveled compaction
score (Slevel), which are detailed in Section VI. For clarity,
we will refer to the enhanced version simply as CAZA.

The key contribution of this paper is as follows:

• We closely examined the compaction process in ROCKSDB
for ZNS SSDs, defined the necessity of Same-Zone Com-
paction, and proposed a compaction algorithm that considers
the layout of SSTables (§III).

• To maximize the benefits of Same-Zone Compaction, we
introduced ZACA (§V), a compaction victim selection
algorithm.

• Furthermore, to mitigate the issue of prolonged compaction
execution times associated with ZACA, we proposed an
Adaptive Compaction algorithm that can operate in hybrid
mode alongside SICA, enhancing overall efficiency (§V-B).

• We proposed CAZA (§VI), a compaction-aware zone al-
location algorithm, designed to induce Same-Zone Com-
paction in the future SSTables created after compaction.

• We implemented both ZACA and CAZA by modifying
ROCKSDB v7.4 and ZenFS v2.1.

Extensive evaluations demonstrate that employing both
ZACA and CAZA effectively reduces ZenFS’s ZC overhead
by 80%, leading to a significant 16% improvement in the
performance of PUT(k, v) across both micro-benchmarks and
YCSB benchmarks. Furthermore, this approach results in an
8.6% reduction in the zone-reset count, contributing to an
extended lifetime of ZNS SSDs.

II. BACKGROUND

A. LSM-tree-based Key-value Stores

ROCKSDB’s LSM-TREE structure [14] consists of both
memory components and storage components. When a user
initiates a PUT(k, v) operation, the key-value pair is stored in
an in-memory data structure called the Memtable. Once the

0-130 44-77 40-190 60-90

0-25 33-65 69-120 125-150

0-11 12-40 55-135 144-192

MemtablePUT(k,v)

Flush

size limit L0 to L1 compaction

Fig. 1: Description of ROCKSDB’s LSM-tree.

Memtable reaches full capacity, a flush operation is triggered,
which transforms the Memtable into an on-disk data structure
known as the Sorted String Table (SSTable).

The SSTables written to disk are managed within the
hierarchical level structure of the LSM-TREE. SSTables at
level 0 (L0) are unsorted, while those at level 1 and beyond
are sorted through the compaction process. Each level in this
structure has a defined size limit, and as the levels increase,
so do these limits. When the size of SSTables at any level
exceeds its predefined size limit, a compaction process is
initiated to maintain the structural integrity and ensure the
lookup performance of the LSM-TREE.

The compaction process involves merge-sorting the SSTa-
bles in Li with those in Li+1 that have overlapping keys.
The SSTables involved in this merge-sort are referred to
as compaction victims. The result of this merge-sort is the
creation of new SSTables in Li+1. Subsequently, the SSTables
in both Li and Li+1 that were involved in the compaction are
deleted. SSTables at level 1 and beyond have non-overlapping
key ranges, forming a disjoint set. Figure 1 illustrates the data
structure and its operations.

Expensive L0-to-L1 compaction: In the process of L0-to-
L1 compaction, numerous SSTables at both L0 and L1 are
involved in a merge-sort operation, since SSTables at L0 are
initially unsorted [18]. If an SSTable at L0 is chosen as a
victim for compaction, this leads to the inclusion of many
SSTables at L1 whose key ranges overlap with the SSTable
selected as the victim. Consequently, L0-to-L1 compaction
takes a substantial amount of time and blocks incoming
PUT(k, v) requests, thus emerging as the primary cause of
write stalls [19]–[21].

B. Algorithm for Choosing SSTables for Compaction

The selection of SSTables for merge-sort during compaction
directly impacts the efficiency of the compaction process.
Therefore, an efficient algorithm for choosing SSTables is
crucial. ROCKSDB adopts an algorithm that selects SSTables
(compaction victims) for compaction based on the sizes of
the SSTables. This algorithm is referred to as the Size-based
Compaction Victim Selection Algorithm (SICA).

SICA operates as follows:

• (Step 1) SICA calculates the extent to which the sum of
sizes of SSTables at each level exceeds the size limit. We
denote this value as the leveled compaction score (Slevel).
Specifically, Slevel is computed by dividing the sum of sizes

of SSTables at each level by the size limit of that level.
Compaction is initiated first at the level with the highest
Slevel with exceeding 1.

• (Step 2) Let Li be the level with the highest Slevel. In this
scenario, the largest SSTable in Li, along with SSTables in
the next level (Li+1) whose key ranges overlap with it, are
selected as compaction victims.

• (Step 2-1) If multiple SSTables are the largest in Li, the
algorithm selects the SSTable in Li that has the smallest
total size of overlapping SSTables in Li+1. This choice aims
to minimize the number of key-value pairs participating in
the merge-sort, thereby reducing the compaction time.

• (Step 2-2) If there are no SSTables in Li+1 whose keys over-
lap with those in Li, the metadata and level of the SSTable
in Li are changed to Li+1 without performing merge-sort
and write I/O [18]. In this manner, SICA can significantly
reduce the size of Li while simultaneously decreasing the
WA of Li+1. However, as detailed in Section III, SICA
selects SSTables without considering the zone layout of
SSTables (the zones where SSTables are arranged), which
results in suboptimal compaction efficiency, adversely af-
fecting both system performance and device lifespan.

C. Zone Management Middleware

To operate an LSM-tree-based key-value store on ZNS
SSDs, middleware or a file system that supports ZNS is
required. For ROCKSDB, this is achieved through ZenFS [1],
[6], [7], which is a user-level file system designed to facilitate
this compatibility. ZenFS performs two major functions: Zone
Allocation and Free Space Reclamation.

1) Zone Allocation: ZenFS performs Zone Allocation, a
feature specifically designed to place SSTables in appropriate
zones. When a new SSTable is generated due to a flush or
compaction, ZenFS not only allocates a zone for this SSTable
but also manages the metadata associated with it.

Specifically, ZenFS implements the Lifetime-based Zone
Allocation algorithm (LIZA), which assigns lifetimes to SSTa-
bles based on the varying compaction frequency characteristics
at different levels. As discussed in Section II-A, ROCKSDB
sets increasing size limits for each level as the level num-
ber grows. When the size limit of a level Li is exceeded,
compaction from Li to Li+1 is triggered. This means that
lower levels, with smaller size limits, experience more frequent
compactions, whereas higher levels, with larger size limits,
undergo compactions less frequently.

LIZA allocates zones in the following manner: It uses four
different lifetime hint values; Short (1), Medium (2), Long (3),
and Extreme (4). For ease of explanation, these are denoted as
integer values. Each new SSTable is assigned a lifetime hint
based on its destination level. SSTables destined for levels L0

or L1 are assigned a Medium (2) hint. For L2, a Long (3)
hint is assigned. SSTables for L3 and higher levels receive
an Extreme (4) hint. Short (1) is assigned to data other than
SSTables, such as the Write-Ahead Log (WAL) and Manifest,
which contains summary information of the LSM-TREE.

In LIZA, each zone also has a lifetime hint, determined
by the hint of the first SSTable written to the zone. Once the
lifetime hint h of an SSTable is determined, LIZA searches
for the zone with the smallest lifetime hint value that is equal
to or greater than h and places the SSTable there. If there is
no matching zone, LIZA allocates an empty zone and sets
its lifetime hint to h. If there are no empty zones available,
SSTables are placed in the zone with the closest lifetime hint.

2) Free Space Reclamation: As zones fill up with invalid
SSTables, the availability of free zones in the ZNS SSD
diminishes. Consequently, ZenFS initiates a process known as
Zone Cleaning (ZC). The ZC process involves the following
steps: (1) selection of a victim zone with the fewest valid
SSTables; (2) copying of valid SSTables to another zone; and
(3) setting all SSTables within the victim zone to a free state
by erasing the zone using zone-reset commands.

Copying valid SSTables is a time-consuming process, re-
quiring numerous NAND page read and write I/O opera-
tions [11], [22], [23]. Consequently, a substantial delay in
providing sufficient free space can occur, especially when
there is a significant amount of valid data in the victim zones.
In such cases, I/O operations issued by ROCKSDB’s internal
processes, such as compaction and flush, may be blocked until
an adequate amount of free space is provided, resulting in
what is known as I/O blocking [5], [10]. Furthermore, copying
valid SSTables during ZC can contribute to increased WA [12],
which in turn, adversely affects the overall efficiency and
lifespan of the ZNS SSD.

III. MOTIVATION

A. Problems with ROCKSDB’s Compaction Algorithm

ROCKSDB selects SSTables (compaction victims) for
merge-sort during compaction without considering their zone
placement. Consequently, it grapples with the challenge of
suboptimal optimization from both performance and device
lifetime perspectives. To provide a more detailed explanation
of these issues, first we define two compaction types – Zone-
Across Compaction and Same-Zone Compaction.

Definition 1: Zone-Across Compaction refers to the
scenario where the SSTables selected as compaction
victims are distributed across multiple different zones.
Definition 2: Same-Zone Compaction refers to the
scenario where the SSTables selected as compaction
victims are all located within a single zone.

Figure 2 and Figure 3 effectively illustrate the compari-
son between the operations of Zone-Across Compaction and
Same-Zone Compaction, and their respective ZC costs.

Figure 2(a) illustrates an example of Zone-Across Com-
paction. In Figure 2(a), three victim SSTables are distributed
across distinct zones. In such cases, reads must be performed
on SSTables belonging to different zones during the com-
paction process. As zones are not necessarily adjacent in
physical space, random reads are necessary to access SSTables

RanRead SeqRead

victim
SST SST SST SST

zone 0

zone 3

zone 1

zone 2

victim
SST SST SST SST

victim
SST SST SST SST

SST

invalid SST SST SST

zone 0

zone 3

zone 1

zone 2

invalid SST SST SST

invalid SST SST SST

SST SST SST SST

Valid InvalidSST copy

(a) Zone-Across Compaction (b) Zone Cleaning
Fig. 2: Zone-Across Compaction.

during the merge-sort operation. Following the completion of
the merge-sort, all SSTables that participated become invali-
dated/deleted.

Furthermore, ZenFS manages the space of zones on ZNS
SSDs. When the number of free zones falls below a specific
threshold, resulting in a space shortage, ZenFS initiates ZC.
Figure 2(b) illustrates a scenario where ZC is taking place.
Suppose the victim zone selection algorithm for ZC chooses
the zone with the fewest valid SSTables. In the given example,
zones 0, 1, and 2 each contain an equal number of valid
SSTables. Consequently, zone 2 is selected as the victim and
undergoes a reset. The cost associated with resetting zone 2
involves copying the three valid SSTables to another zone and
performing a single zone reset.

Figure 3(a) provides an example of Same-Across Com-
paction. In Figure 3(a), the three SSTables chosen as com-
paction victims are all located in zone 0. Since all SSTables
are sequentially arranged within a single zone, the merge-sort
can be executed with sequential reads, thus enhancing the effi-
ciency of the process. Subsequently, if Zone Cleaning (ZC) is
performed following the previously described victim selection
algorithm, zone 0 is designated as the victim. Figure 2(b)
illustrates this ZC scenario. The cost of ZC involves copying
one SSTable from zone 0 to another zone and performing a
single zone reset.

Since the ZNS SSD leverages high I/O parallelism within
the device, it achieves higher throughput and lower response
times for sequential read access patterns compared to random
access patterns [16], [24]. Furthermore, when the Linux kernel
detects a sequential I/O pattern, it employs read-ahead tech-
niques to prefetch the subsequent block address into the page
cache [15]. Thus, prefetching enhances the page cache hit ratio
for sequential read patterns, thereby reducing disk I/O and
improving read performance.

To further investigate, we assessed the I/O performance of
ZNS SSDs under workloads characterized by sequential read
and random access patterns, employing the Flexible I/O Tester
(FIO) [25]. The configuration of the ZNS SSD used in our
experiments is detailed in SectionVII-A. The outcomes are
presented in Figure 4.

In Figure 4, when using Buffered I/O, regardless of the
queue depth, the page cache hit ratio for sequential read
patterns is 15% higher than that for random read patterns,

RanRead SeqRead

SST victim
SST

victim
SST

victim
SST

zone 0

zone 3

zone 1

zone 2

SST SST SST SST

SST SST SST SST

SST

invalid SST SST SST

SST SST

SST invalid invalid invalid

zone 0

zone 3

zone 1

zone 2

SST SST SST SST

Valid InvalidSST copy

(a) Same-Zone Compaction (b) Zone Cleaning
Fig. 3: Same-Zone Compaction.

Latency (us)

0

50

100

150

200
Buffered I/O Direct I/O

Pa
ge

 C
ac

he
 H

it
R

at
io

 (%
)

0

0.5

1

SeqRead RanRead

Latency (us)

0

50

100

150

200
Page Cache Hit Ratio

Pa
ge

 C
ac

he
 H

it
R

at
io

 (%
)

0

0.5

1

SeqRead RanRead

(a) Queue Depth = 1 (b) Queue Depth = 256
Fig. 4: Comparisons of latency and page cache hit ratios for
sequential or random read patterns on ZNS SSDs.

and the latency is 75% lower. Additionally, even in the case
of direct I/O without using the page cache, sequential read
patterns exhibit 31% lower latency compared to random read
patterns.

In Same-Zone Compaction, since all SSTables are located
within the same zone, sequential read patterns can be more
effectively utilized for reading SSTables compared to Zone-
Across Compaction. Consequently, Zone-Across Compaction
exhibits less efficient read performance due to its reliance on
random read patterns during compaction, which can lead to
reduced compaction processing speeds.

Moreover, Zone-Across Compaction involves deleting
SSTables scattered across multiple zones, leading to zones
with a mix of valid and invalid data. This situation increases
the amount of valid data that must be copied from the selected
victim zone during subsequent ZC. As a result, these copies
of valid data prolong the execution time of ZC and extend the
blocking period of I/O operations. Additionally, the extensive
copying of valid data results in write amplification, which
adversely impacts the device’s lifetime.

Observation 1: Zone-Across Compaction requires a
higher number of random reads compared to Same-
Zone Compaction.
Observation 2: Zone-Across Compaction results in a
greater volume of valid data being copied during Zone
Cleaning (ZC) compared to Same-Zone Compaction.

Additionally, the Size-based Compaction Victim Selection
Algorithm (SICA) introduced in Section II for RocksDB
focuses on minimizing the execution time of compaction
through merge-sort and reducing the size of Li that exceeds
the specified size limit. Consequently, this often leads to cases

of Zone-Across Compactions.

Observation 3: ROCKSDB’s Size-based Compaction
Victim Selection Algorithm (SICA) frequently results
in Zone-Across Compactions due to its failure to ac-
count for the placement of compaction victims (Victim
SSTables) within zones (SSTable layouts).

B. Inefficient Zone Allocation in ZenFS and Its Limitations

ZenFS implements the Lifetime-based Zone Allocation al-
gorithm (LIZA). Our detailed analysis of LIZA’s algorithm
and the compaction process has confirmed that it significantly
reduces the occurrence of Same-Zone Compaction.

During Li-to-Li+1 compaction, the victims selected for
compaction include not only SSTables from Li but also
SSTables from Li+1. However, LIZA organizes SSTables with
similar lifetimes based on their levels, placing those with the
same lifetime in the same zone. Consequently, if the lifetimes
of Li and Li+1 SSTables differ, SSTables from Li and Li+1

will unavoidably be placed in different zones. For example,
L1 is set to ’Medium,’ and L2 is set to ’Long,’ and those
SSTables are placed in different zones. It implies that L1-
to-L2 compactions are always Zone-Across Compaction. In
other words, LIZA allocates zones based solely on the lifetime
of SSTables, disregarding fact that compaction victims are
selected in two levels and deleted after compaction later.
Consequently, LIZA is unable to place SSTables with levels
within the same zone.

Observation 4: LIZA induces Zone-Across Com-
paction by separating SSTables with varying lifetimes
into different zones, even though these SSTables un-
dergo compaction together.

Compaction is a process that performs a merge-sort with
key-overlapping SSTables, as discussed in Section II-A.
Specifically, during the Li-to-Li+1 compaction process, a
SSTable(S) from level Li is selected as a pivot, and SSTables
whose key ranges overlap with SSTable(S) from Li+1 are
chosen as compaction victims. In other words, there’s a higher
probability that SSTables with overlapping/close key-ranges
will undergo compaction together. However, LIZA places
SSTables sorely based on lifetime determined by the level,
disregarding key-ranges of each SSTable.

Observation 5: LIZA induces frequent Zone-Across
Compaction because it places SSTables in the same
zone even though the SSTables have non-overlapping
key ranges.

In ROCKSDB, Li-to-Li+1 compaction selects the largest
SSTable from Li as compaction victims, as discussed in the
Section II-B. The probability of an SSTable from Li being
chosen as the compaction victim for Li-to-Li+1 compaction

increases with its size. ROCKSDB sets the default size of an
SSTable to 64MB. We have observed that when compaction
victims include SSTables with overlapping keys or deleted
keys, the newly created SSTables after merge-sort during com-
paction can be smaller than 64MB. However, LIZA allocates
zones without any consideration for the sizes of SSTables. By
placing SSTables in the same zone without distinguishing their
sizes, LIZA inadvertently mixes large and small SSTables into
the same zone. This lowers the probability of invoking Same-
Zone Compaction.

TABLE I: Distribution of SSTable size.
SSTable (MB) [0-1] [2-32] [33-63] [64]

of SSTables 38 500 960 3714

Table I presents the distribution of SSTable sizes generated
when conducting writes of 300GB or more using ROCKSDB’s
db bench [26]. Approximately 3,700 SSTables were created
with the default size of 64MB, while around 1,500 SSTa-
bles were generated with sizes smaller than 64MB. Details
regarding the experimental setup and workload can be found
in Section VII-A.

Observation 6: LIZA induces frequent Zone-Across
Compaction by co-locating large and small SSTables
within the same zone, without discerning their re-
spective probabilities of being chosen as compaction
victims.

LIZA assumes that compaction frequency varies with the
size limit of levels and predicts SSTable lifetime based on this
assumption. Specifically, LIZA assumes that lower levels, hav-
ing smaller size limits, experience more frequent compactions.
Consequently, it assumes that SSTables in lower levels have
shorter lifetimes, while those in higher levels have longer
lifetimes. However, instead of such rough estimates, a more
accurate prediction of compaction frequency at a specific time
for a level is based on a score metric (Slevel), which is the
ratio of the cumulative size of SSTables in a level to its size
limit.

For instance, suppose that at time T , the Slevel[3] repre-
senting the score (Slevel) of L3 is the highest and greater than
or equal to 1. The L3-to-L4 compaction occurs frequently,
prioritized until time T + N when Slevel[3] becomes lower
than or equal to the Slevel of other levels. Thus, compaction
frequency is not consistently determined by the size limit of
the level but can vary based on the Slevel at time T . Despite
this, the LIZA algorithm consistently assigns “Extreme” to
the SSTables of L3 regardless of their Slevel, and at time T ,
it assigns “Medium” to the SSTables of L1 with Slevel lower
than L3.

Observation 7: LIZA inaccurately predicts the life-
time of SSTables due to an imprecise estimation of
compaction frequency.

RocksDB

Flush
Scheduler

Adaptive
Compaction
Controller

SICA ZACA

Zone
Cleaning

Zone Pool ZenFS

Zone Allocation

LIZA

CAZA

LSM-tree

SST
SST

I/O path control path

Fig. 5: The software architecture of our proposed system. The
areas shaded in blue represent the newly added components.

In summary, LIZA frequently induces Zone-Across Com-
paction in the LSM-TREE by inaccurately considering pa-
rameters such as level, key-range, SSTable size, and Slevel

associated with compaction. The increased occurrence of
Zone-Across Compaction due to LIZA results in an elevated
random read pattern during compaction. Additionally, the
frequent Zone-Across Compaction induced by LIZA leads
to an increase in the number of valid SSTable copies and
I/O blocking time after the occurrence of Zone-Across Com-
paction, resulting in decreased performance of compaction and
flush operations.

IV. OVERVIEW

ROCKSDB for ZNS SSD is tightly coupled with the file
system layer, ZenFS. In this study, we introduce cross-layer
collaborative algorithms—specifically, the Zone-Aware Com-
paction Algorithm (ZACA) at the ROCKSDB layer and the
Compaction-Aware Zone Allocation Algorithm (CAZA) at the
ZenFS layer. Our aim is to enhance the processing throughput
of compaction operations in ROCKSDB and zone cleaning in
ZenFS. These collaborative algorithms are designed to extend
the lifetime of ZNS SSDs.

ZACA and CAZA collaborate synergistically to facilitate
efficient Same-Zone Compaction, as detailed in Section III.
Leveraging sequential reads to the maximum extent, these
algorithms are designed to minimize compaction time. Fur-
thermore, by strategically reducing the volume of copied valid
data during ZC, the algorithms mitigate ZC I/O blocking
time in ZenFS, leading to a reduction in write amplification.
Ultimately, this collaborative effort contributes to an extended
lifespan of ZNS SSDs.

Figure 5 presents a detailed software architecture overview
of ROCKSDB and ZenFS with the integration of the ZACA
and CAZA algorithms within the system. Firstly, ZACA
judiciously selects SSTables close to Same-Zone Compaction
as compaction victims, employing a metric called Ssame

(elaborated in Section V). Secondly, CAZA operates within
the Zone Allocation module of ZenFS. When a zone allocation
request for SSTable files is triggered by ROCKSDB, the Zone

key-range ※

Fig. 6: Description of the participating SSTables (Gj) in
the merge-sort process for the victim SSTable (V Ci,j) when
compaction occurs in Li.

Allocation module of ZenFS allocates/assigns zones from the
zone pool using the CAZA algorithm. CAZA places SSTables
within the zone where they are likely to be selected as com-
paction victims together during subsequent compaction. The
CAZA algorithm considers factors such as Slevel, SSTable
size, and key range when assigning SSTables to zones, thus
inducing Same-Zone Compaction.

V. ZACA: ZONE-AWARE COMPACTION VICTIM
SELECTION ALGORITHM

Same-Zone Compaction involves selecting compaction vic-
tims from Li, where the SSTables from Li and Li+1 are
all located in the same zone, and utilizing them for merge-
sort. Therefore, the primary objective of ZACA is to select
compaction victims during compaction that are as close as
possible to Same-Zone Compaction. Consequently, ZACA
achieves two key goals: (i) increasing the sequential read I/O
pattern during compaction to reduce compaction time and (ii)
reducing the amount of the valid SSTable copying, which is
the primary overhead in ZC, resulting in a reduction of I/O
blocking time.

A. Selecting Compaction Victims using the Same-Zone Score

ZACA selects SSTables as compaction victim for com-
paction operations using the Same-Zone Score (Ssame). Now
we elucidate the method employed by ZACA of how to
calculate the Ssame. To simplify the explanation, we introduce
the following notations. Assume compaction is initiated in Li,
and there are NLi

SSTables in Li. ZACA selects a SSTable,
which is V Ci,k (victim candidate), from the NLi SSTables
in Li using the Ssame (k = 1...NLi). Consider all SSTables
in Li+1 whose key-ranges overlap with V Ci,k, forming a set
denoted as Gk (k = 1...NLi

). It is noteworthy that k serves
as the group index for Gk hereafter.

Figure 6 represents the visualization of NLi
, V Ci,k, and

Gk, where NLi
is 3. ZACA calculates the Ssame[k] for each

Gk. Before delving into the calculation of the Ssame[k], let’s
introduce some additional notations. Each SSTable within Gk

is associated with at least one zone. It is important to note
that ZACA can consult ZenFS to determine the specific zone
to which each SSTable belongs. We assume total number of
zones on the ZNS SSD is Nzone. ZACA computes the sum
of sizes (Sk,m) of SSTables within Gk for each zone m (m =
1...Nzone). If there are no SSTables from Gk in zone m, then
Sk,m is set to 0. Otherwise, it takes a value greater than 0.

TABLE II: Notations for Problem Formulation.
Component Description

Nzone Numbers of zones in ZNS
NLi Numbers of SSTables at Li

k, Gk Group index, group k
m Zone index

V Ci,k Li SSTables can be selected as Li-to-Li+1 compaction
Sk,m Sum of Group k SSTs’ size in zone m

Ssame[k] Same-Zone Score of Gk

Slevel[i] Li-to-Li+1 compaction score by size limit
Sinval Score calculated by invalid ratio after compaction

ZACA calculates Sk,m for all zones and determines
Ssame[k] for Gk by dividing the sum of the squares of Sk,m

(m = 1...Nzone) by the square of the sum.
Equation 1 represents the formulation of Ssame[k] for Gk.

Ssame[k] =

∑Nzone

m=1 (Sk,m
2)

(
∑Nzone

m=1 Sk,m)2
(1)

This equation originates from the Standard Deviation, which
represents the dispersion of a specific variable. Ssame[k]
takes values between 0 and 1. As the SSTs included in the
compaction victim are distributed across multiple zones (Zone-
Across Compaction), the score approaches 0. Conversely, if all
SSTs are located in a single zone (Same-Zone Compaction),
the score is 1. Detailed descriptions of notations are provided
in Table II. Note that i is level, k is group index, m is zone
index.

ZACA calculates the Ssame[k] for all Gk in Li and selects
the Gk with the highest Ssame as the compaction victim.
ZACA performs merge-sort for Gk and then generates new
SSTables. Finally, ZACA in ROCKSDB deletes the SSTables
in Gk, which means invalidating SSTables located in the
corresponding zones by ZenFS.

To simplify the explanation of the algorithm described ear-
lier, we calculate the Ssame for each case using the examples
presented in Figures 2 and 3. Here, we assume a zone size of
4, and each SSTable size is 1.0. In Figure 2, group k, we have
Sk,0 = 1.0, Sk,1 = 1.0, Sk,2 = 1.0, Sk,3 = 0.0. Therefore,
the Ssame[k] is calculated as (1.02+1.02+1.02)

(3.0)2 = 0.33. On the
other hand, in Figure 3, group k′, we have Sk′,0 = 3, and
all other Sk′,m are 0.0. Since the Ssame[k

′](= 1.0) is greater
than Ssame[k](= 0.33), group k′ is selected as the compaction
victim. As in the example, ZACA calculates the Ssame[k] for
all Gk (k = 1...NLi) and selects the Gk with the highest
Ssame as the compaction victim.

B. Adaptive Compaction Controller

ZACA enhances the sequential read pattern and ZC ef-
ficiency. However, a drawback compared to the traditional
SICA is that it performs merge-sort on a larger number of
key-value pairs, leading to longer compaction duration. As
discussed in Section III, SICA significantly reduces the size
of Li that exceeded the size limit while optimizing the sum of
key-value pairs participating in the merge-sort. Consequently,
SICA achieves relatively shorter compaction duration. On the
other hand, ZACA selects compaction victims based on Ssame

I/O Blocking time
in ZenFS

Write stall
in RocksDB

Write stall w/
I/O Blocking time

Write stall w/
Merge-sort time

I/O Blocking time w/
Merge-sort time Merge-sort time in

compaction

SICA
ZACA
ACC

I/O Blocking
in ZenFS

Merge-sort
time

Write stall in
RocksDB Performance

SICA High Low High Low
ZACA Low High High Low
ACC Med Med Low High

Fig. 7: The performance tradeoff in RocksDB and ZenFS
between SICA and ZACA.

rather than size. This means that in ZACA, the total size,
i.e., the sum of key-value pairs participating in the merge-
sort, increases during compaction, requiring more read/write
I/O in a single compaction operation and potentially causing
longer compaction times.

• Insight 1: There are two factors contributing to prolonged
compaction: (i) an increase in I/O blocking time due to
ZC and (ii) an increase in the number of key-value pairs
undergoing merge-sort.

• Insight 2: While ZACA aims to reduces I/O blocking
time, if the number of key-value pairs subjected to merge-
sort increases, compaction may take longer compared to
SICA. Consequently, there is a concern about an elevated
write stall, potentially leading to a decrease in PUT(k,v)
performance.

Hence, we introduce the Adaptive Compaction Controller
(ACC), a control mechanism that dynamically chooses be-
tween SICA and ZACA based on the free space ratio on
the ZNS SSD.

Figure 7 visually depicts the design tradeoff according to
the compaction victim selection algorithm, highlighting the
comparison between SICA, ZACA, and ACC.

Particularly, we have observed that the execution time of
ZC increases when the free space ratio on the ZNS SSD
is low, causing blocking in I/O operations of LSM-TREE
(ROCKSDB), including Memtable flush operations and com-
paction I/Os. As explained earlier, SICA does not effectively
reduce the I/O blocking time of ZC. Therefore, ACC suggests
using ZACA instead of SICA when the free space ratio on the
ZNS SSD is lower than threshold(turning point), as ZACA is
known to mitigate I/O blocking. Conversely, when the free
space ratio is higher than threshold, ACC opts for SICA,
in contrast to the explanation provided earlier. Pseudocode 1

Pseudocode 1: Adaptive Compaction Controller
1 function ACC(free_space_ratio, level)
2 if free_space_ratio > turning_point then
3 return SICA()

4 if level == 1 or level == 0 then
5 return SICA()

6 return ZACA()

outlines the algorithm of ACC.
Additionally, in the case of ROCKSDB, we observed that

L0-to-L1 compaction and L1-to-L2 compaction are not paral-
lelized (they occur serially) [27], and the compaction duration
for these operations is notably high. Specifically, ZACA
increases the number of key-value pairs participating in the
merge-sort, thereby prolonging the compaction duration. To
address this, in ACC, ZACA is designed to be applied only
to L2-to-L3 compaction and subsequent higher-level com-
pactions, where i ≥ 2, to mitigate the impact on performance.
Consequently, ZACA controlled by ACC reduces write stall,
enhancing PUT performance.

VI. CAZA: COMPACTION-AWARE ZONE ALLOCATION

As discussed in the previous section, ZACA is an algorithm
that directly selects the Gk with the highest Same-Zone
Score to induce a compaction most similar to Same-Zone
Compaction. On the other hand, CAZA [17] is an algorithm
designed to allocate zones for placing SSTables during their
creation to increase the likelihood of inducing Same-Zone
Compaction in the future. Note that SSTables are generated
either when flushing from Memtable to disk or as a result of
compaction.

When compaction occurs in Li, a victim SSTable within
Li, is selected based on the SICA or ZACA algorithms
previously discussed. Subsequently, a merge-sort is executed
on this victim SSTable and SSTables at level Li+1 that have
overlapping keys with the key range of the victim SSTable. So,
from the viewpoint of an SSTable (S), the compaction process
involves either merging with SSTables in Li−1 or with those
in Li+1.

In the phase of selecting the compaction victim, if an
SSTable(S) becomes the victim and undergoes merge-sort
with SSTables (regardless of Li−1 or Li+1) in the same
zone, it represents the ideal scenario known as Same-Zone
Compaction. Therefore, strategically placing SSTables in a
zone where SSTables from different levels (Li−1 or Li+1)
with overlapping key ranges are located can enhance the
likelihood of Same-Zone Compaction. However, allocating
zones for SSTables at the time of creation to increase Same-
Zone Compactions presents a challenging problem for the
following two reasons.

• Problem #1: The newly created SSTable(S) in Li overlaps
its key-range with SSTables in both Li−1 and Li+1. How-
ever, predicting whether this SSTable(S) will be deleted by
Li−1-to-Li compaction or Li-to-Li+1 compaction during

future compactions is challenging. For example, even if an
SSTable(S) is assigned to a zone with SSTables in Li−1

having overlapping key-ranges, it might be deleted by Li-
to-Li+1 compaction, leading to Zone-Across Compaction.
Hence, predicting whether an SSTable(S) will be deleted by
Li−1-to-Li compaction or Li-to-Li+1 compaction is crucial
for appropriately placing the SSTable(S).

• Problem #2: As described in Problem 1, an SSTable(S)
overlaps its key-range with SSTables in both Li−1 and Li+1.
Within each level, there might not be just one but several
SSTables with overlapping key-ranges. Moreover, these
SSTables can be placed in different zones. For instance, let’s
assume there are two SSTables in Li−1 with overlapping
key-ranges with an SSTable (S), and each SSTable is placed
in zonem and zonem+1. In such a scenario, determining the
appropriate zone to place an SSTable(S) among zonem and
zonem+1 requires specific criteria rules.

To tackle Problem #1, when CAZA creates an SSTable(S)
in Li, it compares the Slevel for Li−1 and Li (Slevel[i − 1],
Slevel[i]). If Slevel[i− 1] is greater than Slevel[i], it indicates
that Li−1-to-Li compaction occurs more frequently than Li-
to-Li+1 compaction. This implies a higher likelihood for an
SSTable(S) to undergo compaction with Li−1 SSTables than
with Li+1 SSTables. Consequently, an SSTable(S) is placed
in one of the zones where Li−1 SSTables with overlapping
key-ranges are located. Similarly, if Slevel[i] is greater than
Slevel[i−1], an SSTable(S) is placed in one of the zones where
Li+1 SSTables with overlapping key-ranges are located.

To address Problem #2, CAZA takes into account the sizes
of SSTables. Let’s assume CAZA places an Li SSTable(S)
in one of the zones where there are SSTables in Li−1 with
overlapping key-ranges due to Slevel. As observed in Obser-
vation 6, ROCKSDB follows the SICA algorithm, selecting
the largest SSTable among Li−1 SSTables with overlapping
key-ranges as the compaction victim for the SSTable(S). This
implies that the largest SSTable in Li−1 with overlapping
key-ranges is more likely to be selected as the compaction
victim with the SSTable(S) compared to other SSTables with
overlapping key-ranges.

Therefore, CAZA places an SSTable(S) in the zone where
the largest SSTable, among those in Li−1 with overlapping
key-ranges, is located. If there is no space in that zone,
it places an SSTable(S) in the zone with the next largest
SSTable. Otherwise, when placing SSTables in zones where
Li+1 SSTables are located, CAZA chooses the zone with the
smallest SSTable among those with overlapping key-ranges in
Li+1. This is because, during the selection of victim SSTables
for Li+1-to-Li+2 compaction, the smallest SSTable among
those with overlapping key-ranges in Li+1 is prioritized.

If there is no overlapping SSTable in Li−1 or Li+1 or if
there is insufficient space in the zone where SSTables from
Li−1 or Li+1 are located, zone allocation may fail. In such
cases, SSTables with the most zones having closest key ranges
within the same level are allocated. Looking for the closest
key range gives a future SSTable in the upper (or lower)

latestzipfianfillrandom uniform

Latency(us)

0

10

20

30

40

50

L0-to-L1 Ssame

L1-to-L2 Ssame

L2-to-L3 Ssame

Average Ssame

CompactionRead Latency

Sa
m

e
Zo

ne
 S

co
re

 (S
sa

m
e)

0

0.2

0.4

0.6

Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA

Fig. 8: Comparison of Ssame and read latency of compaction.

L0-to-L1 Sinval

L1-to-L2 Sinval

L2-to-L3 Sinval

Average Sinval

CompactionRead(MB/s)

latestzipfianfillrandom uniform

R
ead(M

B
/s)

0

100

200

300

400

500

In
va

lid
at

io
n

Sc
or

e
(S

in
va

l)

0

0.2

0.4

0.6

0.8

Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA

Fig. 9: Comparison of Sinval and read throughput of compaction (MB/s).

level an opportunity to bridge closest key ranges. For example,
SSTables with key ranges (10-20) and (25-35) can be bridged
by SSTable with (15-30) in the upper level.

VII. EVALUATION

A. Experimental setup

For the evaluation of ZACA and CAZA, we used Config-
urable ZNS (ConfZNS) [28], a ZNS SSD emulator based on
FEMU [29]. We emulated a 67GB ZNS SSD environment with
32 Intel(R) Xeon(R) Gold 5218R CPUs and 32GB of memory.
The Western Digital Ultrastar DC ZN540 [30], a representative
real product of ZNS SSDs, features a zone size of 1GB; hence,
we set the zone size to 1GB [31]. The emulated ZNS SSD
features 8 channels, with 2 dies per channel, resulting in a
total of 16 dies. For NAND pages, we set the read latency to
65us, write latency to 450us, and block erase latency to 2ms.

To maintain compatibility with ConfZNS, we modified
ZenFS v2.1 on Linux v5.10 and ROCKSDB v7.4. For the
sake of experimentation, we configured ROCKSDB to utilize 4
compaction threads, 4 flush threads, and 8 subcompaction [32]
threads. In the ZenFS, ZC employs a greedy algorithm that
zones with the highest levels of invalid data are selected as
victims for cleaning.

We conducted evaluations using both synthetic and re-
alistic benchmarks. For the synthetic workload, we used
db bench [26], a tool bundled with ROCKSDB that offers
micro-benchmarks for various workload patterns. Specifically,
we utilized the fillrandom workload for our analysis. In
addition to synthetic benchmarks, we conducted a realistic
evaluation using three workloads from the industry-standard
key-value store evaluation tool, the Yahoo Cloud Serving
Benchmark (YCSB) [33]. These workloads include zipfian
(with a zipfian constant of 0.99), latest, and uniform.

In all above four workloads, the key size is set to 16 bytes,
and the value size is set to 1KB. The db bench’s fillrandom
workload performs PUT(k,v) operations on a dataset of 72GB,
while the YCSB’s three workloads operate on a 36GB dataset
of key-value pairs. All reported values represent the mean of
at least three independent runs.

We compared the following four schemes:

• Baseline: Used the LIZA in ROCKSDB and SICA ZenFS.
• A-LIZA: Used ACC in ROCKSDB and LIZA in ZenFS.
• CAZA: Used SICA in ROCKSDB and CAZA in ZenFS.
• A-CAZA: Used ACC in ROCKSDB and CAZA in ZenFS.

B. Correlation Analysis between Ssame and Read Perfor-
mance of Compaction

In this section, we analyze the correlation between Ssame

and the performance of reading during compaction, a process
we refer to as CompactionRead. Ssame takes value between
0 and 1, representing the degree of Same-Zone Compaction,
where a value close to 1 indicates proximity to Same-Zone
Compaction, and a value close to 0 indicates proximity to
Zone-Across Compaction. Equation 1 provides a description
of Ssame.

Figure 8 compares Ssame and CompactionRead latency for
the evaluated schemes across four workloads. We calculated
the average Ssame for compactions at each level and obtained
the average Ssame for all levels of compaction. Across all
workloads, A-LIZA, CAZA, and A-CAZA show an increasing
trend in Ssame compared to the Baseline. Specifically, A-
CAZA exhibits an average increase of 0.05 in Ssame compared
to the Baseline. In the cases of A-LIZA and A-CAZA, where
ZACA operates with ACC, the Ssame for L2-to-L3 com-
paction increases compared to the Baseline and CAZA. This is
because ACC, through ZACA, prioritizes compaction victims

(Lower is better)

latestzipfianfillrandom uniform

Tim
e (sec)

0

100

200

300

400

500
Write stall ZC I/O Blocking Valid Data Copy

Va
lid

 D
at

a
C

op
y

(G
B

)

0

20

40

60

80

100

Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA

Fig. 10: Comparison of Write stall and ZC efficiency.

(Higher is better)

latestzipfianfillrandom uniform

Flushes/sec

0
1
2
3
4
5

Flushes/sec Compactions/sec

C
om

pa
ct

io
ns

/s
ec

0
0.2
0.4
0.6
0.8

1

Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA Baseline A-LIZA CAZA A-CAZA

Fig. 11: Comparison of Flush and Compaction throughput.

(Lower is better)

Baseline A-LIZA CAZA A-CAZA

R
es

et
 C

ou
nt

 (#
)

0

100

200

300

400

fillrandom zipfian latest uniform
Fig. 12: Comparison of zone-reset count for four schemes
across four workloads.

with a higher Ssame during L2-to-L3 compaction. Moreover,
the average Ssame increases across all workloads, indicating a
more substantial utilization of the sequential read pattern when
compaction reads SSTables. Consequently, CompactionRead
latency decreases by approximately 3.82 microseconds, a 10%
reduction. The improved CompactionRead latency results in an
average 16% increase in CompactionRead (MB/s) in Figure 9.

The comprehensive performance enhancement of com-
paction due to the improved CompactionRead is further ex-
plored in the next section.

We define Sinval as a metric to delicately evaluate the
impact of Ssame on ZC efficiency. Sinval represents the
average invalidation ratio of zones where compaction victims
were located after compaction, ranging between 0 and 1. A
higher Sinval indicates a higher ratio of SSTables invalidated
by compaction for a given zone. If the SSTable invalidation
ratio is high for a zone due to compaction, it implies a reduced
amount of valid SSTables copied by ZC, leading to decreased
I/O blocking time. As an example for better understanding,
in Figure 2, Sinval is 0.25+0.25+0.25

3 = 0.25, and in Figure 3,
Sinval is 0.75

1 = 0.75.
Due to the increased Ssame in A-CAZA, there is a tendency

for A-CAZA’s Sinval to increase in all levels of compaction

compared to the Baseline. The Average Sinval across the four
workloads increased by an average of 0.10 compared to the
Baseline. Furthermore, in the cases of A-LIZA and A-CAZA,
where ACC triggers ZACA, there is a noticeable increase in
Sinval for L2-to-L3 compaction, exceeding 0.14. This is be-
cause ACC, through ZACA, selects compaction victims based
on Ssame for L2-to-L3 compaction. By increased Sinval, it
is possible to concentrate the ratio of invalid data within a
single, same zone. Consequently, when ZC occurs, the number
of valid data copies decreases, leading to an increase in ZC
efficiency. In the next section, we will delve into how the
increased Sinval mitigates ZC overhead in more detail.

C. Compaction Performance and Zone Cleaning Efficiency

In this section, we examine how the increase in Ssame

and Sinval affects ZC efficiency, write stall, zone-reset count,
compactions/sec, and flushes/sec.

Figure 10 illustrates ZC efficiency and write stall for the
four workloads. Since A-CAZA increased Sinval by 0.10
compared to the Baseline, the amount of valid data copied
by ZC decreased by an average of 70%. In the case of the
fillrandom workload, the valid data copy amount decreased
by a significant 80%. As a result, ZC’s I/O blocking time
decreased by an average of 68%.

Figure 12 presents the zone-reset count performed by ZC.
As the amount of copied valid SSTables decreases, A-CAZA
exhibits a reduction in zone-reset count compared to the
Baseline: 12% for fillrandom, 13% for zipfian, 5% for the
latest, and 13% for the uniform workload. By reducing the
zone-reset operations that erase NAND erase blocks by 8.6%,
the lifespan of ZNS SSDs is increased.

Figure 11 illustrates flushes/sec and compactions/sec.
Flushes/sec and compactions/sec are obtained by dividing 1
second by the time taken for one flush and one compaction.

Level >= 2 : ZACANo Level Constraint

Write stall ZC I/O blocking KOPS/sec

Tim
e (sec)

0
25
50
75
400

500

600
K

O
PS

/s
ec

0

50

100

150

turning_point

0 25 30 40 50 60 70100 0 25 30 40 50 60 70100

Fig. 13: Comparison of write stall and I/O blocking time based
on changes in level constraints and ACC’s turning point.

Higher values for flushes/sec and compactions/sec indicate a
shorter time for each flush or compaction.

With the reduction in ZC’s I/O blocking and the improve-
ment in CompactionRead, as discussed in Section VII-B, A-
CAZA enhances flushes/sec and compactions/sec by 1.26x
and 1.1x, respectively, compared to the Baseline. A-CAZA
processes an additional 0.625 flushes and 0.15 compactions
per second compared to the Baseline.

However, in the case of the latest and uniform workloads,
A-LIZA, which adopts ACC and ZACA, exhibits a decrease
in compaction throughput compared to the Baseline, leading to
an increase in ROCKSDB’s write stall time. This is indirectly
indicative of an increase in write stall due to a higher number
of key-value pairs selected as compaction victims by ZACA,
resulting in extended merge-sort durations and increased writes
over an extended period. In the following section, we conduct
a detailed analysis of the number of key-value pairs to be
merge-sorted and ZC I/O Blocking time, shedding light on
their adverse impact on write stall.

D. Analysis of Adaptive Compaction Controller Effect on
Write Stall

In this section, we examine the impact of ACC on two
factors contributing to write stall: ZC I/O blocking time and
the number of key-value pairs to be compacted. We observe
the performance trends by modifying the ACC’s turning point
and level constraint while using the Zone Allocation algorithm
proposed in this paper, CAZA, as ZenFS’s Zone Allocation
algorithm. For all experiments, we used a fillrandom workload.

Figure 13 illustrates the changes in the PUT(k,v) throughput
(KOPS/sec), stall time, and I/O blocking time as the ACC’s
level constraint, turning point, and the level where ZACA
is applied vary. Note that the x-axis values represent the
turning point. The left bar graph represents the case without a
level constraint. Without level constraint, ZACA is performed
at every level when free space is under the turning point. The
right bar graph represents ACC executing ZACA for com-
pactions at L2 and above. Keep in mind that if turning point
set to 0, ZACA is never executed, and if turning point is set
to 50, ZACA is executed when less than 50% free space is
available.

(Lower is better)

Level >= 2 : ZACANo Level Constraint

Avg. Compaction victim size (MB)

C
om

pa
ct

io
n

vi
ct

im
 s

iz
e

(M
B

)

0

100

200

300

400

turning_point

0 25 30 40 50 60 70100 0 25 30 40 50 60 70100

Fig. 14: Comparison of compaction victim size based on
changes in level constraints and ACC’s turning point.

Latency(us)

0

10

20
400

450

500PUT(k,v)
Baseline
A-LIZA

CAZA
A-CAZA
GET(k)

K
O
PS
/s
ec

0

25

50

75

100

125

fillrandom zipfian latest uniform RandR/W

Fig. 15: Overall performance of all schemes.

From Figure 13, in the case of the left bar graph without
a level constraint (where ZACA is selected for all levels of
compaction), ZenFS experiences a reduction in I/O blocking
time when ZACA is used (turning point > 0) compared to
when ZACA is not used (turning point = 0). However, despite
this improvement, ROCKSDB’s write stall increases, and the
throughput of PUT(k,v) measured in KOPS/sec decreases. The
reason behind this is that the frequent execution of ZACA
leads to an increase in the size of compaction victims, resulting
in longer merge-sort operations. Specifically, selecting L1-to-
L2 compaction victims through ZACA prolongs the merge-
sort process. As discussed in Section III, L1-to-L2 and L0-to-
L1 compactions are serialized, amplifying the adverse impact
on write stall.

The left bar graph in Figure 14 illustrates the increasing
trends of average compaction victim size as number set to
turning point goes up. Moreover, when turning point is set to
60, 70, it is observed that as the compaction victim size in-
creases, the WA of RocksDB increases, leading to an increase
in I/O blocking time. We consider this result as performance
anomaly of ZACA because it behaves the opposite of what is
expected.

In the case of the right bar graph in Figure 13, ACC
selects compaction victims using ZACA only when level ≥ 2,
based on a tuning point. Specifically, L0-to-L1 and L1-to-
L2 compaction victims are chosen solely through SICA, and
ZACA is employed for L2-to-L3 compaction onwards based
on the turning point.

Examining the right bar graph in Figure 13, when ACC

V
al

id
 C

op
y

(M
B

)

0

200

400

600

800

Time(sec)
0 200 600 800

V
al

id
 C

op
y

(M
B

)

0

200

400

600

800

Region B

M
O

PS

0

10

20

30

40

50

60

70Region A

(72GB)

Baseline
A-LIZA
CAZA
A-CAZA

Fr
ee

 S
pa

ce
 R

at
io

(%
)

0

20

40

60

80

100

Fig. 16: Microscopic analysis of Baseline, A-LIZA, CAZA,
A-CAZA in db bench fillrandom workload.

is configured with turning point = 25, meaning that ZACA
is applied for levels with level ≥ 2, significant improve-
ments are observed. Compared to the scenario without ZACA
(turning point = 0), ZenFS experiences a reduction in I/O
blocking time by 23.6 seconds and a decrease in stall time
by 22 seconds, resulting in a performance increase of 2
KOPS/sec. This is because the reduction in ZC I/O Blocking
time outweighs the increase in write stall caused by the growth
in compaction victim size. When comparing turning point =
25 with the scenario without using ZACA (turning point =
0), the compaction victim size barely increases, while the I/O
Blocking time decreases by 23.6 seconds.

When turning point increases (turning point ≥ 30), more
ZACA are executed by ACC. Consequently, the increase in
compaction victim size, leading to an increase in write stall,
becomes more pronounced than the reduction in ZC’s I/O
Blocking time that mitigates write stall. Therefore, while
ZACA effectively reduces ZC overhead, without appropriate
control from ACC, the rise in compaction victim size could
amplify the write stall time, resulting in a decrease in PUT(k,v)
KOPS/sec. Performance trends related to write stall based
on the turning point value are consistently observed across
different YCSB workloads. Hence, it is crucial to use ACC to
judiciously adjust ZACA for compactions at levels beyond L2

and set turning point = 25.

E. User-Perceived Performance

In this section, we conduct a performance comparison across
various workloads. In Figure 15, A-CAZA shows an average
increase of approximately 16% in PUT(k,v) ops/sec across all
workloads. Moreover, the latency of PUT(k,v) is reduced by
18%.

V
al

id
 C

op
y

(M
B

)

0

200

400

600

800

Time(sec)
0 200 600 800

V
al

id
 C

op
y

(M
B

)

0

200

400

600

800

Region D
M

O
PS

0

5

10

15

20

25

30

35Region C

(36GB)

Baseline
A-LIZA
CAZA
A-CAZA

Fr
ee

 S
pa

ce
 R

at
io

(%
)

0

20

40

60

80

100

Fig. 17: Microscopic analysis of Baseline, A-LIZA, CAZA,
A-CAZA in YCSB-zipfian workload.

Although our primary focus is on enhancing write-intensive
workloads, we also evaluate the influence of CAZA and
ZACA on GET(k). We employ the readrandomwriterandom
workload of db bench, executing 72GB of PUT and 8GB of
GET. The results indicate that, compared to the Baseline, A-
CAZA reduces the latency of GET(k) by 7%. In other words,
CAZA, ZACA, and ACC provide solutions for write-intensive
workloads without introducing negative effects on GET(k);
instead, GET(k) latency is reduced.

F. Analysis of Algorithmic Overhead
We analyze the algorithmic overhead of four algorithms:

SICA, ZACA, LIZA, and CAZA. Table III presents the
average execution time for a single invocation when each al-
gorithm is executed 1,000 times with the db bench fillrandom
workload. Comparing the two compaction victim selection
algorithms, ZACA takes 823us longer than SICA. Therefore,
ZACA exhibits greater algorithmic overhead than SICA.

TABLE III: Average execution time of each algorithm.
Algorithm SICA ZACA LIZA CAZA

Time(us) 271 1094 10 49

Additionally, for the two Zone Allocation algorithms, LIZA
and CAZA, CAZA takes 39us longer. Despite the fact that
the proposed ZACA and CAZA algorithms take 4x longer,
the performance of flushes/sec, compactions/sec, PUT(k,v)
KOPS/sec increased by 1.26x, 1.1x and 1.16x respectively.
Thus, the algorithmic overhead on performance is overall
negligible.

G. Microscopic Analysis
To analyze the increasing ZC efficiency with the introduc-

tion of CAZA and ZACA, we conducted a detailed time-series

analysis of free space and the frequency of valid data copy
occurrences during ZC.

Figures 16 and 17 illustrate the results for db bench and
YCSB workloads. Regions ’A’ and ’C’ represent periods
where the free space ratio is above 20%, indicating no occur-
rence of ZC overhead. On the other hand, regions ’B’ and ’D’
depict intervals where the free space is close to 20%, leading
to the occurrence of ZC overhead.

ZenFS does not trigger valid data copy and I/O blocking
when the free space ratio is 20% or higher. In contrast,
when the free space ratio drops below 20%, ZenFS blocks
compaction and flush operations, inducing valid data copy.

In Region ’A’ of Figure 16, CAZA and A-CAZA strate-
gically place SSTables that can be selected as compaction
victims in the same zone, allowing them to reclaim more space
without triggering valid data copy compared to LIZA and A-
LIZA. As a result of reclaiming more free space in Region
’A,’ the occurrence of Region ’B,’ where valid data copy and
I/O blocking typically take place, is delayed.

In comparison to Baseline and A-LIZA, which experience
I/O blocking starting from [200-], CAZA and A-CAZA start
facing I/O blocking later, specifically from [300-]. Moreover,
in Region ’B,’ Baseline, A-LIZA, and CAZA induce a maxi-
mum of 400MB valid data copy per second compared to A-
CAZA (refer to red, blue, and green spikes). This difference
arises from A-CAZA’s use of the CAZA algorithm for SSTable
placement and the ZACA algorithm for compaction victim
selection below the turning point (25%). Consequently, A-
CAZA enhances ZC efficiency, resulting in the generation of
less than 200MB of copy during ZC (refer to the purple spike)
and faster processing of 72GB of PUT(k,v) compared to the
other three schemes.

Figure 17 illustrates the results for the YCSB zipfian work-
load. The zipfian workload, with a size of 36GB, induces
more copy and longer I/O blocking time compared to the
72GB size fillrandom, making it a more demanding write-
intensive workload. Despite the stronger workload, CAZA
and A-CAZA exhibit increased ZC efficiency in Region ’C’
by strategically placing SSTables using the CAZA algorithm.
As a result, the occurrence of I/O Blocking in Region ’D’
is delayed by 50 seconds compared to LIZA and A-LIZA.
When comparing Region ’B’ for fillrandom and Region ’D’
for zipfian, although there is a difference in scale, A-CAZA
ensures a faster PUT(k,v) processing rate by inducing fewer
copies than the other three schemes (refer to the purple spike).

H. Comparison with Our Prior Work [17]

The basic concept of CAZA was initially introduced in
our previous work [17]. In the default version of CAZA,
which we denote, the approach incorporates two key attributes
of compaction: it selects SSTables that have overlapping key
ranges and jointly selects SSTables from both Li and Li+1. In
this manuscript, we extended CAZA algorithm by considering
two more key factors, Slevel and size of SSTables in addition
to key-ranges and level.

Table IV shows the comparison between them in fillrandom.

Our enhanced version of CAZA (CAZAenhanced) reduces
valid data copy by 3.2GB compared to CAZA baseline
(CAZAbaseline), consequently increasing user-perceived per-
formance to 6 KOPS/sec. This is because CAZAenhanced

considers SSTables’ size and Slevel. By taking into account
the size of the SSTable, CAZAenhanced predicts the likelihood
of SSTables compaction within a single level more accurately.
Moreover, CAZAenhanced predicts frequency of compaction
among levels at time T with Slevel, resulting in enhanced ZC
efficiency.

TABLE IV: Comparing CAZA [17] with an enhanced CAZA.
fillrandom Valid Copy(GB) Write Stall(sec) KOPS/sec

CAZAbaseline 18.5 446 108
CAZAenhanced 15.3 432 114

VIII. RELATED WORK

There have been various system optimization studies for
ZNS SSD [5], [28], [34]–[37]. Waltz [34] enhanced tail-
latency in LSM-ZNS storage’s PUT(k,v) by incorporating
zone-append [35]. ZNSwap [5] investigated the failure of
performance isolation in a multi-tenant environment due to
Garbage Collection by introducing ZNS SSD into the ker-
nel subsystem swap memory area, diverging from traditional
SSDs. ZNS+ [8] accelerated filesystem performance by of-
floading copy operations to the device in the log-structured
file system F2FS [38]. ConfZNS [28] defined Full-Unit zone
(FU-zone) and Single-Unit zone (SU-zone) layouts based
on internal parallelism, providing a real-latency ZNS SSD
emulator for researchers in the ZNS SSD field. H. Bae et
al [36] improved read performance and latency in small-zone
layout through kernel-level internal parallelism profiling and
an interference-aware scheduler. eZNS [37] proposed a method
for fully utilizing the internal parallelism of ZNS through Zone
Ballooning.

LL-Compaction [22], akin to our research, enhances ZC
efficiency through compaction ZNS SSD. They suggests com-
pactions to include SSTables irrespective of key-range con-
siderations when selecting compaction victims in the com-
paction process for reducing ZC overhead. However, their
study does not account for the potential increase in write stall
resulting from modification in the compaction victim selection
algorithm. This approach raises concerns about the potential
increase in the total number of key-value pairs participating
in merge-sort, potentially prolonging the merge-sort time. The
basic idea of CAZA was initially introduced in our previous
work [17]. In this paper, we substantially extend the CAZA
with SSTables’ size and Slevel and present ZACA with ACC
as a innovative new approach.

IX. CONCLUSION

LSM-based Key-Value Stores are recognized as suitable for
ZNS SSDs. This paper addresses performance and lifetime is-
sues associated with ROCKSDB’s SICA compaction algorithm
and ZenFS’s LIZA algorithm, known for frequently triggering
Zone-Across Compaction. To overcome these issues, the paper

introduces Same-Zone Compaction, aiming to facilitate fast
read I/Os through a sequential read pattern during compaction
while enhancing ZC efficiency. Specifically, the paper presents
ZACA, ACC, and CAZA algorithms designed to promote
Same-Zone Compaction. Consequently, our proposed algo-
rithms successfully reduce ZC overhead by 80%, enhance
compaction read performance by 14%, and improve flush and
compaction speeds by 1.26x and 1.1x, respectively. The per-
formance enhancements attributed to Same-Zone Compaction
result in a notable 16% increase in the processing rate of
the PUT(k,v) in ROCKSDB. Furthermore, it contributes to an
8.6% reduction in the zone-reset count, ultimately extending
the lifetime of ZNS SSDs.

ACKNOWLEDGMENTS

This paper has been extended based on our previous re-
search [17]. In particular, we are deeply grateful to Hee-
Rock Lee, Chang-Gyu Lee, and Seungjin Lee for their ini-
tial development of the CAZA algorithm. This work was n
part by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (No. NRF-
2021R1A2C2014386), and in part by Samsung Electronics
Co., Ltd (IO221014-02908-01).

REFERENCES

[1] H. Holmberg, “Zenfs, zones and rocksdb - who likes to take out
the garbage anyway?.” https://snia.org/sites/default/files/SDC/2020/074-
Holmberg-ZenFS-Zones-and-RocksDB.pdf, 2020.

[2] “NVM Express. NVM Express Workgroup, NVM Express®
Zoned Namespace Command Set Specification Revision 1.1a..”
https://www.nvmexpress.org/specification, 2022.

[3] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. Le Moal, G. R.
Ganger, and G. Amvrosiadis, “Zns: Avoiding the block interface tax for
flash-based ssds,” in Proceedings of 2021 USENIX Annual Technical
Conference, pp. 689–703, 2021.

[4] N. Tehrany and A. Trivedi, “Understanding nvme zoned namespace (zns)
flash ssd storage devices,” arXiv preprint arXiv:2206.01547, 2022.

[5] S. Bergman, N. Cassel, M. Bjørling, and M. Silberstein, “Znswap: Un-
block your swap,” ACM Transactions on Storage, vol. 19, no. 2, pp. 1–
25, 2023.

[6] W. Digital, “Zenfs.” https://github.com/westerndigitalcorporation/zenfs,
2022.

[7] M. Oh, S. Yoo, J. Choi, J. Park, and C.-E. Choi, “Zenfs+: Nurturing
performance and isolation to zenfs,” IEEE Access, vol. 11, pp. 26344–
26357, 2023.

[8] K. Han, H. Gwak, D. Shin, and J. Hwang, “Zns+: Advanced zoned
namespace interface for supporting in-storage zone compaction,” in
Proceedings of the 15th USENIX Symposium on Operating Systems
Design and Implementation, 2021.

[9] D. Seo, P.-X. Chen, H. Li, M. Bjørling, and N. Dutt, “Is garbage
collection overhead gone? case study of f2fs on zns ssds,” in Proceedings
of the 15th ACM Workshop on Hot Topics in Storage and File Systems,
2023.

[10] S. Byeon, J. Ro, S. Jamil, J.-U. Kang, and Y. Kim, “A free-space
adaptive runtime zone-reset algorithm for enhanced zns efficiency,” in
Proceedings of the 15th ACM Workshop on Hot Topics in Storage and
File Systems, 2023.

[11] D. Huang, D. Feng, Q. Liu, B. Ding, W. Zhao, X. Wei, and W. Tong,
“Splitzns: Towards an efficient lsm-tree on zoned namespace ssds,” ACM
Transactions on Architecture and Code Optimization, vol. 20, no. 3,
pp. 1–26, 2023.

[12] G. Choi, K. Lee, M. Oh, J. Choi, J. Jhin, and Y. Oh, “A new lsm-style
garbage collection scheme for zns ssds,” in Proceedings of the 12th
USENIX Workshop on Hot Topics in Storage and File Systems, 2020.

[13] RocksDB, “Rocksdb.” https://github.com/facebook/rocksdb, 2022.
[14] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured

merge-tree (lsm-tree),” Acta Informatica, vol. 33, pp. 351–385, 1996.

[15] A. R. Butt, C. Gniady, and Y. C. Hu, “The performance impact of kernel
prefetching on buffer cache replacement algorithms,” in Proceedings of
the 2005 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, 2005.

[16] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for ssd performance,” in Proceedings of
2008 USENIX Annual Technical Conference, 2008.

[17] H.-R. Lee, C.-G. Lee, S. Lee, and Y. Kim, “Compaction-aware zone
allocation for lsm based key-value store on zns ssds,” in Proceedings
of the 14th ACM Workshop on Hot Topics in Storage and File Systems,
2022.

[18] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “Pebblesdb:
Building key-value stores using fragmented log-structured merge trees,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
2017.

[19] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and X. He,
“Matrixkv: Reducing write stalls and write amplification in lsm-tree
based kv stores with matrix container in nvm,” in Proceedings of 2020
USENIX Annual Technical Conference, 2020.

[20] X. Wang, P. Jin, B. Hua, H. Long, and W. Huang, “Reducing write am-
plification of lsm-tree with block-grained compaction,” in Proceedings
of the 38th International Conference on Data Engineering, IEEE, 2022.

[21] R. Wang, J. Wang, P. Kadam, M. T. Özsu, and W. G. Aref, “dlsm: An
lsm-based index for memory disaggregation,” in Proceedings of the 39th
International Conference on Data Engineering, IEEE, 2023.

[22] J. Jung and D. Shin, “Lifetime-leveling lsm-tree compaction for zns ssd,”
in Proceedings of the 14th ACM Workshop on Hot Topics in Storage and
File Systems, 2022.

[23] T. Yao, J. Wan, P. Huang, Y. Zhang, C. Xie, and X. He, “Geardb: A
gc-free key-value store on hm-smr drives with gear compaction,” in
Proceedings of the ACM Turing Award Celebration ference-China 2023,
2023.

[24] S.-y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, “Exploiting internal
parallelism of flash-based ssds,” IEEE Computer Architecture Letters,
vol. 9, no. 1, pp. 9–12, 2010.

[25] J. Axboe, “Flexible i/o tester.” https://github.com/axboe/fio, 2022.
[26] Facebook, “db bench.” https://github.com/facebook/rocksdb/wiki/

Benchmarking-tools.
[27] Facebook, “compaction picker level.cc::line201.”

https://github.com/facebook/rocksdb/blob/main/db/compaction/, 2024.
[28] I. Song, M. Oh, B. S. J. Kim, S. Yoo, J. Lee, and J. Choi, “Confzns: A

novel emulator for exploring design space of zns ssds,” in Proceedings of
the 16th ACM International Conference on Systems and Storage, 2023.

[29] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.
Gunawi, “The case of femu: Cheap, accurate, scalable and extensible
flash emulator,” in Proceedings of the 16th USENIX Conference on File
and Storage Technologies, 2018.

[30] W. Digital, “Western digital ultrastar dc zn540.”
https://documents.westerndigital.com/content/dam/doc-
library/en us/assets/public/western-digital/product/ultrastar-dc-zn540-
ssd/data-sheet-ultrastar-dc-zn540.pdf.

[31] Q. Wang and P. P. Lee, “Zapraid: Toward high-performance raid for
zns ssds via zone append,” in Proceedings of the 14th ACM SIGOPS
Asia-Pacific Workshop on Systems, 2023.

[32] RocksDB, “Rocksdb subcompaction wiki.”
https://github.com/facebook/rocksdb/wiki/Subcompaction, 2022.

[33] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010.

[34] J. Lee, D. Kim, and J. W. Lee, “Waltz: Leveraging zone append to
tighten the tail latency of lsm tree on zns ssd,” Proceedings of the VLDB
Endowment, vol. 16, no. 11, pp. 2884–2896, 2023.

[35] M. Bjørling, “Zone append: A new way of writing to zoned storage,”
in Proceedings of Linux Storage and Filesystems Conference, 2020.

[36] H. Bae, J. Kim, M. Kwon, and M. Jung, “What you can’t forget:
exploiting parallelism for zoned namespaces,” in Proceedings of the 14th
ACM Workshop on Hot Topics in Storage and File Systems, 2022.

[37] J. Min, C. Zhao, M. Liu, and A. Krishnamurthy, “ezns: An elastic zoned
namespace for commodity zns SSDs,” in Proceedings of 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
23), pp. 461–477, July 2023.

[38] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2fs: A new file system for
flash storage,” in Proceedings of 13th USENIX Conference on File and
Storage Technologies, 2015.

