
Towards A Unified Garbage Collection Strategy in ZNS
Key-Value Store File Systems Using Same-Victim GC

Hamin Hwangbo1,∗, Joseph Ro1,∗, Sungjin Byeon1, Safdar Jamil1, Jun Young Han2

Jooyoung Hwang2, and Youngjae Kim1,†
1Sogang University, Seoul, Republic of Korea, 2Samsung Electronics Co.

{hbhm0703, josephro12, sjbyeon, youkim}@sogang.ac.kr, {jy0.han, jooyoung.hwang}@samsung.com

Abstract—Zoned Namespace (ZNS) SSDs are gaining traction
for eliminating in-device GC and enabling application-aware data
management. BlobDB, an enhanced RocksDB with key-value
separation, reduces compaction overhead but suffers from the GC
over GC (GoG) problem, causing redundant data copying during
BlobDB’s GC and Zone Cleaning (ZC). To address this, this
paper proposes Same-Victim GC, aligning the victims and sizes
of both GCs. Specifically, we introduce the BlobDB-Aware Zone
Allocation (BAZA) algorithm to allocate blob files by creation
order, eliminate victim file mismatch between two GCs, and
Z Cutoff to minimize BlobDB’s GC size without additional
overhead. Implemented in ZenFS v2.14 and RocksDB v7.4,
our solution eliminates valid data copying, doubles compaction
performance, and improves space utilization by 1.28×.

Index Terms—Log-Structured Merge-Tree, Key-Value Store,
Zoned Namespaces Solid-State Drive

I. INTRODUCTION

Zoned Namespace (ZNS) SSDs [1], [2] are an emerging
storage technology that has garnered significant interest from
data centers and enterprise storage providers [3]. ZNS SSDs
partition their storage space into fixed-size zones that must be
written sequentially and erased in one operation using a zone-
reset command [1]. Unlike traditional SSDs, ZNS SSDs shift
the responsibility for data management and garbage collection
(GC) from the device to the host system [4], [5]. This allows
the host system to utilize application-specific knowledge to
manage these tasks, reducing write amplification (WA) and
minimizing I/O interference [6], [7], making ZNS SSDs ideal
for applications requiring a log-structured data layout [8].

Meanwhile, Log Structured Merge(LSM)-tree-based key-
value stores, such as RocksDB [9], are considered well
suited for ZNS SSDs because LSM-tree shows sequential
write pattern, so-called append-only. LSM’s append-only is
a manner which modifies data by compaction, rather than by
overwriting the data. The compaction process includes merge-
sort and deleting the obsolete files. However, the compaction
process induces high WA and write stalls. To relieve the
overheads, WiscKey [10] proposed key-value (KV) separation
design by decoupling values from keys and storing them
separately. BlobDB [11], the state-of-art RocksDB variant,
adopts Wisckey’s KV separation design, and stores values in
separated file named, blob files.

To operate BlobDB on ZNS SSDs, middleware is required
to manage file operations for the ZNS interface. BlobDB

∗Both are first co-authors and have contributed equally.
†Y. Kim is the corresponding author.

adopts ZenFS [12], [13], an user-level file system designed
to bridge RocksDB with ZNS. When using BlobDB over
ZenFS, two garbage collection processes operate at both the
application and file system levels: BlobDB’s GC and Zone
Cleaning (ZC). We refer to this architecture, where two GCs
operate simultaneously, as GC over GC (GoG). Currently,
since BlobGC and ZC operate independently without aware-
ness of each other, GoG leads to unnecessary copying of valid
data during each GC process, negatively impacting overall
performance at both levels.

Several works have targeted data copy overheads and the
resulting performance degradation occurring in GoG within
RocksDB and LevelDB running on ZenFS [4], [5], [8], [14].
However, these methods do not address the management of
blob files, whose GC policies differ significantly from those
of Sorted String Table (SST) files, making these solutions
inapplicable. The key limitation of existing research is that
they primarily focus on the compaction process of LSM-
trees without considering the unique requirements of key-value
separation in LSM-trees. In key-value separation, the LSM-
tree size is reduced, making the management and cleaning of
invalid values crucial.

To solve these issues, we conducted a thorough case study
on the relationship between the BlobDB’s GC and ZenFS’s
ZC. We found that the aforementioned problems are caused
by a mismatch between the victim files and the size of GCs.
To address this, we proposed a new method called Same-
Victim GC, which aligns both the victim files and size of GCs
for BlobDB and ZenFS (§III). To achieve Same-Victim GC,
we introduce the BlobDB-Aware Zone Allocation (BAZA)
algorithm (§IV-A), which allocates blob files sequentially to
zones based on their creation order. BAZA is designed based
on the observation that changing the zone allocation algorithm
to align the lifetime of blob files, which is decided by “Oldest
first” policy of BlobDB’s GC, reduces the mismatch in victim
files for both GCs. Additionally, for further improvement, we
proposed Z Cutoff , which adjusts the size of BlobDB’s GC
to match the size of ZC (§IV-C). However, challenges such
as the Write Pointer (WP) locking problem, where WPs must
be locked to ensure successful sequential writes, complicate
the BAZA algorithm. BAZA addresses this by monitoring
and adjusting the allocation information of ZenFS to achieve
optimal Same-Victim GC.

The key contribution of this paper is as follows:

blob file 1 blob file 2 blob file 3 blob file m

Storage
DRAM

Memtable

LSM-tree(SST files)

Blob files for Value
V1 V4 V2

Put Op

Flush
Compaction

Flush
(K1,P1) (K2,P2) (K3,P3)

Fig. 1: Description of KV separation in BlobDB.

• Identified that mismatches in the victim files and sizes of
GCs lead to inefficiencies, thus proposing Same-Victim GC,
which matches victims and size of both GCs.

• Proposed the BAZA algorithm to eliminate mismatch be-
tween both GC victims. Moreover, Z Cutoff minimize
mismatch between size of GCs.

• Addressed the WP locking problem and overcome the prob-
lem by implementing a monitoring and adjustment mecha-
nism within the BAZA algorithm, achieving optimal Same-
Victim GC while ensuring successful sequential writes.

Extensive evaluations, tested on ConfZNS [15] and a
ZN540 [16], demonstrate that employing BAZA effectively
eliminate valid data copy during ZC, and improve compaction
performance by 2× across both db bench and YCSB.

II. BACKGROUND

A. WiscKey-Based Key-value Store

To minimize write and space amplification of traditional
LSM-tree, WiscKey [10] proposed a key-value (KV) sep-
aration design. This design decouples values from keys,
storing values in append-only log files. The state-of-the-art
RocksDB [9] adopts the traditional LSM-tree architecture,
whereas its variant, BlobDB [11], utilizes the KV separation
design, as illustrated in Figure 1. Both KV stores follow the
common interface for PUT operations where KV pairs are
stored in MemTable and later written to persistent storage
by flush operation. However, in BlobDB, the flush operation
first writes the values to append-only log files, known as blob
files, and then directs the keys and value pointers to SST files.
Therefore, with the KV separation design, updating or deleting
KV pairs results in obsolete values in the corresponding blob
file. These values must be reclaimed by a GC process called
BlobDB Garbage Collection (BlobGC), which is incorporated
the BlobGC in the compaction.

B. Compaction and BlobGC in BlobDB

compaction in BlobDB is triggered based on the total size
of SST files in each level of LSM-tree as RocksDB does.
The compaction in BlobDB not only merge-sort the SST files,
based on overlapping key-range, to reclaim the obsolete KV
pointer but it also marks the corresponding values in blob
files as obsolete. These obsolete values are reclaimed by the
BlobGC. Figure 2 illustrates the compaction and BlobGC in
BlobDB. The compaction in Figure 2 selects victim SST files
and perform merge-sort on them. In Figure 2, the compaction
encounters an updated entry of (K1, P4), therefore marking the

Compaction

BlobGC

APPGC

B3

FSGC
Zone

Cleaning

(K1,P1) (K2,P2) (K1,P4) (K3,P3)

New SST file

V1 V2 V3 V5 V4 V6 V2 V3

New blob file

B0 B1 B2 B3 B3
New Zone

Victim SST files

Victim blob files: B1, B2

Victim Zone

(K2,P2) (K3,P3)(K1,P4)

after GCValid Valid data copyInvalid Invalidated Free

Fig. 2: Description of AppGC and FSGC : AppGC involves
the compaction process and BlobGC, while FSGC refers to
zone cleaning.

older entry (K1, P1) as invalid which will later be reclaimed
by BlobGC.

While BlobDB performs compaction on the LSM-tree,
BlobGC is executed concurrently. The BlobGC reclaims values
for deleted or invalidated key-value pointers, retaining only
the valid values corresponding to unique keys. As shown
in Figure 2, during the compaction, the obsolete key-value
pointer (K1, P1) is invalidated. BlobGC then invalidates the
value V1 that P1 was pointing to. Additionally, valid values V2

and V3, pointed to by the copied value pointers P2 and P3, are
copied. The reason V4 is not copied is that the blob file storing
V4 is not included among the victim blob files. Victim blob
files are selected based on their creation index, following the
“Oldest First Policy”, which selects the oldest blob files up to a
threshold defined by number of blob files× cut off ratio.
In the Figure 2, since cut off ratio is set as 0.25 and there are
a total of 8 blob files, the number of victim blob files is set to
2 (= 8 × 0.25). After the compaction and BlobGC processes
copy the unique key-value pointers and their corresponding
values to the new SST and blob files, BlobDB deletes the
victim SST and blob files. Since compaction is completed only
after BlobGC finishes, a prolonged BlobGC process negatively
impacts the overall performance of compaction.

C. Zone Allocation and Zone Cleaning in ZenFS

To adopt BlobDB over ZNS SSDs, ZenFS performs two
major functions: Zone Allocation and Zone Cleaning (ZC) [5].
Zone Allocation involves assigning zones for file placement.
Since WiscKey separates keys and values, ZenFS allocates
SST files and blob files into different zones. Specifically,
ZenFS uses the Lifetime-Based Zone Allocation (LIZA) al-
gorithm for SST files, assigning unique lifetime hints based
on the SST file’s level in the LSM-tree [4], [5]. Using LIZA,
ZenFS ensures that SST files with the same lifetime hints
are allocated within the same zone. However, there has been
no previous work addressing the allocation of blob files. The
current ZenFS approach is to allocate zones to blob files using
LIZA. Thus, in this paper, we assume the default allocation
algorithm for blob files in ZenFS as LIZA. With LIZA, ZenFS
assigns blob files the lifetime hint of the referencing SST file.
As a result, blob files with the same lifetime hint are allocated
to the same zone.

Bvictim ⊃ Zvictim

(c) Size Mismatch

B1 B2 B3 B4

B5 B6 B7 B8

B1 B2 B7 B8

B1
B2 B3

B4

B5

Bvictim = Zvictim

(d) Same-Victim GC

B1 B2 B3 B4

B1
B2 B3

B4

B1 B2 B3 B4

ZvictimBvictim Invalid blob file

Bvictim ⊂ Zvictim

B1 B2 B3 B5

Case-1

B1
B2 B3

B5

ZenFS
BlobDB

Zone 0

B1 B2 B3 B4 B5

Copy

Zone 0

Zone 1

Zone 0

(b) Element Mismatch

B1 B2 B3 B4

B1
B2

B3
B4

B1 B5 B9 B13 B2 B6 B10 B14

B3 B7 B11 B15 B4 B8 B12 B16

Zone 1Zone 0

Zone 2 Zone3

B5

B13
B9

Bvictim ⋂ Zvictim = {B1} Bvictim ⋂ Zvictim = Ø

Not applicable

(a) Empty Intersection
Case-2

B6 B7

Fig. 3: Comprehensive explanation of multiple cases of GoG in the BlobDB-ZenFS system.

After SST files and blob files are deleted by compaction
and BlobGC, the space in the storage they occupied becomes
invalid. ZC reclaims this invalid space and converts it into free
space. ZC is triggered when the device’s free space falls below
20%. During ZC, ZenFS copies valid data from the victim
zone to target zones and performs a zone reset on the victim
zone. Figure 2 illustrates the ZC process in ZenFS. As shown,
since B0 was already invalidated, B2 and B3 are invalidated
during BlobGC, only B3 is copied into a new zone. ZC is
triggered when the device’s free space is limited, preventing
foreground I/O operations. This blocking of foreground I/O
negatively impacts performance, making it crucial to minimize
the adverse effects of ZC. To mitigate such effects, ZC issues a
zone-reset command whenever all data within a zone is invalid,
even if the free space is not below the trigger point.

III. ANALYSIS OF OVERHEAD DUE TO GC OVER GC

As shown in Figure 2, BlobDB and ZenFS reclaim invali-
dated space through BlobGC and ZC. We define this situation
where GC is executed at both layers as GC over GC (GoG). In
GoG, BlobGC and ZC operate independently without aware-
ness of each other, leading to unnecessary copying of valid
data during each GC process. GoG can also occur between
the compaction of the LSM-tree and ZC. However, due to the
KV separation design, the LSM-tree remains small, resulting
in minimal compaction overhead. Therefore, in this paper, we
focus on the GoG issue arising between BlobGC and ZC. In
this section, we categorize various cases resulting from GoG
and analyze their associated problems in current system.

A. Analysis of Multiple Cases in GoG

To facilitate explanation, let’s denote the set of blob files
selected as victims during BlobGC as Bvictim and the set of
blob files contained within a zone selected as a victim during
ZC as Zvictim. We will refer to the blob files within these
sets as “elements”. The notation Bi indicates the i-th indexed
blob file. Additionally, S(Bvictim) represents the total size of
the blob files in Bvictim, and S(Zvictim) represents the total
size of the blob files in Zvictim. Since the two GCs operate
independently and are unaware of each other’s execution, the
intersection of the elements in each set can vary. Moreover,

while the zone size is fixed, making S(Zvictim) constant,
S(Bvictim) varies depending on the number of blob files at
the time BlobGC occurs. Due to the potential differences in
the intersection of elements and the varying sizes of the two
sets, there are theoretically four types of relationships that can
exist between Bvictim and Zvictim. Figure 3 illustrates the
four possible relationships between the two GC sets:

• Empty Intersection: Figure 3(a) shows a case where the
elements of the two sets do not overlap at all, resulting in
an empty intersection. In this case, the sizes of the two sets
can be either the same or different.

• Element Mismatch: Figure 3(b) depicts a case where the
sets have one or more overlapping elements but do not
completely overlap. The sizes of the two sets can vary.

• Size Mismatch: Figure 3(c) represents a case where the
elements match such that the intersection is equivalent to
one of the sets, but the sizes of the two sets differ.

• Same-Victim GC: Figure 3(d) shows the case where both
the elements and sizes of the two sets match perfectly.

Although there are theoretically four possible relationships
between BlobGC and ZC, in practice, the Empty Intersection
does not occur. As previously mentioned, ZC selects a zone
as Zvictim based on the blob files that have been deleted by
BlobGC. If no blob file in a zone is selected as Bvictim,
that zone will not be selected as Zvictim. Therefore, in a
zone, BlobGC always occurs first, followed by ZC. Conse-
quently, cases where every elements of Bvictim and Zvictim

mismatches do not arise, and we do not consider the Empty
Intersection in our analysis.

B. Element Mismatch

Figure 3(b) illustrates the Element Mismatch scenario.
BlobDB selects B1 through B4 as Bvictim. Meanwhile, ZenFS
selects Zone 0 as the victim, choosing B1, B5, B9, and B13
as Zvictim. Since their intersection includes only B1, after
BlobGC occurs, only B1 from the Zvictim set will be deleted.
Consequently, ZC has to copy three other valid blob files,
which is 75% of the total zone size. This means ZC can only
reclaim 25% of the zone’s space, which is inefficient. Even
if different zones were selected as victims, the result would

be similar. If S(Bvictim) changes, the intersection between
Bvictim and Zvictim remains small, leading to ZC reclaiming
only a low percentage of the zone’s space. Thus, Element
Mismatch results in the copying of valid data during ZC,
leading to inefficient ZC.

C. Size Mismatch

Size Mismatch refers to a scenario where the intersection of
the two sets is equivalent to one of the sets, but the sizes of the
two sets differ. In the case of Size Mismatch, we can consider
two possibilities: S(Bvictim) being smaller or larger than
the fixed size S(Zvictim). Figure 3(c) Case-1 illustrates the
situation where S(Bvictim) < S(Zvictim). Bvictim includes
blob files B1 through B3. As a result of BlobGC, a new blob
file, B5, is created. If B5 is allocated to Zone 0 or any zone
with a high invalid data ratio, it may be copied again during
ZC. Thus, when S(Bvictim) < S(Zvictim), the same data
often gets copied twice, leading to an increase in unnecessary
data copying during ZC.

In contrast, Figure 3 (c) Case-2 illustrates the scenario
where S(Bvictim) > S(Zvictim). Bvictim includes blob files
B1 through B7. After BlobGC completes, ZC selects Zone
0, which contains only invalid data, as Zvictim and reclaims
it without any additional valid data copying. However, if
we consider the elements of Zvictim, Bvictim could be set
to include only B1 through B4 to reclaim Zone 0. In this
case, since Bvictim is larger than necessary compared to the
S(Zvictim), it unnecessarily extends the BlobGC process. As
mentioned in Section II-A, BlobGC is tightly integrated with
compaction. Therefore, when S(Bvictim) > S(Zvictim), the
time for BlobGC is prolonged, leading to an increase in
compaction duration.

D. Same-Victim GC

In this section, we analyze the scenario where Element
Mismatch and Size Mismatch are resolved. We define Same-
Victim GC where the elements and size of both sets match.
Figure 3(d) illustrates Same-Victim GC. B1 to B4 are selected
as Bvictim, and Zvictim also includes B1 to B4. First, BlobGC
copies the valid data from B1 to B4 to create the B5 blob file in
another zone, then invalidates B1 to B4. After BlobGC, ZC can
immediately reclaim the space occupied by B1 to B4 without
copying any valid blob files. Compared to the previously men-
tioned cases of Element Mismatch and Size Mismatch, Same-
Victim GC eliminates unnecessary data copying during ZC.
Additionally, compared to Figure 3(c) Case-2, Same-Victim
GC reduces the S(Bvictim), allowing BlobGC to complete in
a shorter time.

However, the current BlobDB-ZenFS system rarely achieves
Same-Victim GC and frequently encounters Element Mis-
match and Size Mismatch. This is because the two GCs
operate independently at different layers without awareness
of each other. In the next section, we analyze why the current
BlobDB-ZenFS system rarely achieves Same-Victim GC. We
then propose our novel algorithms, BAZA and Z Cutoff ,
which are designed to enable Same-Victim GC.

BlobDB

ZenFS

Zone Cleaning

BlobGC
Z_Cutoff

Zone Allocation

I/O path Control path

Zone Pool LIZA BAZA

Blob file I/O manager

Compaction
Scheduler

Flush
Scheduler

blob file(index) YBIZ

Fig. 4: The overview of BAZA and Z Cutoff .

IV. DESIGN TOWARDS SAME-VICTIM GC

In this section, we propose two novel techniques, BAZA and
Z Cutoff , which is collaboration between the BlobDB and
the ZenFS. The design goal of both techniques is to resolve
Element Mismatch and Size Mismatch, thus induce Same-
Victim GC. Figure 4 presents a software architecture overview
of BlobDB and ZenFS with BAZA and Z Cutoff . In the
ZenFS layer, BAZA replaces LIZA for blob file allocation.
BAZA is a Zone Allocation technique in ZenFS that resolves
the Element Mismatch (§ IV-A). By resolving the Element
Mismatch in the two victim sets, BAZA reduces unnecessary
valid data copying during ZC.

However, ZNS has a limitation known as the WP-locking
problem, which prevents BAZA from placing blob files as
intended (§IV-B). To address the WP-locking problem, which
is a challenge in our design, we propose Z Cutoff , a
technique in BlobDB layer and resolves additional Element
Mismatch and Size Mismatch. To do this, Z Cutoff uses the
Youngest Blob Index in Zone (YBIZ) for each zone (§IV-C).
As a result, Z Cutoff reduces the compaction overhead
caused by the increased S(Bvictim) and decreases unnecessary
valid data copying during ZC.

A. BAZA : BlobDB-Aware Zone Allocation algorithm

In this section, we analyze the root causes of Element
Mismatch induced by LIZA, the current blob file allocation
algorithm in ZenFS. Furthermore, we explain the detailed
workings of BAZA, a novel approach aimed at addressing
Element Mismatch. As discussed earlier in Section II-C, the
current ZenFS assigns the lifetimes of blob files based on the
lifetimes of the SST files they reference, without considering
the “Oldest First” policy of BlobGC. Specifically, the lifetime
of an SSTable is assigned according to its level; the lower
the level, the smaller the size limit, and the more frequent the
compactions. Thus, ZenFS estimates that SSTables at lower
levels contain hot data [4].

However, blob files are not deleted when their correspond-
ing SST files are removed. Instead, they follow an “Oldest
First” policy, where the oldest blob files are deleted first.
Consequently, the timing of deleting SST files and their asso-
ciated blob files differs, requiring separate lifetime estimation
algorithms for each. For example, consider a scenario where
a level 0 SST file (S) and its corresponding blob file (B) are

created due to a flush. Since this SST file (S) is generated at
level 0, ZenFS classifies it as hot data. In contrast, the blob
file (B), being the most recently created, will be the last to
be deleted under the “Oldest First” policy. Thus, while (S) is
hot data, (B) would likely be relatively cold data, reflecting
the different lifetimes of the referencing SST file and the
blob file. However, LIZA results in blob files with different
lifetimes being placed in the same zone, leading to an Element
Mismatch.

Observation 1: Currently, ZenFS assigns the lifetime
of a blob file based on the lifetime of its referencing
SST file. However, because this assignment does not
accurately reflect the actual lifetime of the blob file, it
results in an Element Mismatch.

Therefore, to resolve the Element Mismatch, we propose
BAZA, which allocates blob files in ascending order based on
their indices. The ascending order placement method in BAZA
involves sequentially placing files according to their creation
order (index). Since the “Oldest First” policy also deletes files
in sequence from oldest to newest, BAZA can select blob files
allocated in ascending order within a single zone as Bvictim,
which can then be selected as Zvictim by the ZC.

B. Design Challenges : WP-locking problem

However, due to the WP-locking problem, the ascending
allocation method of BAZA is not always feasible. The WP-
locking problem arises from the characteristic that writing to
a zone can only occur sequentially at the WP [2], leading
multiple threads cannot write to a single zone concurrently. For
instance, if there are two write threads and thread 1 is writing
to a specific zone, the WP of that zone is locked, preventing
thread 2 from writing to the same zone and necessitating
writing to a different zone. Additionally, LSM-trees frequently
involve multiple threads executing write I/O operations to
enhance write performance [17], [18].

Figure 5 illustrates two scenarios where multiple blob file
writing threads execute write I/O in BlobDB. In the case
of writing B3 and B4, a single thread requests writes to
Zone 0, successfully achieving sequential ascending allocation.
Conversely, for case of writing B7 and B8, two threads
concurrently request writes. While thread 1 allocates and
writes B7 to Zone 1, thread 2 cannot write B8 to Zone 1
and must allocate it to Zone 2. If a write request for a blob
file arrives after the completion of B7’s write, the new blob
file (B9) will again be sequentially allocated to the existing
zone (Zone 1). This situation prevents BAZA from achieving
the desired ascending allocation of blob files. The next section
will describe Z Cutoff , an algorithm for setting S(Bvictim)
that takes WP-locking problem into account.

C. Z Cutoff : Optimizing S(Bvictim) Using Zone Allocation
Information

In this section, we analyze the root causes behind the current
BlobGC inducing Size Mismatch, and propose Z Cutoff ,
an algorithm that addresses the WP-locking problem while

Zone 0

WP-locking problemSequential allocation

B1 B2 B3 B4
Zone 1
B5 B6 B7 B9

Zone 2
B8

B3 B4 B7 B8

②① ③③ X

WP

Single thread Multi thread
Blob file I/O manager

BAZA
Zone# YBIZ

0 4
1 9
2 -

Z_Cutoff
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Current Bvictim Next Bvictim

B20

Fig. 5: Description of two allocation scenarios in BAZA and
the process of Z Cutoff setting Bvictim.

resolving Size Mismatch. As discussed earlier in Section II-B,
the current BlobGC selects Bvictim as the oldest blob files
amounting to number of blob files × cut off ratio. This
policy causes the S(Bvictim) to vary dynamically based on the
total number of blob files, often resulting in S(Bvictim) being
either larger or smaller than Z(Bvictim), thereby leading to
Size Mismatch.

To resolve Size Mismatch, a simple approach would be to
set the size of S(Bvictim) equal to the zone size. However,
due to the WP-locking problem, this approach can lead to
Element Mismatch again. For example, as shown in Figure 5,
if BlobGC sets Bvictim for a zone affected by WP-locking
problem (Zone 1) to match the zone size with files (B5, B6,
B7, B8), it results in Element Mismatch for blob files B8 and
B9. To overcome this, we need a more sophisticated approach
that addresses the WP-locking problem while minimizing
S(Bvictim), since increased S(Bvictim) leads to prolonged
compaction times.

Observation 2: Due to the WP-locking problem in
ZNS, BAZA may fail to achieve perfect index-based
ascending sequential allocation. This can, in turn, lead
to Element Mismatch again.

To address the Element Mismatch problem caused by the
WP-locking problem, we propose Z Cutoff , which adjusts
S(Bvictim) by setting the cut off ratio based on the Zone
Allocation information. Below are how Z Cutoff determines
cut off ratio: Z Cutoff references the Youngest Blob
Index in Zone (YBIZ), which is the index of the most recently
created blob file in each zone. When a zone changes to a full
state, BAZA assigns the YBIZ value to that zone, since full
zone only can be considered as Zvictim. Z Cutoff uses the
smallest YBIZ value among all zones to adjust the S(Bvictim)
from the oldest blob file index up to this minimum YBIZ
value. By calculating the number of blob files that BlobGC
will delete based on this minimum YBIZ value, Z Cutoff
minimizes the compaction time.

cut off ratio =
minZ (Y BIZZ)−min(blob file index)

N
(1)

Equation 1 shows the equation for the cut off ratio
derived from the YBIZ value. Here, N represents the to-

tal number of blob files, and Z denotes the zone index.
Z Cutoff finds the minimum YBIZ value, calculates the
number of blob files up to this value, and then dynamically
computes the cut off ratio by dividing this result by N .

For example, in Figure 5, the YBIZ for Zone 0 is 4, and the
YBIZ for Zone 1 is 9. Since Zone 2 is not in a full state, it
is not considered for Zvictim, thus B8 in Zone 2 is excluded
from the YBIZ. When BlobGC happens, Z Cutoff uses the
smallest YBIZ value, which is 4, to derive the cut off ratio.
In this example, with a total of 20 blob files, the cut off ratio
is calculated as 4/20 = 0.2. Consequently, in Zone 0, a
Same Victim-GC occurs since B1, B2, B3, and B4 become
the victim. However, as previously mentioned, the WP-locking
problem can cause BAZA to fail in achieving allocating files
in ascending order, like B8 and B9 in the Zone 1 and Zone
2. When the next BlobGC happens, Z Cutoff derives the
cut off ratio based on the smallest YBIZ value, which is 9,
and the current total number of blob files, which is now 16
(since B1, B2, B3, and B4 have already been deleted). This
results in a cut off ratio of 5/16 = 0.3125. This approach
minimizes Size Mismatch between Bvictim and Zvictim and
reduces the amount of valid data copied during ZC, offering
a suboptimal solution for Same-Victim GC.

V. EVALUATION

A. Experimental setup
For the evaluation of BAZA and Z Cutoff , we used Con-

figurable ZNS (ConfZNS) [15], a ZNS SSD emulator based
on FEMU [19]. We emulated a 64GB ZNS SSD environment
with 16 Intel(R) Xeon(R) Gold 5218R CPUs and 16GB of
memory. To experiment on the large zone ZNS SSDs [16],
we set the zone size to 1024MB. To maintain compatibility
with ZNS SSD, we modified ZenFS v2.14 and RocksDB v7.4.
For the sake of experiment, we configured BlobDB to utilize
2 compaction threads, 2 flush threads, 4 subcompaction [18]
threads, and 4 max open files.

We compared the following three schemes:

• Baseline: Current BlobDB-ZenFS system.
• BAZA: Only BAZA algorithm is adopted.
• BAZA+: Both BAZA and Z Cutoff are adopted.

Workloads: We conducted evaluations using both synthetic
and realistic benchmarks. For the synthetic benchmark, we
used db bench, a tool bundled with RocksDB that offers
micro-benchmarks for various workload patterns. Specifically,
we utilized the fillrandom workload with size of 36GB for our
analysis. For realistic benchmarks, we used three workloads
from the Yahoo Cloud Serving Benchmark (YCSB) with a
zipfian distribution (zipfian constant of 0.99). We loaded 24GB
of data first and performed operations on a 24GB dataset based
on the workload type. Below are explanation of three types
workload with YCSB:

• WL(A): 80% update & 20% insert (Write-only)
• WL(B): 80% update & 20% read (Update-intensive)
• WL(C): 50% update & 50% read (Mixed Workload)

In all workloads, the key size is set to 16 bytes, and the
value size is set to 128KB. We set both SST and blob file

BAZA+
BAZA

Baseline

BAZA+
BAZA

Baseline

BAZA+
BAZA

Baseline

filrandom

Free space (%
)

0

50

100

BAZA+
BAZA

Baseline

WL(C)WL(B)WL(A)

Free space ZCcopy

Va
lid

 D
at

a
C

op
y

(G
B

)

0

10

20

Fig. 6: File system level overhead.

sizes to 64MB. Every experiment’s results are the mean of at
least three independent runs.

B. Analysis of Same-Victim GC Effect in File System
To compare the efficiency of three schemes in ZenFS, we

evaluated the amount of valid data copied during ZC and the
free space remaining after completing the workload. Since our
research focuses on the interaction between BlobGC and ZC,
the valid data copy was measured exclusively for blob files.
The left y-axis and bar graph in Figure 6 illustrate the amount
of valid data copied during ZC. In the Baseline, valid data
copies occurred during ZC across all workloads. For instance,
in the case of WL(A), approximately 19GB of valid data were
copied, which, given the total write amount of 24GB, indicates
that 80% of the data were redundantly written due to ZC.
This redundancy arises because the blob files within the zones
are not sequentially allocated, leading to Element Mismatch.
In contrast, BAZA showed significantly reduced data copy
during ZC, with only 105MB and 53MB of data copied
during the fillrandom and WL(A) workloads, respectively,
and no data copy occurring in other workloads. Moreover,
BAZA+ completely eliminated valid data copy during ZC. The
elimination of data copying in these schemes is attributed by
BAZA algorithm, which is designed considering the BlobGC’s
“Oldest First” policy, effectively resolving Element Mismatch.
As a result, when BlobGC occurs, all blob files within the zone
become invalidated, allowing ZC to simply issue a zone-reset
command to reclaim space. The slight data copy observed in
BAZA is due to Size Mismatch, which causes valid data copy
when S(Bvictim) < S(Zvictim).

The right y-axis and line graph in Figure 6 illustrate the free
space remaining on the device after performing the workloads.
In the Baseline scheme, the workloads occupy an average
of 83% of the space across the four workloads. In contrast,
BAZA uses only 67% of the space, and BAZA+ uses just 61%
of the space to perform the same workloads. This difference
arises due to the Element Mismatch in the Baseline scheme,
leading to the failure of assigning blob files with similar
lifetimes to the same zone. Consequently, invalid blob files are
partially mixed within the zones, causing space amplification
and resulting in 22% more zone usage compared to BAZA+.
On the other hand, both BAZA and BAZA+ resolve the
Element Mismatch, using 16% and 22% less device capacity,
respectively, to complete the workloads. As a result, BAZA
algorithm ensures that files with similar lifetimes are allocated
within the zones, resolving Element Mismatch, leading to (1)
no data copy during ZC, and (2) improved space utilization.

BAZA+
BAZA

Baseline

BAZA+
BAZA

Baseline

BAZA+
BAZA

Baseline

filrandom

Tim
e (sec)

0

200

400

BAZA+
BAZA

Baseline

WL(C)WL(B)WL(A)

Compaction time BlobGCcopy
Va

lid
 D

at
a

C
op

y
(G

B
)

0

20

40

Fig. 7: Application level overhead.

BAZA+
BAZA

Baseline

BAZA+
BAZA

Baseline

BAZA+
BAZA

Baseline

filrandom
BAZA+

BAZA
Baseline

WL(C)WL(B)WL(A)

Tim
e (m

icrosec)

0

500

1000

PUT (k,v) GET (k,v) OPS/sec

O
P

S
/s

ec

0

2000

4000

Fig. 8: Overall system performance.

C. Analysis of Same-Victim GC Effect in Application

To compare the efficiency of three schemes in BlobDB, we
evaluated the amount of valid data copied during BlobGC and
the compaction time. Figure 7 illustrates the valid data copy
during BlobGC and the cumulative compaction time for the
four workloads. In BAZA, the valid data copy during BlobGC
was similar to the Baseline. This similarity is because both
the Baseline and BAZA use the same algorithm to adjust
the size of S(Bvictim), resulting in comparable amounts of
valid data copy during BlobGC. However, the compaction time
for BAZA was reduced by an average of 17% compared to
the Baseline. This reduction is because write stalls during
compaction, caused by valid data copying during ZC, are
minimized in BAZA compared to the baseline. For BAZA+,
the amount of valid data copy during BlobGC decreased by an
average of 33% across all workloads compared to the Baseline.
This improvement is because BAZA+ adjusts S(Bvictim) to
closely match the zone size through Z Cutoff , minimizing
the effect of Size Mismatch. Additionally, the compaction time
in BAZA+ was reduced by 50%. This reduction is attributed to
the elimination of valid data copying during ZC, which reduces
write stalls during compaction, and the smaller S(Bvictim),
which decreases BlobGC time.

D. Analysis of Same-Victim GC Effect in Overall Performance

In this section, we conduct an overall performance compar-
ison across four workloads. We evaluate throughput, average
PUT performance, and average GET performance. Since the
fillrandom and WL(A) workloads do not include any GET
operations, their GET performance results are not included.
As shown in Figure 8, throughput improves by 1.27× in
BAZA and by 1.44× in BAZA+ compared to the Baseline.
The increase in throughput for BAZA is due to the reduction
in valid data copying during ZC, which prevents write stalls.
BAZA+ further benefits from reduced valid data copying dur-
ing BlobGC, enhancing overall performance. In the previous
section, we observed that BAZA reduces compaction time by

Baseline BAZA+

Fr
ee

 s
pa

ce
 (%

)

0

50

100

Time (sec)
0 50 100 150 200 250 300 350

Fig. 9: Microscopic analysis of Baseline and BAZA+.

O
P

S
/sec

0

500

1500

BAZA+
Baseline

BAZA+
Baseline

BAZA+
Baseline

OPS/secAPPcopyZCcopy

Valid Data Copy OPS/sec

Va
lid

 D
at

a
C

op
y

(G
B

)

0

20

40 O
P

S
/sec

0

200

400

BAZA+
Baseline

BAZA+
Baseline

BAZA+
Baseline

OPS/secAPPcopyZCcopy

Va
lid

 D
at

a
C

op
y

(G
B

)

0

20

40

(a) ZN540 (b) Small-zone ZNS

Fig. 10: Experiments on different settings of ZNS devices.

17% and BAZA+ by 50% compared to the Baseline. Conse-
quently, for all four workloads, the average PUT performance
improves by 1.37× in BAZA and by 1.6× in BAZA+. For
GET performance, BAZA shows an average improvement of
1.1×, and BAZA+ shows an improvement of 1.34× for the
WL(B) and WL(C). This improvement is also attributed by
the reduction in compaction time.

E. Microscopic Analysis

Figure 9 shows a time-series analysis comparing the Base-
line and BAZA+ in terms of remaining free space and ex-
ecution time for WL(A). As shown, the Baseline takes 48
seconds longer than BAZA+. The Baseline experiences write
stalls and increased compaction time when free space drops
below 20% due to valid data copying during ZC, caused by
Element Mismatch. As we observed in previous sections, the
Baseline involves significant valid data copying during both
GC processes, resulting in poorer space utilization compared
to BAZA+ over the same time period. In contrast, BAZA+
effectively reclaims free space quickly during ZC without valid
data copying, with the Same-Victim GC approach. This leads
to relatively better space utilization compared to the Baseline.

F. Experiment on Real ZNS Device

To validate our previous experiments, we conducted tests us-
ing a real device. We used the ZN540 Western Digital NVMe
ZNS SSD, which consists of 904 zones, each with a capacity
of 1077MB, and a total size of 1TB [16]. For ease of experi-
mentation, we mounted only 64 zones in ZenFS and conducted
experiments on WL(A). Figure 10(a) shows the comparison
results of valid data copy during ZC, valid data copy during
BlobGC, and throughput between the Baseline and BAZA+.
As illustrated, the Baseline induces approximately 9GB of
valid data copy during ZC, whereas BAZA+ eliminates valid
data copy. This improvement is due to resolving Element
Mismatch. For BlobDB, BAZA+ reduces valid data copy

during BlobGC by approximately 60% by also addressing Size
Mismatch. In terms of throughput, BAZA+ outperforms the
Baseline by about 1.09×. Therefore, we confirmed that our
BAZA+ also enhances performance on a real ZNS device,
demonstrating the practical benefits of our approach.

G. Experiment on Small-Sized Zone ZNS

For ZNS SSDs, the zone size varies depending on the
manufacturer [16], [20]. To observe the effects in cases with
smaller zone sizes, we used ConfZNS to set the zone size
to 64MB, and used it as a small-sized zone ZNS. To ensure
that multiple blob files are allocated within a single zone, we
set the blob file size to 32MB. Figure 10(b) compares the
Baseline and BAZA+ in terms of valid data copy during ZC,
valid data copy during BlobGC, and throughput in WL(A). As
shown, during ZC, the Baseline results in approximately 13GB
of valid data copy, whereas BAZA+ eliminates valid data copy
entirely. For BlobGC, BAZA+ reduces valid data copy to just
0.05% of that in the Baseline. This significant effect is more
pronounced than in large-sized zone ZNS. The reason for these
results is that as the zone size decreases, the size of S(Bvictim)
also decreases, leading to decreased BlobGC overhead. In
terms of throughput, BAZA+ improves performance by 1.72×
over the Baseline even in small-sized zone ZNS. Therefore,
we confirmed that our BAZA+ enhances performance in ZNS
devices with small-sized zones, demonstrating its effectiveness
across different zone configurations.

VI. RELATED WORK

Efforts to implement Same-Victim GC for the LSM-tree-
based KV Store (RocksDB) and ZNS-supported file system
(ZenFS) have been made before. Lee et al. [5] proposed the
CAZA algorithm, which allocates SST files into zones based
on lifetimes derived from RocksDB’s compaction. Jung et
al. [14] modified the compaction to align with ZenFS’s ZC
policy, enabling compaction of SSTables within the same zone.
However, these solutions do not extend to blob files, whose
management and GC policies differ from SST files. Addition-
ally, these approaches address either the RocksDB level or the
ZenFS level individually. Effective Same-Victim GC requires
coordinated GC between both levels. Our solution focuses
on coordinating between the application and the file system,
leveraging the characteristics of BlobDB and the advanced
functionalities of ZenFS for efficient data management.

Several works have addressed inefficiencies between log-
structured file systems like F2FS [21] and FTL in SSD. Yang
et al. [22] analyzed the interactions between logs in multiple
layers, highlighting issues caused by unaligned segment sizes
and uncoordinated GC. Yoo et al. [23] aimed to eliminate
redundancies in GC by leaving most FTL functions to the log-
structured file system. However, these approaches are based
on interactions between F2FS and traditional SSDs, not ZNS
SSDs. While ZNS systems benefit from an interface that
matches the physical data layout on flash drives and hides
flash hardware complexities, further coordination with the
application layer is still necessary.

VII. CONCLUSION

This paper proposes Same-Victim GC to address the GC
over GC (GoG) problem between BlobDB and ZenFS. Specif-
ically, the BlobDB-aware Zone Allocation for Same-Victim
GC (BAZA) and Z Cutoff eliminate mismatches in victim
files and the size of the GC process in BlobDB and ZenFS.
The Same-Victim GC reduces valid data copying overhead and
enhances compaction performance. Evaluations show a 33%
reduction in data copying during BlobGC, a 1.5× improvement
in compaction time, and the elimination of data copying in ZC.

ACKNOWLEDGMENTS

This work was supported in part by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government (MSIT)
(No. NRF-2021R1A2C2014386 and RS-2024-00416666), and in part
by Samsung Electronics Co., Ltd. (IO221014-02908-01).

REFERENCES
[1] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. Le Moal, G. R.

Ganger, and G. Amvrosiadis, “Zns: Avoiding the block interface tax for
flash-based ssds,” in USENIX Annual Technical Conference, 2021.

[2] “NVM Express® Zoned Namespace Command Set Specification Revi-
sion 1.1a.” https://nvmexpress.org/specifications/, 2022.

[3] J. Y. Ha and H. Y. Yeom, “zceph: Achieving high performance on storage
system using small zoned zns ssd,” in 38th ACM/SIGAPP Symposium
on Applied Computing, SAC ’23, 2023.

[4] S. Byeon, J. Ro, J. Y. Han, J.-U. Kang, and Y. Kim, “Ensuring Com-
paction and Zone Cleaning Efficiency through Same-Zone Compaction
in ZNS Key-Value Store,” in 38th International Conference on Massive
Storage Systems and Technology, MSST ’24, 2024.

[5] H.-R. Lee, C.-G. Lee, S. Lee, and Y. Kim, “Compaction-aware zone
allocation for lsm based key-value store on zns ssds,” in 14th ACM
Workshop on Hot Topics in Storage and File Systems, 2022.

[6] T. Stavrinos, D. S. Berger, E. Katz-Bassett, and W. Lloyd, “Don’t
be a blockhead: Zoned namespaces make work on conventional ssds
obsolete,” in 13th USENIX Workshop on Hot Topics in Operating
Systems, 2021.

[7] M. K. M. J. Hanyeoreum Bae, Jiseon Kim, “What you can’t forget: ex-
ploiting parallelism for zoned namespaces,” in 14th USENIX Workshop
on Hot Topics in Storage and File Systems, HotStorage ’22, 2022.

[8] Q. Y. C. G. W. X. Gaoji Liu, Chongzhou Yang and Z. Cao, “Prophet:
Optimizing lsm-based key-value store on zns ssds with file lifetime pre-
diction and compaction compensation,” in 38th International Conference
on Massive Storage Systems and Technology, MSST ’24, 2024.

[9] RocksDB, “Rocksdb.” https://github.com/facebook/rocksdb, 2022.
[10] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“WiscKey: Separating keys from values in SSD-conscious storage,” in
14th USENIX Conference on File and Storage Technologies, 2016.

[11] Facebook, “Blobdb.” https://github.com/facebook/rocksdb/wiki/BlobDB.
[12] S. Byeon, J. Ro, S. Jamil, J.-U. Kang, and Y. Kim, “A free-space adaptive

runtime zone-reset algorithm for enhanced zns efficiency,” in 15th ACM
Workshop on Hot Topics in Storage and File Systems, 2023.

[13] W. Digital, “Zenfs.” https://github.com/westerndigitalcorporation/zenfs.
[14] J. Jung and D. Shin, “Lifetime-Leveling LSM-Tree Compaction for ZNS

SSD,” in 14th USENIX Workshop on Hot Topics in Storage and File
Systems, HotStorage ’22, 2022.

[15] I. Song, M. Oh, B. S. J. Kim, S. Yoo, J. Lee, and J. Choi, “Confzns:
A novel emulator for exploring design space of zns ssds,” in 16th ACM
International Conference on Systems and Storage, SYSTOR ’23, 2023.

[16] W. Digital, “Western digital ultrastar dc ZN540.” https:
//www.westerndigital.com/products/internal-drives/data-center-drives/
ultrastar-dc-zn540-nvme-ssd, 2021.

[17] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi,
and D. Didona, “SILK: Preventing Latency Spikes in Log-Structured
Merge Key-Value Stores,” in USENIX Annual Technical Conference,
ATC ’19, 2019.

[18] RocksDB, “Rocksdb subcompaction wiki.” https://github.com/facebook/
rocksdb/wiki/Subcompaction, 2022.

[19] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and
H. S. Gunawi, “The CASE of FEMU: Cheap, accurate, scalable and
extensible flash emulator,” in 16th USENIX Conference on File and
Storage Technologies, FAST ’18, 2018.

[20] K. K. Minwoo Im and H. Yeom, “Accelerating rocksdb for small-zone
zns ssds by parallel i/o mechanism,” in 23rd International Middleware
Conference Industrial Track, 2022.

[21] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2FS: A New File System
for Flash Storage,” in 13th USENIX Conference on File and Storage
Technologies, FAST ’15, 2015.

[22] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman,
“Don’t stack your log on my log,” in 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads, 2014.

[23] J. Yoo, J. Oh, S. Lee, Y. Won, J.-Y. Ha, J. Lee, and J. Shim, “Orcfs:
Orchestrated file system for flash storage,” ACM Trans. Storage, 2018.

https://nvmexpress.org/specifications/
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/wiki/BlobDB
https://github.com/westerndigitalcorporation/zenfs
https://www.westerndigital.com/products/internal-drives/data-center-drives/ ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ ultrastar-dc-zn540-nvme-ssd
https://github.com/facebook/rocksdb/wiki/Subcompaction
https://github.com/facebook/rocksdb/wiki/Subcompaction

	Introduction
	Background
	WiscKey-Based Key-value Store
	Compaction and BlobGC in BlobDB
	Zone Allocation and Zone Cleaning in ZenFS

	Analysis of Overhead Due to GC over GC
	Analysis of Multiple Cases in GoG
	Element Mismatch
	Size Mismatch
	Same-Victim GC

	Design towards Same-Victim GC
	BAZA : BlobDB-Aware Zone Allocation algorithm
	Design Challenges : WP-locking problem
	Z_Cutoff: Optimizing S(Bvictim) Using Zone Allocation Information

	Evaluation
	Experimental setup
	Analysis of Same-Victim GC Effect in File System
	Analysis of Same-Victim GC Effect in Application
	Analysis of Same-Victim GC Effect in Overall Performance
	Microscopic Analysis
	Experiment on Real ZNS Device
	Experiment on Small-Sized Zone ZNS

	Related Work
	Conclusion
	References

