
Refining Compaction Offloading I/O Stack for
LSM-based Key-Value Stores with SPDK

Honghyeon Yoo∗, Hongsu Byun∗, Sungyong Park†
Department of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea

{yhh, byhs, parksy}@sogang.ac.kr

Abstract—We analyze the compaction I/O characteristics and
the resulting I/O time amplification problem in log-structured
merge-tree based key-value stores. We also propose an I/O stack
refinement using SPDK and NVMe-oF for compaction offloading.
Using our proposed I/O stack, preliminary experimental results
show a 37.7% improvement in compaction throughput.

Index Terms—Key-Value Store, LSM-tree, SPDK

I. INTRODUCTION

LSM-tree based Key-Value Stores. The log-structured
merge-tree based key-value store (LSM-KVS) is used not
only as a high-performance database due to its high write
performance, but also in a wide range of systems such as
real-time data storage and processing like streaming, and
furthermore as the backbone of distributed databases. On the
other hand, LSM-KVS requires a compaction process that
merge-sorts the inserted key-value pairs based on logs. Com-
paction delays can cause read performance degradation and
I/O blocking, thus directly impacting the performance of LSM-
KVS. Improving compaction in LSM-KVS has traditionally
been a well-known topic, with numerous studies conducted
ranging from improvements in compaction algorithms and
scheduling to offloading across heterogeneous devices.
Network-based Compaction Offloading. In studies aimed
at improving compaction, a recent network-based compaction
offloading approach has emerged, which offloads compaction
tasks between different servers connected via a network [1],
[2]. The network-based compaction offloading approach has
the advantage of accelerating compaction by utilizing the re-
sources of other servers. However, it requires transmitting data
over the network from the host server where the LSM-KVS
data is stored to the remote server that performs the offloaded
compaction. In other words, the I/O stack for network-based
compaction offloading includes the additional network layer
overhead along with the conventional compaction process.
Goals. NVMe over Fabrics (NVMe-oF) is a technology that
extends the NVMe protocol over a network, providing low
latency and high bandwidth similar to local devices for remote
server NVMe devices. Noting the advantage of reducing
the I/O stack when accessing remote server NVMe devices
through NVMe-oF, we propose refining the I/O stack in
network-based compaction offloading. This can ultimately
improve both compaction and LSM-KVS performance.
Contributions. The contributions are as follows:

• We first analyzed the I/O characteristics of compaction to
reveal the problem of I/O-induced delays in compaction and
identified and the necessity to enhance the I/O stack.

∗Authors contributed equally to this work.†S. Park is the corresponding author.

SST

Memory
Storage

SST

New
SST

Merge-sort

SST

K
V

…

…

Write

Read &
Merge-sort

WriteRead

(a) (b)

Fig. 1. Compaction’s (a) logical execution process (b) actual implementation
and execution process.

• We designed compaction offloading using Intel SPDK [3]
and NVMe-oF to dramatically reduce the I/O stack, and
our preliminary experiments show a 37.2% reduction in
compaction time and a 37.7% increase in throughput.

II. BACKGROUND & MOTIVATION

Figure 1(a) shows the anticipated logical process of com-
paction. It involves reading the victim SST file into memory,
performing a merge-sort, and writing the new SST file to
storage. This storage I/O requires one read and one write
operation. Figure 1(b) shows the actual implementation as
analyzed at the code level in RocksDB [4], a representative
LSM-KVS. Merge-sort involves reading and writing the victim
SST files for each key, necessitating I/O operations for every
key-value pair subjected to compaction and consequently
amplifying I/O time. RocksDB adopts this design to avoid
resource waste that could occur when reading all SST files
overlapping the key range of the victim SST file.

Figure 2 shows the actual I/O time spent during the
compaction process as measured on RocksDB, compared to
the ideal I/O time values assuming minimal I/O overhead.
The ideal I/O time was calculated using sequential read/write
results from the FIO benchmark [5] in our experimental envi-
ronment. The detailed experimental environment is described
in Section IV. The difference between compaction I/O time
and ideal I/O time for RocksDB worsens as the compaction
size increases, with an average of 7.6× and a maximum of
15.9× higher. We also found that I/O time accounts for 74%
of the total compaction time when analysed with Perf [6].
This shows that the amplification of I/O time had a significant
impact on compaction.

III. DESIGN

We propose the following design to improve the I/O stack,
assuming a situation where the host server runs the LSM-KVS
instance directly and stores data, while the remote server only
offloads compaction from the host.

RocksDB
Ideal

I/O
 T

im
e

(s
)

0.5

1

1.5

Compaction Size (GB)
0 0.2 0.4 0.6 0.8 1

Fig. 2. Comparison of ideal I/O time and actual I/O time in RocksDB
according to compaction size.

• Typical Network-based Compaction Offloading: Fig-
ure 3(a) shows a basic design for offloading compaction
over a network. The host server and remote server use
a Network FIle System to access data on the host server
from the remote server. Both the host and remote servers
go through the filesystem as well as an additional I/O stack
at the network layer.

• NVMe-oF-based Compaction Offloading: Figure 3(b)
shows the design of compaction offloading using SPDK
and NVMe-oF. Using SPDK and NVMe-oF on the host
and remote server to access NVMe devices can dramatically
lighten the I/O stack by eliminating the need to traverse ker-
nel space such as the filesystem. However, synchronization
of concurrent data access needs to be managed.

IV. PRELIMINARY RESULT

Experiment Setup. To verify whether reducing the I/O stack
overhead with SPDK and NVMe-oF during compaction of-
floading can improve the compaction performance, we per-
formed the following evaluation in two environments. In
each environment, the host and remote server are the same
hardware, and the server details are shown in Table I.

• Baseline: RocksDB v8.1.1 is used to implement compaction
offloading. The host and remote server use the Network File
System to share files.

• NVMe-oF: RocksDB v8.1.1 and SPDK v24.01 were used.
RocksDB was run exclusively on the remote server, using
host server-side storage device connected via NVMe-oF.

Baseline compaction offloading is fully implemented and
experimented with, but NVMe-oF version was not fully im-
plemented due to synchronisation issues. Therefore, for a
fair comparison, we only compare compaction performance
for both systems when running the FillRandom workload in
db bench for 16B-1024B (Key-Value) for 300 seconds.
Results. Table II shows the evaluation results. Compared to
the baseline, NVMe-oF reduced the average time required for
compaction by 37.2%, and the proportion of time spent on I/O
also decreased. As a result, NVMe-oF achieved 37.7% higher
compaction throughput compared to the baseline.

We measured network bandwidth usage and found that
the peak usage with NVMe-oF exceeded twice the baseline,
although it did not reach the maximum bandwidth (10 Gb/s).

TABLE I
TESTBED SPECIFICATIONS.

CPU Ryzen 9 7950X, 16 Cores, Up to 5.7 GHz
Memory 32 GB (16 GB × 2) DRAM
Storage Samsung 970 EVO 1 TB

OS Ubuntu 22.04.4 / Linux Kernel 5.10.0
Network 10 Gbps Ethernet

SP
DK

SP
DK

Dr
iv

er
s

Pr
ot

oc
ol

St
or

ag
e

Se
rv

ic
e

NVMe-oF
Target

Compaction

NVMe-oF
Initiatior

 bdev Layer

NVMe

RocksDB
(Instance)

NVMe
PCIe

NVMe SSD (Physical)

NVMe

VFS

Pa
ge

C
ac

he

CompactionRocksDB
(Instance)

Block FS

Ext4

Network
FS

NFS

I/O Scheduler

NVMe SSD (Physical)

NVMe Driver

Block I/O Layer

U
se

r
Ke

rn
el

Local Path Offloading Path

(a) (b)

Network

Network

Fig. 3. I/O stack of compaction offloading using (a) NFS and (b) NVMe-oF.

This indicates that network bottlenecks in compaction of-
floading are not the main cause of performance degradation
and that the problem lies in the I/O stack.

TABLE II
EVALUATION RESULTS.

Baseline NVMe-oF
Avg. I/O Time (sec) 1.542 0.968
Avg. I/O Ratio (%) 65.7 54.5

Compaction Throughput (MB/s) 119.4 164.51
Max. Network Bandwidth Usage (Gb/s) 3.1 6.5

V. CONCLUSION & FUTURE WORK

We analyzed the I/O characteristics of compaction in Log-
structured Merge-tree based Key-Value Stores (LSM-KVS)
and reveal that compaction delays are caused by the resulting
I/O time amplification. To mitigate this I/O time amplifi-
cation during compaction offloading, we propose an SPDK
and NVMe-oF based compaction offloading I/O stack refine-
ment. Preliminary experimental results show that our proposed
method improves compaction throughput by 37.7%. For future
work, we aim to fully integrate compaction offloading using
SPDK and NVMe-oF, with the goal of enhancing LSM-KVS
performance through the refined I/O stack.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korean govern-
ment (MSIT) (No. NRF-2021R1A2C2014386) (No. RS-2024-
00416666).

REFERENCES

[1] Q. Yu, C. Guo, J. Zhuang, V. Thakkar, J. Wang, and Z. Cao, “Caas-
lsm: compaction-as-a-service for lsm-based key-value stores in storage
disaggregated infrastructure,” Proceedings of the ACM on Management
of Data, vol. 2, no. 3, pp. 1–28, 2024.

[2] J. Kim, H. Yoo, S. Lee, H. Byun, and S. Park, “Coordinating compaction
between lsm-tree based key-value stores for edge federation,” in 2024
IEEE 17th International Conference on Cloud Computing (CLOUD).
IEEE, 2024.

[3] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “SPDK: A development kit to
build high performance storage applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2017, pp. 154–161.

[4] Facebook, “Rocksdb: A persistent key-value store for fast storage envi-
ronment,” https://rocksdb.org, 2012.

[5] Axboe, J, “Github—axboe/fio: Flexible i/o tester,” 2021. [Online].
Available: https://github.com/axboe/fio

[6] A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, vol. 18, 2010, pp. 1–42.

