
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 ISSN(Print) 1598-1657 
https://doi.org/10.5573/JSTS.2023.23.5.273 ISSN(Online) 2233-4866 

Manuscript received Jun. 12, 2023; reviewed Aug. 10, 2023; 

accepted Oct. 7, 2023

Dept. of Computer Science and Engineering, Sogang University, Seoul,
Korea
E-mail : akssus12@sogang.ac.kr, siblue202@sogang.ac.kr,
kyuripark@sogang.ac.kr, youkim@sogang.ac.kr, parksy@sogang.ac.kr
Corresponding author: Sungyong Park

Empirical Analysis of Disaggregated Cloud Memory on
Memory Intensive Applications

Yeonwoo Jeong, Gyeonghwan Jung, Kyuli Park, Youngjae Kim, and Sungyong Park

Abstract—Disaggregated Cloud Memory (DCM) is a 

hypervisor-based solution that allows client node to

extend local memory by leveraging underutilized 

memory from remote node. These two nodes are 

generally connected through Remote Direct Memory 

Access (RDMA)-based high-bandwidth InfiniBand 

networks. DCM has been a viable alternative to 

mitigate the performance degradation of memory-

intensive applications in memory-constrained 

environments. There has also been a growing interest 

in developing memory-intensive applications with 

managed languages (we call managed applications) 

such as Java and Python. These managed languages

are easy to use but introduce unpredictability in

memory usage at runtime. Despite the advantage of 

memory extension in DCM, the empirical studies that 

analyze the performance impact and overhead of 

running managed applications in DCM are lacking.

This paper presents the results of a comprehensive 

study of DCM on both managed and unmanaged 

applications. The experimental results revealed that 

the performance degradation of unmanaged 

applications in DCM is only less than 6% due to fast

remote paging and optimized page eviction policy.

However, Garbage Collection (GC) severely degrades 

the performance of managed applications when page 

fault occurs, while DCM mitigates the performance 

degradation efficiently.

Index Terms—Disaggregated cloud memory, memory

capacity extension, memory, disaggregation

I. INTRODUCTION

As demand surges for in-memory application 

processing including deep learning and graph processing, 

it becomes imperative to ensure adequate memory 

capacity for the seamless execution of applications [1-4]. 

However, due to the physical constraints of memory 

chipset on the mainboard, the enhancement of memory 

density within a single computational unit is inherently 

limited. With the ongoing rise in dataset size and 

application complexity, the working set size surpasses 

the physical memory capacity of an individual 

computational node. While disk swapping traditionally 

served to augment program availability, the slow disk I/O 

incurred during memory paging results in a significant 

performance degradation for applications.

To mitigate the performance degradation of in-memory 

applications, there are several researches to extend local 

memory capacity [2, 5, 6]. This is achieved by borrowing 

the underutilized memory from remote nodes, all linked 

by a high-speed network such as InfiniBand [7]. A 

prominent solution among these is Disaggregated Cloud 

Memory [8] (DCM), a hypervisor-based memory 

expansion technology. Within this system, the guest OS 

of a Virtual Machine (VM) perceives the memory of both 

the local and remote nodes as a singular, unified memory 

space, offering a promising alternative to accelerating 

memory- hungry applications. It employs a transparent 

remote paging mechanism and specialized memory 

management to locate highly localized memory pages 

within the local memory space.



274 YEONWOO JEONG et al : EMPIRICAL ANALYSIS OF DISAGGREGATED CLOUD MEMORY ON MEMORY INTENSIVE …

Memory extension solutions that leverage remote 

memory come with several challenges.

Managed application in DCM : Recently, Java 

Virtual Machine (JVM)-based managed frameworks 

including Apache Spark [9], SciJava [10] and ImageJ 

[11] are emerging. These managed applications are easy 

for users who have little knowledge about programming 

because JVM takes care of complex memory 

management. Due to the advantages of managed 

applications, users often run these applications without 

much consideration of memory capacity in underlying 

compute nodes. Memory allocation patterns generated at 

runtime are unpredictable until the initial execution for 

most applications. Notably, when the working set of a 

managed application exceeds the memory capacity 

allocated to a VM, the resulting page faults can cause 

significant performance degradation. In such situations, a 

solution that seamlessly handles page faults without 

requiring additional resources becomes an attractive 

alternative.

Meanwhile, the performance impact and overhead of 

running managed applications in DCM have not been 

extensively studied. Most of existing works focus on 

evaluating the effectiveness of DCM and the workloads 

are limited to the unmanaged applications [12-14]. 

Indeed, conducting an in-depth analysis of both managed 

and unmanaged applications is crucial to determine the 

feasibility and effectiveness of DCM for running 

memory-intensive applications.

Factors affecting the performance in DCM : In 

order to answer the benefits and challenges of memory 

disaggregation, this paper conducts a thorough 

investigation, with an emphasis on three primary factors 

that highlight the advantages of DCM: (1) page fault cost, 

(2) garbage collection, (3) page caching. This paper 

conducts a comparative study of DCM and OS swap 

mechanism, focusing on their performance when running 

memory-intensive applications in a local memory-

constrained environment.

We have conducted our experiments on a setup 

comprising two servers, each equipped with a 28-core 

Intel Xeon Gold 6330 CPU and 128GB memory, 

interconnected via a 100Gb/s InfiniBand network. Our 

research reveals that DCM significantly enhances 

application performance, achieving up to a 7.27 times 

improvement over OS swap mechanism. Remarkably, 

even when the working set occupies only 60% of local 

memory space, the performance degradation is limited 

only to 6% compared to a native memory computing 

environment. The key observations found through an 

empirical study are summarized as follows.

1) Fast remote paging and optimized page eviction 

policy in DCM are particularly effective in 

unmanaged applications, where users control 

memory directly. This results in a minimal 

performance degradation of less than 6% compared 

to the ideal scenario, even in situations where only 

60% of the working set resides in local memory.

2) While running managed applications where 

memory lifecycle is managed by JVM, the overlap 

between garbage collection and remote paging can 

counteract the efficiency gains achieved by fast 

remote paging and the optimized page eviction 

policy in DCM.

3) DCM demonstrates dramatic performance 

improvements over traditional computing 

environments while performing comparably to 

native memory computing, showing that it can be a 

viable alternative to addressing memory-scarce 

environments.

II. BACKGROUND

1. Disaggregated Cloud Memory

DCM [8] represents a novel VM-based remote 

memory expansion solution that effectively grants access 

to substantial memory resources from remote nodes and 

virtualizes unified memory with local memory. It 

comprises two interconnected components: a client node 

and a donor node, linked through a high bandwidth 

100 Gb/s InfiniBand network as shown in Fig. 1.

Fig. 1. An Overview of Disaggregated Cloud Memory (DCM).



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 275

The client node, functioning as a VM node, is further 

divided into distinct host and guest areas. The host area 

executes a KVM hypervisor that operates atop the host 

OS, facilitating the deployment of multiple VMs. These 

VMs, in turn, host various guest OSes and user 

applications. According to [15], the access latency of an 

application to fetch a 4KB memory page from local 

memory ranges from 10 ns to 256 ns. In contrast, when 

the application reads the same 4KB memory page from a 

remote server connected by InfiniBand with a speed of 

100Gb/s, it takes approximately 2.8 μs. To mitigate the 

communication overhead, DCM employs an optimized 

memory paging. For example, in DCM, when a page is 

replaced, it is not immediately evicted from local 

memory. Instead, it is reserved by placing it in another 

queue that predicts its likelihood of being accessed in the 

near future. This approach reduces the frequency of

remote paging during page faults, effectively 

implementing a caching scheme to minimize 

communication overhead.

Fig. 1 illustrates the sequence of steps involved in 

DCM process of fetching a memory page from a donor 

node during a page fault event. Before DCM 

communicates between client node and donor node, a 

preliminary operation is performed to reserve the 

memory of the donor node as the swap area. DCM 

module requests the donor node to reserve a swap region 

of a certain size (❶). Then, the donor node returns the 

RDMA buffer addresses of the area, and a channel is 

established, through which RDMA (read/write) 

operations can be executed.

When an application running on the guest VM 

accesses local memory, if the requested page does not 

exist in the local memory, the guest VM is exited with a 

page fault event (❷). At that time, the guest kernel 

delegates the page fault handling to the host kernel/KVM. 

Then, KVM delegates the responsibility of handling the 

page fault event to DCM (❸), which performs the 

necessary memory page replacement. DCM first checks 

whether there are free spaces in local memory. When the 

available memory spaces do not exist, it selects a victim 

page descriptor (❹) that has memory page information 

according to the LRU-3 policy [8] and evicts 

corresponding page to the remote node to create free 

space (❺). Finally, DCM terminates page fault handling 

by fetching the page (❻) located in the remote node to 

local memory through RDMA communication.

2. Garbage Collection (GC)

In recent years, a proliferation of highly portable and 

easy-to-program JVM-based frameworks have emerged 

for handling memory-intensive applications. One of the 

reasons why JVM applications are widely used in many 

industrial areas is that users do not need to manually 

manage the memory lifecycle of objects during runtime. 

When coding at the application level, garbage collection 

takes care of memory management required for 

executing the code. Garbage collection is an automatic 

process which identifies and frees objects that are no 

longer in use by the program, thereby freeing up memory 

resources.

Fig. 2 shows overall garbage collection process. At 

first, new objects are allocated in eden at young 

generation. After sometime, the objects are promoted to 

survivor area when eden is full. If the survivor 1 is full, 

minor GC occurs and the live objects are copied to 

survivor 2 and the dead objects are cleared. In fact, this 

process has no significant performance overhead.

Major GC accounts for most part of the performance 

degradation occurring due to garbage collection because 

all application threads are temporary paused until major 

GC is completed. The garbage collection discussed in 

this paper refers to major GC. Major GC consists of four 

steps including mark, copy, cleanup, update reference.

• Mark : In this step, the garbage collector identifies 

all objects directly accessible from the program and 

marks them as live objects to collect the garbage.

• Copy: All marked live objects are copied to a 

different part of the heap memory so that they are 

Fig. 2. Garbage Collection Process.



276 YEONWOO JEONG et al : EMPIRICAL ANALYSIS OF DISAGGREGATED CLOUD MEMORY ON MEMORY INTENSIVE …

located contiguously in the memory.

• Cleanup: After the copy step, the old generation of 

the heap memory is cleared out at once.

• Update Reference: The garbage collector then 

updates any internal references in the copied objects 

to point to the new locations of the referenced 

objects.

III. EVALUATION

1. Experimental Methodology

1) Configurations: To establish an experimental 

environment for DCM, we built a client node and donor 

node connected by 100 Gb/s InfiniBand. The details of 

experimental specification are shown in Table 1.

2) Workloads: We implemented widely used memory 

intensive applications, written either in C and Java. For 

workloads written in C, user manages the memory 

lifecycle by calling malloc and free API. Conversely, for 

workloads written in Java, JVM manages the memory 

lifecycle [18], thereby allowing application development 

without explicit concern for memory management. To 

investigate potential performance differences resulting 

from memory management by the user or the JVM, we 

conducted experiments using both unmanaged and 

managed workloads. The details of the workload can be 

found in Table 2.

For the managed workload, we utilized the application 

provided by Intel HiBench benchmark suite [17] that is 

executed on Apache Spark [9], a notable distributed 

processing system used for big data workloads. Garbage 

collection policy was set to use ParallelGC [19].

3) Experimental Environment: To ascertain the 

performance improvement of running applications in 

DCM in comparison to the virtualized computing 

environment, it is imperative to conduct a quantitative 

verification. For this purpose, we designated SSD disk 

shown in Table 1 as the swap space. The experimental 

environments for DCM and disk swap are illustrated in 

Fig. 3.

An application executing in a VM loads necessary 

working set into memory during runtime. If the requested 

working set exceeds the local memory, the operating 

system evicts pages mapped to the client node’s memory 

area into swap space, thus creating free space. Then it 

subsequently retrieves the pages from the swap space, as 

depicted in Fig. 3(a). In contrast, DCM has the capability 

to procure memory pages from the donor node via 

remote fetching, effectively enlarging the available 

memory capacity (Fig. 3(b)).

4) Comparison Targets and Evaluation Criteria: To 

denote the proportion of local memory utilized by 

working set, we define L(N) as a working set occupying 

N% of local memory. For instance, in the case of L(50), 

half of the application’s working set is loaded into local 

memory, while the remaining is mapping to either remote 

memory or swap space. For the performance metric, we 

denote makespan that refers to the total time taken to 

complete a set of tasks. We also categorized three 

evaluation criteria to represent the impact on DCM: page 

fault cost, garbage collection, and page caching. These 

Table 1. Specifications of server in DCM

CPU Intel Xeon Gold 6330, 2.00 GHz 28 Core X 2

Memory 16 GB (DDR4, 3200 MHz) X 8

Network Mellanox ConnectX-5 100 Gb/s EDR HCA

SSD Intel NVMe SSD 750 [16] (R/W : 2.2 Gb/s, 0.9 Gb/s)

OS Linux Kernel 4.18, Centos 8.4

Table 2. Experimental Workloads

Application Workload Type Description

Grep [12] Unmanaged Entails searching through a large dataset to identify and extract specific words.

GroupByAggregation [12] (GAG) Unmanaged Determines the sum of values corresponding to identical keys within a file.

PageRank [17] (PR) Managed Calculates the importance of a webpage based on the number and incoming links.

Bayesian Classification [17] (BC) Managed Predicts class membership probabilities belongs to a particular group.

Fig. 3. Experimental Environment.



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 277

criteria let us explore deeply the performance 

implications of each factor in the context of DCM.

2. Makespan

Fig. 4 shows the makespan for each workload against 

the proportion of working set residing in local memory. 

Across all workloads, applications running on DCM out-

performs those in disk swap. The performance gap 

widens as the fraction of the working set located in local 

memory decreases, with DCM exhibiting up to 3.5 times 

speed-up in execution time. This substantial performance 

disparity stems from the contrasting I/O performances of 

DCM and disk swap during the handling of page faults.

Interestingly, the performance variation within DCM is 

contingent upon whether garbage collection is engaged 

during application execution. In Fig. 4(a), all workloads 

running on DCM do not exhibit significant performance 

variations as local memory ratio to working set is 

diminished. In Grep, the slowdown at L(60) is 

approximately 6% compared to L(100).

Contrasting the unmanaged application, the managed 

application shows divergent performance patterns. It 

shows a modest degradation in performance as the ratio 

of working set residing in local memory decreases as 

shown in Fig. 4(b). This is because the software overhead 

of marking and copying objects during garbage 

collection counteracts the benefits of fast remote paging. 

We have further described in the next section.

3. Influence Factors

In this section, we demonstrate how fast remote paging 

and its careful victim selection policy in DCM impact 

over- all performance. For this, we have selected an 

unmanaged application for our experimental workload. 

The reason for choosing an unmanaged workload was to 

clearly isolate the overhead associated with page faults, 

thereby minimizing any potential interference from 

software overheads such as garbage collection. We 

selected Grep workload among the workloads because it 

shows the most distinct performance pattern. To 

quantitatively compare the page fault overhead between 

the two environments, we define page fault cost as 

shown in Eq. (1). In Eq. (1), we denote PFC, PFL, PFF, 

N as page fault cost, page fault latency, page fault 

frequency and the total number of page fault, respectively. 

In short, PFC is calculated by multiplying the page fault 

frequency by the total time to get faulted pages from

remote memory or disk swap space.

1

N

i i
i

PFC PFL PFF
=

= ´å (1)

1) Page Fault Cost: Fig. 5 shows a time breakdown 

for each operation in Grep workload. In all DCM 

scenarios, ToLower and PtrFree operations account for 

less than 10% of the total execution time. Meanwhile, 

these two operations become significantly more time-

consuming, taking up over 45% of the total execution 

time in disk swap.

This significant performance difference is due to the 

memory paging that occurs during the processing of 

these two operations, which quickly depletes local 

memory and causes frequent page faults. Firstly, 

ToLower operation involves converting uppercase 

sentences to lowercase, necessitating the loading of a 

string into memory. If sufficient memory is not available, 

a page fault occurs, causing the CPU to block while 

waiting for the faulted page into local memory. Besides, 

PtrFree operation performs memory deallocation, which 

Fig. 4. Makespan of applications per the experimental 
environments. In the figure, X-axis represents the ratio of local 
memory to the working set size, listed in the order of L(100), 
L(80), and L(60). Fig. 5. Breakdown task time analysis in Grep workload. In the 

figure, LD/LS denotes as local memory ratio in DCM and disk 
swap, respectively.



278 YEONWOO JEONG et al : EMPIRICAL ANALYSIS OF DISAGGREGATED CLOUD MEMORY ON MEMORY INTENSIVE …

triggers a page-out process. If the memory page to be 

freed resides in swap space, a page fault is triggered, thus 

halting the free operation until the page is relocated to 

local memory.

As illustrated by the red dotted line in Fig. 5, DCM 

exhibits negligible performance degradation over L(100) 

even at L(60). At L(60), the average page fault latency 

for DCM is 72 μs, while that of a page fault in the disk 

swap is 1 seconds. The number of page faults is also 

reduced by about 37% on DCM (20660) compared to 

disk swap (32659). Calculating this as the page fault cost, 

DCM took a total of 1.4 seconds, while disk swap took 

33.3 seconds, which is about 23 times less overhead. This 

implies that remote paging and optimized page victim 

selection policy in DCM handles page fault events more 

rapidly and reduces the time during which the CPU is 

blocked, thereby minimizing the performance 

degradation of the application.

Garbage Collection: To investigate the relation 

between garbage collection and memory paging, we 

performed the following experiment. We configured the 

local memory, remote memory, and disk swap space to 

16GB. As detailed in Table 2, our experimental workload 

consisted of java applications from Intel HiBench 

benchmark suite [17], built on Apache Spark. Apache 

Spark initiates a JVM process (i.e., executor) with heap 

memory to execute tasks. Based on this framework 

configuration, we allocated 32GB as the memory size for 

the executor, encompassing both local memory and disk 

swap space. This configuration facilitated the observation 

of performance patterns in DCM and disk swap, 

specifically when OS swapping coincides with garbage 

collection as the working set size surpasses the local 

memory (16GB).

In a managed application, objects are managed by 

JVM. Consequently, even if the input size is small, the 

working set size can increase as the application processes 

due to object creation. In our study, we categorized the 

working sets into four types, as presented in Table 3. This 

classification is based on the observation that accessing 

swap space or remote memory occurs when the working 

set created at runtime exceeds the local memory capacity.

There is no significant performance difference 

between DCM and disk swap, where all working sets are 

loaded into local memory at L(100). We found that the 

working set at L(92) approximately aligns with the local 

memory size. Beyond L(92), OS swap was triggered, 

causing the makespan to increase as shown in Fig. 6. At 

L(90), where OS swapping and remote paging overlap in 

earnest, we observed the performance degradation under 

both DCM and disk swap.

This observation contradicts previous observation 

suggesting minimal performance degradation even when 

the working sets are evicted from the local memory in 

unmanaged applications. This contradiction emerges due 

to the garbage collection overhead, which dilutes the 

benefits of fast remote paging. Garbage collection entails 

marking objects for temporary copying to a different 

memory space before they are cleared. When the objects 

marked for cleanup are evicted from the local memory to 

the backing store, the cleanup operation will come to a 

halt. It can only resume once the cleanup process 

retrieves the object back into local memory. As depicted 

Table 3. Working set sizes generated at runtime by different 
PageRank input data sizes

Input/Working Set Size Case

0.36 GB/7.97 GB L(100)

0.72 GB/17.6 GB L(90)

1.08 GB/19.3 GB L(80)

1.44 GB/21.3 GB L(70)

Fig. 6. Makespan of the managed application (PageRank). In 
the figure, X-axis represents the ratio of local memory to 
working set, with the ratio decreasing from left to right.



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 279

in Fig. 2, all application threads are temporarily halted 

until the garbage collection process is completed. 

Consequently, the accumulation of slowdown caused by 

OS swapping during garbage collection can significantly 

degrade performance.

Of course, DCM still outperforms disk. As shown in 

Fig. 7, the overhead is not negligible, with garbage 

collection time making up 15% of total execution time at 

L(70). When we examine the garbage collection time in 

more detail, we observe that object copy time constitutes 

about 85% in both environments (Fig. 8(a)). It indicates 

that the eviction of copied marked objects to the backing 

store and their subsequent retrieval is an dominant 

operation when page fault occurs.

In order to investigate how both environments impact 

object copy time when page faults and garbage collection 

are overlapped, we also represented tail latency using a 

Cumulative Distribution Function (CDF). As a result, 

DCM exhibits a smoother tail latency, while the disk 

swap displays a more extended tail latency spectrum in 

Fig. 8(b). DCM shows less performance degradation due 

to its ability to execute page replacements quickly via 

fast remote paging, thus minimizing the amount of time 

application threads stop.

3) Paging Caching: Although DCM enables a fast 

remote paging, it inevitably incurs a not negligible 

commu- nication overhead with each fault event. DCM 

mitigates the communication overhead by recognizing 

memory access patterns and preventing eviction of pages 

that are likely to be accessed in near future.

In this section, we explore how the selective page 

eviction impacts performance in DCM. For this, we 

configured ramdisk as the swap space because it is much 

faster than SSD. In this context, both ramdisk setting and 

DCM have similar memory access latencies. The key 

difference lies in the handling of eviction, where DCM 

utilizes a policy that reserves eviction through multiple 

opportunities during page events. Through our 

experiments, we aim to validate the effectiveness of 

DCM’s optimized page eviction policy.

Fig. 9 compares the makespan between DCM and an 

environment that sets different types of disks as swap 

space. It is observed that the performance of disk swap 

with ramdisk and DCM is similar in L(80). Intriguingly, 

starting at L(70), ramdisk performance deteriorates 

relative to DCM. Given that ramdisks generally perform 

I/O operations at memory speed, we might expect the 

Fig. 7. Breakdown of computation time and GC time as a 
percentage of the total execution time.

Fig. 8. (a) shows how much time each garbage collection task 
accounts for in the total garbage collection time; (b) shows a 
Cumulative Distribution Function (CDF) of object copy times 
in the L(70) for both cases.

Fig. 9. Makespan of the managed application (PageRank) in 
DCM and disk swap (NVMe-SSD, Ramdisk).



280 YEONWOO JEONG et al : EMPIRICAL ANALYSIS OF DISAGGREGATED CLOUD MEMORY ON MEMORY INTENSIVE …

makespan at DCM as well. However, the performance 

disparity stems from the fact that more careful page 

eviction selection in DCM, which provides a sort of 

caching effect, is more efficient than LRU page 

replacement approach. The impact of the careful page 

eviction policy becomes more significant as the working 

set size increases and more working sets are evicted from 

local memory.

IV. CONCLUSION

We conducted a comprehensive study of DCM on both 

managed/unmanaged applications. Through an empirical 

analysis, we summarized our observations. (1) DCM 

shows a minimal 6% performance penalty compared to 

native memory computing, even when the working set is 

partially loaded into local memory. (2) Garbage 

collection has a detrimental effect on the performance of 

managed applications during page fault occurrences. 

However, DCM effectively mitigates this performance 

degradation by employing the combination of fast remote 

paging and an optimized page eviction policy. (3) 

Optimized page eviction policy in DCM works better in 

memory-constrained environment than LRU page 

replacement algorithm in kernel. We strongly believe that 

DCM can be effectively utilized as a memory expansion 

solution to ensure optimal performance of applications in 

memory-constrained environments. These findings also 

provide valuable insights and guides for users 

considering DCM as a memory expansion solution.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their kind 

comments on this work. This work was supported by the 

National Research Foundation of Korea (NRF) grant 

funded by the Korea government (MSIT) (No. NRF-

2021R1A2C2014386).

REFERENCES

[1] A. Eisenman, D. Gardner, I. AbdelRahman, J. 

Axboe, S. Dong, K. Hazelwood, C. Petersen, A. 

Cidon, and S. Katti, “Reducing dram footprint with 

nvm in facebook,” in Proceedings of the Thirteenth 

EuroSys Conference, ser. EuroSys ’18. New York, 

NY, USA: Association for Computing Machinery, 

2018.

[2] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct 

access, High-Performance memory disaggregation 

with DirectCXL,” in 2022 USENIX Annual 

Technical Conference (USENIX ATC 22). Carlsbad, 

CA: USENIX Association, Jul. 2022, pp. 287-294.

[3] L. Liu, W. Cao, S. Sahin, Q. Zhang, J. Bae, and Y. 

Wu, “Memory disaggregation: Research problems 

and opportunities,” 2019 IEEE 39th International 

Conference on Distributed Computing Systems 

(ICDCS), pp. 1664-1673, 2019.

[4] A. Khan, H. Sim, S. S. Vazhkudai, J. Ma, M.-H. 

Oh, and Y. Kim, “Persistent memory object storage 

and indexing for scientific computing,” in 2020 

IEEE/ACM Workshop on Memory Centric High 

Performance Computing (MCHPC), 2020, pp. 1-9.

[5] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. 

Alonso, “Strom: Smart remote memory,” in 

Proceedings of the Fifteenth European Conference 

on Computer Systems, ser. EuroSys ’20. New York, 

NY, USA: Association for Computing Machinery, 

2020. [Online]. Available: https://doi.org/10.1145/

3342195.3387519

[6] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. 

Gandhi, P. Subrahmanyam, L. Suresh, K. Tati, R. 

Venkatasubramanian, and M. Wei, “Remote 

memory in the age of fast networks,” in 

Proceedings of the 2017 Symposium on Cloud 

Computing, ser. SoCC ’17. New York, NY, USA: 

Association for Computing Machinery, 2017, p. 

121-127.

[7] G. F. Pfister, “An introduction to the infiniband 

architecture,” High performance mass storage and 

parallel I/O, vol. 42, no. 617-632, p. 102, 2001.

[8] K. Koh, K. Kim, S. Jeon, and J. Huh, 

“Disaggregated cloud memory with elastic block 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 281

management,” IEEE Transactions on Computers, 

vol. 68, no. 1, pp. 39-52, 2019.

[9] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. 

Armbrust, A. Dave, X. Meng, J. Rosen, S. 

Venkataraman, M. J. Franklin et al., “Apache 

spark: a unified engine for big data processing,” 

Communications of the ACM, vol. 59, no. 11, pp. 

56-65, 2016.

[10] M. Krumnikl, P. Bainar, J. Kl´ımova´, J. 

Kozˇusznik, P. Moravec, Svatonˇ, and P. 

Tomancˇa´k, “Scijava interface for parallel 

execution in the imagej ecosystem,” in Computer 

Information Systems and Industrial Management: 

17th International Conference, CISIM 2018, 

Olomouc, Czech Republic, September 27-29, 2018, 

Proceedings 17. Springer, 2018, pp. 288-299.

[11] B. Schmid, J. Schindelin, A. Cardona, M. Longair, 

and M. Heisenberg, “A high-level 3d visualization 

api for java and imagej,” BMC bioinformatics, vol. 

11, no. 1, pp. 1-7, 2010.

[12] J. Lee, Y. Jung, S. Lee, S. Jamil, S. Park, K. Koh, 

H. Kim, K. Kim, and Y. Kim, “Mfence: Defending 

against memory access interference in a 

disaggregated cloud memory platform,” 2023.

[13] H. Al Maruf and M. Chowdhury, “Effectively 

prefetching remote memory with leap,” in 

Proceedings of the 2020 USENIX Conference on 

Usenix Annual Technical Conference, ser. 

USENIX ATC’20. USA: USENIX Association, 

2020.

[14] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, 

“Clio: A hardware-software co-designed dis-

aggregated memory system,” ser. ASPLOS ’22. 

New York, NY, USA: Association for Computing 

Machinery, 2022, p. 417-433.

[15] M. Hussain, “Need for speed : Comparing fdr and 

edr infiniband (part 2),” 2018.

[16] “Intel® SSD 750 Series Product Specification,”

Intel Coporation, Tech. Rep., 2015. [Online].

Available: https://www.intel.com/content/dam/www/

public/us/en/documents/product-specifications/ssd-

750-spec.pdf

[17] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, 

“The hibench benchmark suite: Characterization of 

the mapreduce-based data analysis,” in 2010 IEEE 

26th International conference on data engineering

workshops (ICDEW 2010). IEEE, 2010, pp. 41-51.

[18] T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant, 

K. Barabash, I. Lahan, Y. Levanoni, E. Petrank, 

and I. Yanorer, “Implementing an on-the-fly 

garbage collector for java,” in Proceedings of the 

2nd International Symposium on Memory 

Management, ser. ISMM ’00. New York, NY, 

USA: Association for Computing Machinery, 2000, 

p. 155-166.

[19] H.-J. Boehm, A. J. Demers, and S. Shenker, 

“Mostly parallel garbage collection,” ACM 

SIGPLAN Notices, vol. 26, no. 6, pp. 157-164, 

1991

Yeonwoo Jeong is currently 

pursuing Ph.D. degrees in computer 

science and engineering from 

Sogang University, Seoul, Republic 

of Korea. He received his B.S. 

degree in computer software from 

Kwangwoon University and M.S. 

degree in computer science and engineering in Sogang 

University. His research interests include cloud 

computing, streaming system, and resource scheduling.

Gyeonghwan Jung is currently 

pursuing Master degree in computer 

science and engineering from 

Sogang University, Seoul, Republic 

of Korea. He received B.S. degree in 

computer science from Sangmyung 

University. His research interests 

include cloud computing and resource management.

Kyuri Park is currently pursuing 

Master degrees in computer science 

and engineering from Sogang 

University, Seoul, Republic of Korea. 

She received her B.S. degree in 

computer science and engineering 

from Sogang University. Her 

research interests include cloud computing, streaming 

system and resource management.



282 YEONWOO JEONG et al : EMPIRICAL ANALYSIS OF DISAGGREGATED CLOUD MEMORY ON MEMORY INTENSIVE …

Youngjae Kim (Member, IEEE) 

received the BS degree in computer 

science from Sogang University, 

South Korea in 2001, the MS degree 

in computer science from KAIST in 

2003, and the PhD degree in 

computer science and engineering 

from Pennsylvania State University, University Park, 

Pennsylvania in 2009. He is currently an associate 

professor with the Department of Computer Science and 

Engineering, Sogang University, Seoul, South Korea. 

Before joining Sogang University, Seoul, South Korea, 

he was a R\&D staff scientist at the US Department of 

Energy’s Oak Ridge National Laboratory (2009–2015) 

and as an assistant professor at Ajou University, Suwon, 

South Korea (2015–2016). His research interests include 

operating systems, file and storage systems, database 

systems, parallel and distributed systems, and computer 

systems security.

Sungyong Park is a professor in the 

Department of Computer Science 

and Engineering at Sogang 

University, Seoul, Korea. He 

received his B.S. degree in computer 

science from Sogang University, and 

both the M.S. and Ph.D. degrees in 

computer science from Syracuse University. From 1987 

to 1992, he worked for LG Electronics, Korea, as a 

research engineer. From 1998 to 1999, he was a research 

scientist at Telcordia Technologies (formerly Bellcore), 

where he developed network management software for 

optical switches. His research interests include cloud 

computing and systems, virtualization technologies, high 

performance I/O and storage systems, and embedded 

system software.


