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Key-value SSDs (KVSSDs) introduced so far are limited in their use as an alternative to the key-value store

running on the host due to the following technical limitations. First, they were designed only for a single

tenant, limiting the use of multiple tenants. Second, they mainly focused on designing indexes for primary

key-based searches, without supporting various queries using a combination of primary key and non-primary

attribute-based searches. This article proposes Cerberus, a Log Structured Merged (LSM) tree-based KVSSD

armed with (1) namespace and performance isolation for multiple tenants in a multi-tenant environment

and (2) capability for processing non-primary attribute-based search queries. Specifically, Cerberus identi-

fies the tenant’s namespace and splits a single large LSM-tree into namespace-specific LSM-tree indexes

for tenants. Cerberus also manages secondary LSM-tree indexes to enable non-primary attribute-based data

access and fast search query processing. With the SSD-internal CPU/DRAM resources, Cerberus supports

non-primary attribute-based search queries and handles complex queries that are combined with search

and computing operations. We prototyped Cerberus on the Cosmos+ OpenSSD platform. When there are

multiple tenants, Cerberus exhibits up to 2.9× higher read throughput and negligible write overhead com-

pared to existing KVSSD. Cerberus also shows lower latency by up to 9.31× for non-primary attribute-based

queries.
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1 INTRODUCTION

Key-value Store (KV-Store) is a database that manages key-value pairs running on a host. The

KV-Store has been widely employed in many modern applications because of its simple key-value

interface [4, 13, 15, 25, 29, 42]. On the other hand, Key-value Solid-state Drive (KVSSD) is an SSD

with a key-value interface that runs the storage engine of the KV-Store on the SSD [7, 12, 20, 22, 31,

46]. Unlike KV-Store, KVSSD not only saves host-side CPU and DRAM resources but also reduces

I/O amplification. Among various KVSSDs, Pink [20] and iLSM-SSD [31] are the latest KVSSDs

that adopt a Log-structured Merge (LSM) tree-based indexing approach. LSM-tree [36] is a data

structure that performs out-of-place logging to disk sequentially, instead of in-place write when

storing KV pairs. Therefore, the LSM-tree is used as the primary index of the KVSSD’s storage

engine to maximize write performance.

Most of the LSM-tree-based KVSSDs introduced so far assume a design for single tenant/user.1

In other words, they do not support multi-tenancy, which is an architecture that can host database

instances of multiple tenants on a server. In a multi-tenant environment, each tenant is provided

with an abstraction of having their own dedicated database servers, which require isolation in

terms of security, privacy, and performance [17]. The isolation requirement can be met based on

namespace isolation. Because namespace isolation separates all tenants’ KV pairs stored in a phys-

ical space into multiple logical groups, each tenant is provided an isolated view of their own data-

base instance. Traditional host-side KV-Stores such as RocksDB [15] and MongoDB [4] have been

designed to be multi-tenant, satisfying the aforementioned isolation requirements [30, 41]. On the

other hand, current LSM-tree-based KVSSDs lack a design to support namespace isolation. There-

fore, the KVSSD fails to provide tenants with the strict view, showing only data corresponding to

their own namespaces. If the KV pairs using the same key exist between tenants in KVSSDs, the KV

pairs of other tenants can be recklessly modified or read if they are not carefully managed [21, 38].

Furthermore, LSM-tree-based KVSSDs in a multi-tenant environment do not provide as much

promised read throughput as embedded devices can provide for each tenant. This is because mul-

tiple KV pairs from tenants are still managed by a single global-shared LSM-tree index structure.

The single global-shared LSM-tree structure of the KVSSD has the following limitations [35]. First,

index entries of certain tenants’ KV pairs are frequently pushed to the higher level in the LSM-tree

due to the index entries of other tenants’ KV pairs. From each tenant perspective, traversing the

LSM-tree is time consuming because the search algorithm of the LSM-tree begins at the lowest

level of the tree. Second, to check the existence of the requested key during the LSM-tree search,

it must read the LSM-tree’s Bloom Filter (BF) data structures stored in the NAMD flash memory,

resulting in multiple NAND flash read operations.

Last but not least, the value part in a KV pair is rich in attribute information and primary

key (pk)-based search alone cannot fully meet the desire to mine such value rich information.

Thus, KVSSDs only maintaining a pk-based index are limited in providing such value-based or

non-primary attribute-based search and query services. In contrast, several LSM-tree-based KV-

Stores such as Cassandra [29], MongoDB [4], and DynamoDB [42] support searches based on

1Originally, the tenant is a group of users who share common access to the database instance. In this article, the tenant

and user terms are used interchangeably for simplicity.
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non-primary attributes as well as pk. They allow users to access any attribute field in the database

to meet various search and query processing requirements. To this end, several KV-Stores addi-

tionally set the specific non-primary attribute to a secondary key (sk) and provide a separate

secondary LSM-tree index centered around the sk. The sk is chosen among any non-primary at-

tribute fields stored inside the value part of an entry, which may be in the JSON format [25, 50]:

Value v = {A1 : value(A1), . . . , An : value(An )}, where the value(Ai ) is a value of the non-primary

attribute Ai . Each entry in the secondary index is a pair of sk and pk, which acts as a role of key

and value, respectively. In the KV-Store, users can request queries with various search predicates,

which are a user-provided condition on the sk basis. The KV-Store can find and return the pk list

of the KV pairs that satisfy the search predicate by using the secondary index with sk. Then, the

user can read actual KV pairs of the pk list by using a primary index. Accordingly, checking all KV

pairs is not required in the KV-Store. On the other hand, LSM-tree-based KVSSDs only manage a

pk-based primary LSM-tree index. Thus, if a user wants to retrieve KV pairs satisfying a specific sk-

based search predicate, the user must retrieve all KV pairs by using the primary index, load them

all into the host’s memory, and weed unsatisfied KV pairs out by checking the search predicate.

This approach imposes a significant data transmission cost for all KV pairs from the KVSSD to

the host. The approach also blocks an opportunity to utilize the in-storage computation capability

of KVSSD. Therefore, in order for the KVSSD to be used as an alternative device for the storage

engine, the support for sk-based search is required.

In this article, we propose Cerberus, an LSM-tree-based multi-tenant KVSSD that (1) provides

namespace and read performance isolation by providing a per-namespace LSM-tree index design

and (2) supports sk-based search query processing capability by providing secondary LSM-tree

indexes. The specific contributions of the article can be summarized as follows:

(1) For namespace isolation, Cerberus checks the tenant’s namespace information and performs

primitive namespace-based access control for each tenant. Each tenant is assigned a unique

namespace ID. The namespace ID is stored in the NSID region of the NVMe command and

then transferred to Cerberus. With the namespace isolation, each tenant can be offered an

isolated view on their KV pairs, which can be a primitive of security and privacy.

(2) For performance isolation, Cerberus adopts a namespace-dedicated LSM-tree design. Specif-

ically, Cerberus provides each tenant with an independent and dedicated index by partition-

ing the single global-shared LSM-tree into per-namespace LSM-trees for each tenant. The

per-namespace LSM-tree structure lowers the search depth of the LSM-tree. Thus, Cerberus

delivers as promised read performance to tenants as the KVSSD can provide.

(3) Cerberus manages secondary indexes for handling sk-based query requests. Cerberus allows

a user to search for a pk list of the KV pairs, satisfying the sk-based search predicate by

consulting the secondary index. Then, the user is able to read only necessary KV pairs by

using the primary index. In order to further streamline the search process of the sk-based

query, we propose a Value Addressable Secondary (VAS) index, which allows to directly

read actual KV pairs and return them to the user by consulting only the secondary index.

Therefore, Cerberus can completely eliminate the step of searching the primary index while

processing the sk-based search query.

(4) The query with the sk-based search predicate can be vastly fused with the computing oper-

ation. For example, a search query can be fused with analytic operations (e.g., sort). To cope

with these fused analytic queries, Cerberus utilizes both the VAS index and KVSSD’s internal

resources to perform both search operations and In-Storage Processing (ISP) operations.

(5) Cerberus is implemented on the Cosmos+ OpenSSD platform [2] in a Linux environment. We

evaluate and compare Cerberus with the state-of-the-art LSM-tree-based KVSSD (iLSM [31]).

Our extensive evaluations confirm the following: (1) Cerberus improves read throughput by
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up to 2.9× while write performance is barely different from the baseline in the multi-tenant

environment, (2) Cerberus improves the speed of sk-based search query processing by up to

9.31× compared with the baseline, and (3) for the sk-based search query fused with a compute

operation (e.g., sort), Cerberus showed 3.9× reduced data transmission time compared to the

case when each query is processed individually on the host.

2 BACKGROUND

2.1 Log-structured Merge-tree

Log-structured Merge-tree (LSM-tree) [36] is a hierarchical structure that consists of a memory

component (MemTable) and a disk component (SSTable). MemTable temporarily stores the KV

pair transferred from the user. MemTable is mutable and is typically implemented as a skiplist. An

SSTable is an immutable index file created when KV pairs are flushed and stored from MemTable

to the disk. This process is called SSTable flushing.

SSTable is structured into multiple levels (L0, L1, . . . , Ln ). Each level contains several key-sorted

SSTables. In the LSM-tree, following the key-value separation design of WiscKey [33], each SSTable

is composed of a metadata (key, value log offset) region and BF region. The metadata region con-

sists of the key and the offset of an associated value stored in the value log. The value log acts as a

write-ahead log structure, where KV pairs are physically appended. The BF is a memory-efficient

probabilistic data structure and is used to test whether an element is a member of a set. It is known

that large-scale databases can use 10% or more of their RAM memory for storing the BF [11, 15]. If

the portion of BF is cached on RAM, then the existence of the target key may be verified without

loading and checking all the keys of the SSTables from the storage. The Li SSTable acts as a buffer

for Li+1, which is larger in size compared to the Li . LSM-tree triggers the compaction process when

the size of Li reaches a certain threshold. Assume that the size of Li has reached a certain threshold.

Then, one Li SSTable from Li is selected as the victim, and the Li+1 SSTables with overlapping key

ranges of the Li SSTable are selected. The SSTables selected as victims are merge-sorted, and a

new Li+1 SSTable is created and written to disk. Afterward, the victim SSTables that participated

in the merge-sort are invalidated and they become free space for each level.

In the cases when key-value separation is applied to the LSM-tree, the entire values of KV pairs

in the SSTable are not unnecessarily read and written, while I/O or internal operations (e.g., com-

paction) are performed on the SSTable. Thus, it reduces the I/O amplification compared to the

original LSM-tree.

2.2 LSM-tree-based KVSSD

KVSSDs exploit internal resources (CPU and DRAM) to implement an LSM-tree index inside the

SSD [7, 12, 20, 22, 31, 46]. Among them, iLSM-SSD [31] was the first LSM-tree-based KVSSD to

implement the key-value separation technique. Figure 1 shows the overall system architecture of

iLSM-SSD. The iLSM-SSD consists of value log, MemTable, and SSTables. In the MemTable and

SSTables, keys and value log offsets are recorded and managed. The value log offsets are allocated

and managed at the granularity of logical block addresses, through which the KVSSD can access

the physical location of a KV pair in the NAND flash memory.

The operation process of iLSM-SSD is as follows. First, when the iLSM-SSD receives a Put() com-

mand, the iLSM-SSD stores a KV pair in the value log (❶). Then, the Put() command is completed

after the key and the value log offset of the KV pair are inserted into a MemTable (❷). When the

size of a MemTable exceeds the pre-defined threshold, the iLSM-SSD transforms the MemTable

into a form of an SSTable and flushes it to L0 (❸). As Put() commands are processed, the iLSM-SSD

performs compaction in the same manner as a traditional LSM-tree. As a result, the tree structure

of SSTables is formed inside the NAND flash memory.
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Fig. 1. An architecture of the state-of-the-art LSM-tree based KVSSD [31] that implements a key-value

separation technique [33] inside an SSD. The figure depicts both KV write path (Put() command) and KV

read path (Get() command).

Next, once the iLSM-SSD receives a Get() command with a target key, iLSM-SSD searches the

MemTable first to check whether the requested target key exists (➀). If the key does not exist

in the MemTable, the iLSM-SSD begins searching SSTables to find the key from the lowest level

(e.g., L0) to higher levels (➁). During the search, the iLSM-SSD first loads a BF that exists in each

SSTable from the NAND flash memory to DRAM. After loading the BF, the iLSM-SSD performs a

membership test with the BF to check if the requested key exists in the SSTable. If a membership

test is successfully passed, the iLSM-SSD loads the remaining metadata region from the NAND

flash memory to DRAM for actual key comparison. If the key of the metadata region matches with

the requested key, the iLSM-SSD reads the value from the NAND flash memory by referring to the

value log offset stored in the metadata region (➂).

2.3 Motivation

2.3.1 Lack of Namespace and Performance Isolation. There have been two general methods for

modeling index-level multi-tenancy [3, 5, 52]. The first method is an index-per-tenant model. In

this model, multiple tenants occupy queries where each tenant has their own index. Accordingly,

the database achieves data isolation. The second method is to use the multiple-tenants-per-index

model. In this model, multiple tenants can share a single shared index and use tenant identifiers

(e.g., namespace) to achieve an isolation of data access level. It is easy to manage the index because

increasing the number of tenants itself does not require additional indexes. On the other hand, the

recent LSM-tree-based KVSSDs lack design for these methodologies for data isolation and do not

even support namespace-based data access isolation [20, 31, 46]. This causes the problem of KV

pairs being incorrectly read or modified if multiple users have the same key [21, 38]. Also, the

design of such an LSM-tree-based KVSSD that is shared by multiple tenants is not sufficient in

terms of read performance isolation. For example, in a traditional LSM-tree-based KVSSD, multiple

tenants share the single large LSM-tree index. Thus, the read performance of each tenant cannot

be guaranteed.

In order to quantitatively analyze the degradation of read performance of each tenant, we con-

duct experiments for the following scenarios. The detailed experimental setup is described in

Section 5.
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Fig. 2. Comparative evaluation of the impact that tenant x receives from co-located neighbor tenant y.

• Scenario 1: When the only tenant x’s 1 million data monopolizes an LSM-tree.

• Scenario 2: When an LSM-tree is shared by tenant x’s and tenant y’s KV pairs. Each tenant

has 1 million KV pairs and they access them at the same time.

For these two scenarios, Figure 2 shows the read performance and the statistic for the level at

which the KV pair was found in the LSM-tree in terms of tenant x’s perspective. We controlled the

other experimental factors equally between two scenarios such as the size and the number of KV

pairs. Specifically, Figure 2(a) compares the time required for tenant x to read 1 million KV pairs

from KVSSD in these two scenarios. In Figure 2(a), the total average latency was increased by 1.58×
in Scenario 2 compared to Scenario 1. This is because all tenants’ KV pairs are indexed in a global-

shared LSM-tree. In particular, there are two causes of performance interference between tenants.

First, many KV pairs of each tenant are indexed at the higher level of the LSM-tree. Figure 2(b) is

a comparison of the level distribution in which tenant x’s 1 million KV pairs are indexed in the

Scenarios 1 and 2. In Figure 2(b) and the case of Scenario 2, it is shown that the index entries of

the KV pairs of tenant x were pushed to the higher level in the LSM-tree due to the KV pairs of

tenant y. Compared to Scenario 1, about 67% of index entries of the KV pairs of tenant x were

pushed down to SSTables at L2 in the case of Scenario 2. Second, the number of loading BFs from

the NAND flash memory into DRAM has increased during the search process. It was confirmed

that the number of BF loads has increased by about 77% in the case of Scenario 2 compared to

Scenario 1.

2.3.2 Lack of Search Query Using Secondary Index. Most of the current NoSQL systems provide

a stand-alone secondary index [34, 37]. Figure 3 shows the schematic view of both the primary

index and stand-alone secondary index. In the secondary index, the row key is a non-primary

attribute’s value, and the value is a list of row keys of the primary index. If the user requests

a search query to a secondary index with a non-primary attribute’s value as an sk, then the user

receives the keys of the primary index. Then, the user looks up each of the primary indexes by keys

and reads the actual values. For instance, the primary index for User and the secondary index for a

rating column attribute are maintained in Figure 3. Notice the secondary index entry for 5 points to

two index entries of the primary index. However, the current LSM-tree-based KVSSDs [20, 31, 46]

cannot process search query with secondary key-based search predicates due to the following two

reasons. First, current KVSSDs do not manage the sk-based secondary index. Thus, the KVSSD

necessarily reads the entire KV pairs using the pk-based secondary index. Second, KVSSDs do not

support the computational logic for data filtering. They have no logic to extract sk from the entire

value and to check whether the sk satisfies the user-provided predicate. Thus, if the user wants to
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read the KV pairs that satisfy a specific sk-based search predicate, the user inevitably depends on

the primary index and manual predicate check. Specifically, the user performs the following steps.

First, the user has to read all KV pairs from the KVSSD to the host by using the primary LSM-tree

index. Then, the user manually extracts the attribute field from the value. Finally, the user checks

whether the value of the attribute corresponding to sk matches to a given predicate filter.

To quantitatively analyze the performance overhead of the sk-based search query processing on

the current LSM-tree-based KVSSD, where the only pk-based primary index exists, we compared

the following two approaches:

• Approach 1: When the KVSSD does not support the secondary index. In this case, users

inevitably read entire KV pairs to the host and then check the non-primary attributes from

them manually.

• Approach 2: When the KVSSD supports the sk-based secondary index. In this case, the non-

primary attribute field can be checked directly without checking all KV pairs inside an SSD.2

We implement KVSSD with the above two approaches in Cosmos+ OpenSSD [2]. The detailed

experimental setup is described in Section 5. In order to evaluate these two approaches, we used

the Yelp review dataset [49], which has around 200,000 KV pairs with the average value size of

0.78KB. The semantic of the used search query on the Yelp review dataset is the following:

EXAMPLE OF SEARCH QUERY SEMANTIC. Find the Comment (= attribute A1) of the User ID

(= pk) satisfying the predicate [Review Rating (= attribute A2 used as a sk) is equal to 5 pt].

In Approach 1, the KVSSD only uses a pk-based primary index to access all KV pairs in the

dataset and transfers them to the host. The access to each KV pair requires a primary LSM-tree

index search. During the primary LSM-tree index search, the KVSSD reads the BF and the meta-

data of the SSTable from the NAND flash memory and performs a BF membership test and key

comparison (Step 1). Then, the KVSSD reads actual KV pairs from the NAND flash memory (Step

2) and transfers them to the host (Step 3). Finally, the host checks if the Review Rating attribute

of each KV pair is five or not (Step 4). Then, the host can extract Comments against the requested

query.

In Approach 2, on the other hand, it is possible to search for an sk-based secondary LSM-tree

index (Step 0). The KVSSD finds the pk list with the Review Rating value of five by consulting the

sk-based secondary index. Next, in order to find the NAND flash memory address of the KV pair,

the KVSSD performs the pk-based primary index search only on the found pk list (Step 1). Then,

the KVSSD reads actual KV pairs from the NAND flash memory (Step 2) After the KV pairs are

transferred to the host (Step 3), the host extracts Comment (Step 4).

Figure 4 shows the time breakdown analysis of the total execution time for processing the afore-

mentioned search query with the sk-based search predicate for those two approaches. The total

execution time for Approach 1 is 2.16× longer than that for Approach 2. In Approach 1, since

the KVSSD does not have an sk-based secondary index, it is inevitable to read all KV pairs from

the KVSSD to the host. The major overhead is a time to search for the pk-based primary index

to read all KV pairs, which accounts for 88.8% of the total execution time. On the other hand, for

Approach 2, the pk-based primary index search is performed only on the found pk list by using

2Most of the popular LSM-tree-based NoSQL systems (e.g., MongoDB [4] and Cassandra [1]) provide stand-alone secondary

indexes. Thus, we also implemented a stand-alone secondary indexing technique [37] on KVSSD. The configuration setting

of the secondary index is equivalent to primary LSM-tree index.
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Fig. 3. A table-based schematic view of a sec-

ondary index and querying using a secondary

index.

Fig. 4. A time breakdown analysis for Approach 1 and

Approach 2. The size of KV pairs transferred and trans-

fer time between host and KVSSD are the following:

Approach 1 (1.5 GB, 45 sec), Approach 2 (2.5 MB, 8 sec).

the secondary index. As a result, the pk-based index search time is drastically reduced by up to

50.9% compared to Approach 1. This reduced overhead is proportional to the reduced number of

the pk-based primary index search. In Approach 2, the total amount of KV pairs transferred to the

host decreases by up to 2.3× compared with Approach 1. Also, the time for extracting Comment

from the entire value decreases by up to 5.15× compared with Approach 1. In Approach 1, Review

Rating and Comment should be extracted from all KV pairs. On the other hand, in Approach 2, the

sk-based secondary index keeps the pk list of the KV pair whose Review Rating attribute is exactly

5. Thus, only Comment is extracted from the KV pair corresponding to the found pk list.

Based on these research motivations, this article proposes Cerberus, which aims to (1) isolate

tenants’ KV indexes according to the namespace, (2) optimize read performance for the multi-

tenant KVSSD, and (3) provide service for search query with an sk-based search predicate by using

a secondary indexing technique.

3 CERBERUS SYSTEM

3.1 Overview

Cerberus is a KVSSD that supports namespace and performance isolation between tenants in a

multi-tenant environment and supports sk-based search. Figure 5 shows the overall architecture

of Cerberus. For namespace isolation in Cerberus, tenants are given a unique namespace ID when

creating a DB instance. After that, the users of tenants only access their own KV pairs by using

the allocated namespace ID of the corresponding DB instance. NSTable in Figure 5 represents

the schematic view of namespace-related information. In addition, in Cerberus, a single global-

shared LSM-tree is partitioned and managed individually for each tenant’s DB instance. This allows

Cerberus to support read performance isolation and namespace isolation between tenants. At the

same time, Cerberus manages the LSM-tree-based Value Addressable Secondary (VAS) index

along with the primary index to support sk-based search. The users can request sk-based searches

to the KVSSD, where the corresponding KV pairs can be searched through the VAS index. The key

design elements of the Cerberus are outlined below.

• Per-namespace Dedicated LSM-tree Index: Each tenant is assigned a Namespace

ID (NID) when creating its own DB instance. Next, the tenant makes a query request to

the KVSSD together with the NID. The KVSSD internally maintains the per-namespace
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Fig. 5. An architectural overview for Cerberus supporting namespace and performance isolation for multi-

tenant KVSSDs using Per-namespace LSM-tree index and sk-based search queries using secondary indexes.

The VAS denotes Value Addressable Secondary index.

dedicated LSM-tree index separated according to namespace. Through this, each user/tenant

manage KV pairs separately from other users. In addition, since the per-namespace LSM-tree

has a relatively lower depth than the existing single global-shared LSM-tree, it is expected

to support higher and guaranteed read performance.

• Value Addressable Secondary (VAS) Index: The VAS index uses the specific non-primary

attribute value as the sk. The non-primary attribute means any column attribute not used

as pk. An sk means a specific non-primary attribute value to be used in requesting and

processing queries in column attributes. In the VAS index, the actual value of the sk is a pair

of the pk and value log offset of the original KV pair. Through the VAS index, the KVSSD

can process sk-based search queries. In addition, unlike the existing secondary indexing

technique, the VAS index can directly access the KV pair by referring to the stored value log

offset. Accordingly, the VAS indexing technique accelerates the processing of search queries

that need to return KV pairs to users.

Together, these constructs enable multiple users of tenants to use the KVSSD as their own inde-

pendent DB instances and become a building block to process search queries with sk-based search

predicates.

4 DESIGN AND IMPLEMENTATION

This section first formulates the problem definition for two limitations of the existing LSM-tree-

based KVSSDs discussed in Section 2.3. It then introduces a per-namespace dedicated LSM-tree

index design for namespace and performance isolation. Lastly, it introduces a VAS index design

for processing non-primary attribute-based search queries.

4.1 Problem Formulation

As mentioned in Section 2.3, the first limitation of current KVSSDs is that, when multiple tenants’

KV pairs are indexed in the global shared LSM-tree, the time to access the KV pair of each tenant
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Table 1. Notations Used and Their Descriptions

Notion Description

n The configured total level of LSM-tree (0 ≤ n).

i An index level of LSM-tree (0 ≤ i ≤ n).

HRi Percentage of KV reads that were processed at the level i SSTable.

HTi

Time that was taken at level i for reading searched KV. This is a

total latency combined of reading BF, metadata, and value of level i
SSTable from NAND flash memory if key matches.

MPi

Additional time required at level i due to miss. This is a total

latency combined of reading BF and metadata of level i SSTables

from NAND flash memory.

MemTbl Time that was taken for accessing MemTable.

p
The total number of primary keys associated with requested

secondary key (p ≥ 0).

increases compared to when accessing it alone. There are two causes of this limitation. The leading

cause is that many KV pairs stored by each tenant may be pushed down by KV pairs of other

tenants and indexed at a deeper level in the LSM-tree. Another cause is that it requires loading BF

from the NAND flash memory into DRAM multiple times during the LSM-tree search process.

To understand the problem of the LSM-tree, we build the cost model for formalizing each of the

limitations mentioned above. Table 1 shows a summary of the notations and their descriptions in

the cost model. The average latency for a KV pair access (ALKA) in the KVSSD can be estimated

as a cost model in Equation (1) for accessing each KV pair indexed in the primary LSM-tree or the

secondary LSM-tree index:

ALKAi = HRi · HTi + (1 − HRi ) (MPi +ALKAi+1)

ALKA = ALKA0 +MemTbl .
(1)

In Equation (1), ALKAn = HRn ·HTn in the last tree level n, assuming that Get() is not requested

on the KVSSD where the requested key does not exist. This recurrence relation is modeled based

on an insight of the average memory access time model [18] in the multi-level memory hierarchical

architecture. This is because the LSM-tree is also a hierarchical structure of multi-level SSTables,

and the LSM-tree search algorithm begins from the lowest level in order.

From Equation (1), the time delay for accessing the KV pair occurs when multi-tenants share a

single large shared LSM-tree index that corresponds to the recursion execution frequency of MPi .

The second cause corresponds to the MPi value itself in Equation (1).

The second limitation is that there is no design for secondary index and no logic for processing

sk-based search queries in current KVSSDs. Therefore, in order to process sk-based search queries,

all KV pairs must be loaded into the host memory. Even if the KVSSD adopts the secondary in-

dexing technique of KV-Stores, the traditional secondary indexing method also has a limitation in

reducing the KV pair access time. This is because the search for the primary index is also required

to find the location of each value corresponding to each pk in the pk list identified through the

secondary index.

The access time to all KV pairs required for processing an sk-based search query is the sum of

each ALKA and can be expressed as shown in Equation (2):

∑
ALKA = (ALKApr imary · p) +ALKAsecondary . (2)
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In Equation (2), ALKApr imary and ALKAsecondary mean KV pair access times through primary

and secondary index, respectively. Particularly, when processing an sk-based search query, p in

Equation (2) increases proportionally, as the number of all associated pks found from the requested

sk increases.

4.2 Per-namespace LSM-tree Index

The per-namespace dedicated LSM-tree index logically separates each tenant’s KV pairs and allows

the KV pairs to be managed in different LSM-trees. First, from the namespace isolation perspec-

tive, namespace information is stored in the indexing structure along with the KV pair for index

management. Namespace Table (NSTable) is an auxiliary memory component that stores the

namespace information of the KV pair in the MemTable. As shown in Figure 5, NSTable keeps

track of min and max keys per namespace and the total number of KV pairs per namespace. When

KV pairs in the MemTable are made to an SSTable after a flushing operation, the namespace and

NSTable information per namespace are also stored in the SSTable footer, where the meta region

is stored. Accordingly, when reading a KV pair, the access is allowed only if the matching of both

the key and its namespace is satisfied.

Cerberus employs the per-namespace dedicated LSM-tree index. In the per-namespace LSM-tree,

the MemTable and the lowest-level SSTables (e.g., L0) do not store KV pairs separately according

to the namespace. They are mixed and stored in the MemTable and L0 SSTables. On the other hand,

in other levels (e.g., L1, . . . ,Ln ) of SSTables, KV pairs are segregated by their namespaces and in-

dexed to different LSM-trees. This approach was designed for two reasons. First, the performance

degradation caused by a mixture of data from any tenants in MemTable and L0 SSTables is negligi-

ble. According to our experiments, KV pairs are rarely searched in MemTable and L0 SSTables (less

than 3.2%) compared to other level SSTables. The more the degree of multi-tenancy increases, the

less KV pairs are searched in MemTable and L0 SSTables. Second, the MemTable provisioning per

tenant approach requires additional DRAM space. If the number of concurrent tenants increases,

more DRAM capacity is required in proportion to the degree of multi-tenancy.

The main expected effect of the namespace-dedicated LSM-tree is thatALKA is reduced. The first

reason is that KV pairs from different namespaces are indexed to different LSM-trees, preventing

them from being indexed to the upper levels of LSM-trees. Thus, this mitigates the computation of

MPn by overlapping several times in the ALKA equation. In other words, the value of n becomes

smaller. The second reason is that the number of BF loading from the NAND flash memory de-

creases during the retrieval of the KV pair. This corresponds to a decrease in the MPn value itself

in the ALKA equation.

4.3 Namespace Isolation Mechanism

Figure 6 illustrates a namespace isolation mechanism that segregates KV pairs from a global LSM-

tree into per-namespace dedicated LSM-trees based on a tenant’s namespace. Namespace isolation

is performed during the background compaction process as in traditional LSM-trees. The com-

paction process reads the victim Li and Li+1 SSTables from the NAND flash memory and merge-

sorts them into a new Li+1 SSTable. Then, the new merged SSTable is written to the NAND flash

memory. This isolation strategy does not require an additional SSTable read operation because it

performs isolation for the victim SSTable already read during compaction. Here, the namespace of

each entry in the victim SSTable is called the victim namespace.

When compaction for L0 SSTable begins, Cerberus first chooses the victim SSTables and reads

them into the DRAM memory (➀). Since compaction is triggered at L0, per-namespace isolation is

enabled to classify KV pairs according to namespace. If compaction starts at a level other than L0,

the isolation task is disabled and performs the same as the traditional compaction flow. If isolation
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Fig. 6. Per-namespace isolation process.

is enabled, the key range for each victim namespace in the L0 victim SSTable is checked (➁). This is

done to verify whether the key range of the victim namespace is overlapped with the key range of

the L1 SSTable of the victim namespace LSM-tree. Then, L1 SSTable with an overlapping key range

is read into the DRAM memory (➂). Next, for each entry in the L0 victim SSTable, compaction is

performed with the corresponding namespace’s L1 victim SSTable (➃). This process creates a new

SSTable for each victim namespace. Finally, the index entry of multiple namespaces that existed

in L0 victim SSTable is appended by indexing to L1 SSTable of the per-namespace LSM-tree (➄).

In the example shown in Figure 6, two L0 victim SSTables are read during compaction. In this

case, the L1 SSTables of namespace A and B are read for isolation. For namespace A, the key range

(7–7) of the second L1 SSTable belongs to the key range (6–60) of the L0 SSTable. For namespace B,

the key range (9–22) of the L0 SSTable belongs to the key range (8–40) of the first SSTable of L1. A

new L1 SSTable is created by performing merge-sort for each namespace and is stored individually

in the per-namespace LSM-tree.

4.4 Value Addressable Secondary (VAS) Index

Note that the non-primary attribute and its corresponding value are stored as a JSON format as

follows: Value v = {A1 : value(A1), . . ., An : value(An )}, where the value (Ai ) is a value for the non-

primary attribute Ai . For an example of the tweet social networks dataset, tweet post can be a KV

pair and tweet ID of this post can be a pk. The A1 and A2 can be user ID and text body, respectively,

and user ID can be utilized as an sk. In order to process search query accompanied by sk-based

search predicate, Cerberus maintains an sk-based secondary index inside a KVSSD.

4.4.1 State-of-the-art Secondary Index Design on KVSSD. Figure 7(a) shows that Cerberus

adopted the state-of-the-art secondary indexing technique. This secondary indexing technique is

currently used in popular LSM-tree-based NoSQL databases [1, 4, 37]. Cerberus also begins to con-

struct a secondary index centered around specific non-primary attributes by using CreateIndex()

API, which is described in Table 2. Similar to the primary index, data structures such as MemTable

and SSTable also exist in the LSM-tree-based secondary index. When the KV pair is first written

to the value log on the KVSSD, the pk and the value log offset are stored in the MemTable of the
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Fig. 7. Comparison of secondary key-based search query processing using different secondary indexing

techniques.

primary index. Next, specific sk, which is a non-primary attribute value, and the corresponding

pk are also stored on the MemTable of the secondary index as a pair. For example, in the case of

the tweet dataset, the user ID and tweet ID can be respectively stored as a key and value on the

secondary index.

Later, the secondary index begins a background compaction to merge index entries with the

same sk into a new index entry. Unlike the primary index compaction, the secondary index com-

paction does not delete the old version of the sk index entry in the process of merge. For instance,

during the compaction of the secondary index in Figure 7(a), the sk1 entries of Li SSTable and Li+1

SSTable are simply merged, without removing any data.

As long as Cerberus maintains the sk-based secondary index, the following two types of sk-

based search queries are possible: (1) the query that calls Get() API with the sk argument that

finds and returns the pk list only and (2) the query that calls Find() API with the sk argument that

checks the actual value for each found pk and returns a set of KV pairs. In Figure 7(a), if Find() is

requested, Cerberus searches sk1 entries upon secondary index (➀). After the s1 entries are found,

the corresponding value, which is a pk list, can be identified. In this example, a total of four pks are
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identified for sk1. Then, Cerberus internally requests primary index search for a found pk list to

check the value log offset (➁). Finally, Cerberus can read actual KV pairs by referencing the offsets

stored in the primary index (➂). If Get() with the sk is requested, Cerberus finds the pk list for an

sk, returns it to the host, and terminates the process.

4.4.2 Proposed VAS Index Design on KVSSD. Figure 7(b) shows the proposed VAS index in Cer-

berus. The VAS index is equivalent to the traditional secondary index except that VAS keeps not

only pk but also value log offset. At the time when a KV pair is first written to the value log, the

value log offset is recorded in both the primary index and VAS index. While processing sk-based

search query such as Get() with sk or Find(), Cerberus performs search to find the requested sk

upon the VAS index (➀). If the requested sk1 is found in the VAS index, the corresponding pk list

and value log offset are identified. If the query is Get() with the sk, Cerberus returns the pk list.

On the other hand, if the query is Find(), Cerberus directly accesses the KV pair by referring to a

value log offset stored in the VAS index (➁). Therefore, Cerberus that adopts the VAS index does

not require pk-based primary index search while processing an sk-based search query.

In particular, while Cerberus with the VAS index processes the Find(), the total size of the KV

pairs to be transferred to the host can exceed the maximum host-KVSSD DMA transfer size (e.g.,

1 MB). To address this case, Cerberus controls the IsIter flag parameter in response to the Find()

to inform the host that remaining result data exists. During the response process of Find(), if the

size of the KV pair to be transferred by Cerberus exceeds the DMA threshold size, then Cerberus

sets IsIter and temporarily keeps track of the next KV pair to be transferred. After the user checks

that IsIter is set, then user calls Find() iteratively until IsIter is unset. Then, Cerberus continues

to transfer the remaining KV pairs. Finally, Cerberus completes the transfer by unsetting IsIter
when all KV pairs are transferred to the host.

The proposed VAS indexing technique leverages the following two characteristic of a modern

KVSSD. First, the LSM-tree-based index adopts key-value separation [33]. Second, the KV pair

offset referred by the storage engine of KVSSD is a logical block address. Thus, the proposed VAS

index is not affected by the index entry update of the primary index and the changes of the physical

address of the KV pair stored in the NAND flash memory. The main effect of the VAS index is that

the total sum of latencies for each KV access (
∑
ALKA) in Equation (2) can be reduced when Find()

is processed. This is because when processing an sk-based search query that returns actual KV

pairs, Cerberus searches the VAS index entry, bypasses the primary index search, and immediately

accesses the KV pairs. Therefore, in Equation (2), the value of p is zero, and the value of
∑
ALKA

is calculated only from ALKAsecondary .

4.5 In-storage Processing (ISP) with VAS Index

Traditionally, a query can be fused vastly with other queries [6, 40]. The query fusion allows

multiple operations to be executed with a single call. For the tweet dataset as an example, the

user may demand on a fused analytic query in order to read the tweet posts written by a specific

user ID and to sort the posts by last modification date. The query fusion is beneficial in that it

is possible to skip the process of transferring and storing the intermediate result of each query

to the storage. When the certain fused analytic query contains a compute operation, Cerberus

performs in-storage processing using SSD’s internal CPU and DRAM resources. The AnalyticOp()

API described in Table 2 is a use-case of sk-based search query fused with sort operation. If this

API is requested to Cerberus, then Cerberus accesses KV pairs directly using the VAS index and

sorts using the SSD’s internal resources. After that, Cerberus can return only the top-K (e.g., K = 50)

outputs to the user in the case of AnalyticOp(). As a result, Cerberus expedites such analytic query

processing by eliminating transmission overhead of the intermediate result of the search query.
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Table 2. Cerberus API for Namespace and Performance Isolation with Secondary Indexing Support

Cerberus API Routine Routine Description

ns, idx_id = Create(attr) Create and initialize the new primary LSM-tree based on
specific attribute (attr ) and return the index ID (idx_id) and
specific namespace (ns) to user.

Destroy(ns) Clear contents of the LSM-trees corresponding to namespace
(ns) and destroy the KV database of the namespace (ns).

idx_id = CreateIndex(ns, attr) Create and initialize the new secondary LSM-tree for specific
attribute (attr ) and return the secondary index ID (idx_id) in
the namespace (ns).

DropIndex(ns, idx_id) Clear contents of the secondary LSM-tree (idx_id) correspond-
ing to namespace (ns) and destroy the secondary index.

Put(ns, pk, v) Store the value (v) of the primary key (pk) to a primary
LSM-tree and synchronously update to a secondary LSM-tree
corresponding to the namespace (ns).

v or pklist = Get(ns, pk or sk) Retrieve the value (v) of the primary key (pk) from the primary
LSM-tree or retrieve the pk list (pklist ) associated with the sec-
ondary key (sk) from the secondary LSM-tree corresponding
to the namespace (ns).

Delete(ns, pk) Delete the value (v) of the primary key (pk) from the primary
LSM-tree corresponding to the namespace (ns).

vlist = Find(ns, sk,
IsIter=False)

Retrieve the value list (vlist ) of the secondary key (sk) from
the secondary LSM-tree index corresponding to the namespace
(ns). The IsIter indicates whether the query should be repeated.

pklist = AnalyticOp(ns, sk,
comp, k, attr)

Perform the following operations in our experiment: (1) Find
the candidate of primary key list (pklist ) associated with the
secondary key (sk) from the secondary index corresponding to
the namespace (ns), (2) find the actual value of each pk candi-
date from the value log, (3) sort the pks based on the specified
attribute (attr ) in ascending or descending order (comp), and
(4) return only pklists belonging to top-K (k) to the host.

4.6 Storage Space Management in Cerberus

Cerberus operates the key-value storage engine by utilizing the logical and physical addressing

system and its translation logic provided by the SSD Flash Translation Layer (FTL). Specifically,

when storing KV pair in Cerberus, the physical page to be used is obtained through the existing

physical page allocator inside the SSD. This physical address is then mapped to an available logical

address from the logical linear space. The mapping information is managed by the FTL. In Cerberus,

the storage space is not differentiated according to the namespace when allocating physical pages.

When Cerberus reads the KV pair, the logical address recognized by the engine is translated to a

physical address through FTL and the KV pair is retrieved by referring to the physical address.

In order to reclaim the space, Cerberus also supports tenant deletion as well as deletion of the

KV pair. When the Destroy() API described in Table 2 is requested, Cerberus begins to reclaim

the page occupied by the tenant’s primary and secondary index and KV pairs. Cerberus first re-

moves MemTable entries corresponding to the namespace of the target tenant. Next, Cerberus

accesses the SSTable without the lowest level (e.g., L0) to obtain the value log offfsets of each KV

pair. Cerberus then invalidates all disk pages on which tenant KV pairs are stored. Cerberus also

invalidates the page on which the SSTable of the LSM-tree index is stored. Later, these invalidated

pages are reclaimed through garbage collection (GC) of SSD. In particular, the index entries of

the L0 SSTable are not immediately invalidated because entries of other namespaces are mixed

at L0. If Cerberus immediately invalidates pages containing L0 entries, then not only the entries

of the target tenant but also the entries of the other tenant will be invalidated together. Thus, it
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Table 3. Cosmos+ OpenSSD Platform Specification

Component Specification

SoC

Xilinx Zynz-7000
ARM Cortex-A9 (up to 1,000MHz)
HYU Tiger 4 Controller (NVMe Controller in
FPGA)

NAND Module
1TB module, NVDDR2
4 Channel, 8 Way
18,048B Page (1664B Spare)

Interconnect PCIe Gen2 8-lane

FTL Page-level Mapping, On-demand GC

Table 4. Host Machine Specification

Component Specification

CPU
Intel Core i7-10700 @ 2.9GHz
8C/16T

RAM 16 GB @ 2,666MHz

OS Linux Kernel 5.8.0

eventually forces Cerberus to perform out-of-place updates to other SSD pages so that the entries

of the other tenant will not be deleted. To avoid additional SSD page writes, Cerberus exception-

ally delays the L0 SSTable invalidation. Instead, the target tenant’s L0 SSTable index entries are

just left and not segregated into L1 during Cerberus’s per-namespace isolation process. The per-

namespace isolation of Cerberus reads the L0 SSTable at the time of the compaction, creates L1

SSTables of different LSM-trees depending on the namespace of each entry, and invalidates the

existing L0 SSTable. Accordingly, index entries of the target tenant left without being segregated

are naturally invalidated. Cerberus only requests the invalidation of pages where the actual target

tenant’s KV pairs are stored through the index entry of the L0 SSTable to be deleted. Then, the

entire invalidation process for the L0 SSTable is completed.

4.7 Cerberus API Routines

Each user can send KV requests to Cerberus via the key-value API routines in a host. The major key-

value API routines are presented in Table 2. For example, the Get() API in Table 2 is an overloaded

function that returns different outputs according to the input type similarly with KV-Stores. The

AnalyticOp() API is to request a query in which sk-based search and compute operations (e.g., sort)

are fused. By using this, we will evaluate the performance of Cerberus even when the search query

is fused with other in-storage analytic operations. The key-value API uses a system call (e.g., ioctl)

to pass KV pairs passed from the user to the KVSSD kernel driver. Then, the kernel driver writes the

namespace in the NSID region and key in the LBA region of the NVMe command. The parameter

IsIter of Find() is stored in the unused field of the NVMe command. The memory address where

the value is stored is recorded in the page list region of the NVMe command. Then, the NVMe

command is sent to Cerberus.

5 EVALUATION

5.1 Experimental Setup

We prototyped iLSM-SSD [31] and Cerberus on the Cosmos+ OpenSSD platform. Table 3 shows

the details of the Cosmos+ OpenSSD hardware platform. The Cosmos+ OpenSSD is equipped with

Xilinx Zynq-7000, which has an ARM Cortex-A9 processor with two cores running at 1GHz, FPGA,

and 1GB DDR3 DRAM. The FPGA operates the SSD controller including NAND Flash controllers,

NVMe controllers, and PCIe controllers. The page-level FTL and garbage collection are running

at CPU. Cosmos+ OpenSSD is connected to the host machine via PCIe Gen2 8-lane with NVMe

protocol. The specification of host machine is described in Table 4. All experiments are initiated

from the host machine. We compare the following three systems:

• KVSSD-baseline: It refers to existing KVSSD such as iLSM-SSD [31] that only supports

primary key-based index. It does not support namespace and performance isolation and

secondary index for sk-based search query.
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Table 5. Secondary Key-based Search Queries to Measure the Query Performance

Dataset No.
Description (the non-primary attributes are

highlighted in bold)
Secondary Keys

Return

Type

Search Query

Glacier

Q1
List top 50 of IDs of glacier that belong to

specified Political Unit

FRAN, BHUT,

AUST, BOLI

pklist

Q2
List top 50 of All information of glacier that

belongs to specified Political Unit

FRAN, BHUT,

AUST, BOLI

vlist

Q3
List top 50 of Basin code of glacier that

belongs to specified Political Unit

FRAN, BHUT,

AUST, BOLI

vlist

Tweet

Q4
List ID of tweet post that belongs to specified

User ID

2517, 3161, 1153 pklist

Q5
List All information of tweet post that

belongs to specified User ID

2517, 3161, 1153 vlist

Q6
List Text body of tweet post that belongs to

specified User ID

2517, 3161, 1153 vlist

Analytic Query Glacier Q7
Sort IDs of glacier by the height in the

specified Political Unit and list top 50 of IDs

FRAN pklist

The attributes refer to specific non-primary attribute used as a secondary key.

• Cerberus: It refers to a KVSSD with per-namespace dedicated LSM-tree for namespace and

performance isolation. It also supports state-of-the-art secondary index for sk-based search

query [37].

• Cerberus-VAS: It refers to Cerberus with VAS index. It enables KVSSD to access the value

log directly, bypassing primary index search in case of sk-based query.

Workloads: We used a synthetic KV dataset for per-namespace LSM-tree index evaluation,

where the size of each KV pair is 4B and 1KB. During the experiment for the per-namespace LSM-

tree index, the number of concurrent users issuing KV requests, or degree of multi-tenancy, was

increased from one to eight, and key was randomly specified. Each user issued the same number

of 1 million KV requests for each Put() only and Get() only (with primary key) workloads.

To evaluate the VAS indexing technique, we used publicly available scientific datasets such as

glaciers [43] and social data such as Twitter’s tweet [47]. For the glacier dataset, the total number

of KV pairs was 104.6K with the key size 8B and the value size 0.963KB on average. For the tweet

dataset, the total number of KV pairs was 132.8K with the key size 8B, and the value size approxi-

mately 8KB on average. Table 5 lists the set of queries used to evaluate the VAS index based on the

datasets described above. The glacier dataset is used for Q1∼Q3 and the tweet dataset is used for

Q4∼Q6. In particular, Q1 and Q4 use Get() (with secondary key), which returned the pk list as a

result. On the other hand, Q2, Q3, Q5, and Q6 use Find(), which return the value list as a result. The

Q7 is an analytic query, which is used for evaluating not only search operation but also in-storage

computation of Cerberus.

5.2 Per-tenant Performance Comparison

We measured both per-tenant throughput and response time of Cerberus and KVSSD-baseline for

Put() only and Get() only (with primary key) workloads. Figure 8(a) shows the negligible through-

put difference between KVSSD-baseline and Cerberus for a Put()-only workload. The throughput

overhead of Cerberus lies within 1% compared to KVSSD-baseline regardless of the number of con-

current tenants. This slight overhead with Cerberus is due to the namespace isolation. Specifically,

the isolation overhead is attributed to reading the L1 SSTable of the LSM-tree corresponding victim

namespace. Also, Figure 8(b) shows little response time difference between the KVSSD-baseline

and Cerberus. In particular, Cerberus shows only 4% additional latency compared to baseline, when

the number of tenant is eight.
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Fig. 8. Throughput and average response time of KVSSD-baseline and Cerberus with KV-tenants (1–8).

In Figure 8(c), the Get() throughput difference between KVSSD-baseline and Cerberus is

prominent. When the number of concurrent tenant is two, four, six, or eight, Cerberus shows

1.1, 1.9, 2.3, and 2.9× higher Get() throughput than KVSSD-baseline, respectively. This is because

Cerberus adopts the per-namespace LSM-tree. Therefore, Cerberus reduces the depth of LSM-tree

and reduces the number of BF loads required during the KV pair search process. Figure 8(d) shows

a comparison of response times. The difference in average response time between KVSSD-baseline

and Cerberus becomes evident as the number of tenants increases. Specifically, if the number

of tenants is eight, Cerberus has a 2.78× lower average response time than KVSSD-baseline. We

additionally measured the Get() response time when the number of tenants is 16. We observed

the response time of KVSSD-baseline becomes 229.3 ms, which is an increase of 100 order of mag-

nitude compared to the case when the number of tenants is one. On the other hand, the response

time of Cerberus becomes 40.1 ms, which is an increase of 10 order of magnitude compared to

the case when the number of tenants is one. The performance of Cerberus-VAS is the same as

that of Cerberus while processing the pk-based Get() request. This is because both Cerberus and

Cerberus-VAS handle the request by only consulting the primary index. On the other hand, the

Put() performance of Cerberus-VAS is slightly degraded compared to Cerberus. This is because

the overhead for creating the secondary index is included in the Put() process. We reported

the performance degradation of Cerberus-VAS in Section 5.4. Besides, we further conducted

experiments on workload, which is mixed with Put() and Get() operations, such as YCSB [10]

workload patterns. In the workload, Put() and Get() operations are equally mixed. According

to the result of the experiment, it was confirmed that the per-tenant throughput in changing

the number of tenants is hardly different from that of Get()-only workloads. For instance, when
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Fig. 9. Level distribution of where KV data is indexed in the primary LSM-tree index.

the number of tenants is four, the per-tenant throughput of Cerberus improves by 1.53× com-

pared to KVSSD-baseline. This result shows that the read performance benefit from Cerberus’s

per-namespace LSM-tree is still significant while the write overhead of Cerberus is negligible.

5.3 Impact of Per-namespace LSM-tree

Figure 9 represents a CDF on which the level of the LSM-tree index entries are searched during

Get(). Figure 9(a) is a CDF of the KVSSD-baseline. When the number of tenants is one, the search

is completed only with the index entries of MemTable, L0, and L1 SSTable. However, as the number

of tenants increases, the number of searches from the lower-level index of the LSM-tree decreases

and Get() is processed, reaching the higher-level index. This is due to the fact that all index entries

of tenants are managed by a global-shared LSM-tree, thus forming a deeper level of the LSM-tree.

Specifically, as the number of tenants increases from one to eight, the percentage at which the KV

pair is searched in L1 is reduced from 83.8% to 26.55%, and the percentage at which the KV pair is

searched in L2 is increased from 0% to 70.1%. The percentage of KV pairs searched in MemTable

and L0 SSTable is only 3.2%. On the other hand, Figure 9(b) is a CDF of Cerberus. Since KV pairs

from other namespaces are indexed to individual LSM-trees, search process is completed with

only index entries of MemTable, L0, and L1 SSTable regardless of the number of tenants. These

results are evidence that a per-namespace LSM-tree can lower the number of recursions in ALKA
Equation (1).

Next, Figure 10(a) represents how many BF loads are performed during Get(). Cerberus can

reduce the number of BF loads with the help of the per-namespace LSM-tree. In particular, when

the number of tenants is eight, Cerberus results in 3.6× fewer BF loads than the KVSSD-baseline.

These results are evidence that MPn in ALKA Equation (1) can be reduced. This BF overhead can

be further minimized by caching if there is enough DRAM inside the SSD.

Effectiveness of Caching BFs: Originally, BF was designed as a memory-resident data

structure. Thus, the BF overhead can be further minimized by caching if there is enough DRAM

inside the SSD. In order to see the impact of caching BF and compare it with the effect of

per-namespace LSM-tree in Cerberus, we implemented KVSSD-baseline, which is able to cache all

of BF’s of tenants. We measured the average response time of BF cache-disabled KVSSD-baseline,

BF cache-enabled KVSSD-baseline, and BF cache-disabled Cerberus. Figure 10(b) shows the

comparison of the average response time for these three cases during Get(). When the number of

tenants is one, the KVSSD-baseline with BF cache (w/ BF cache) improves the response time by

29.1% over the KVSSD-baseline without BF cache (w/o BF cache). This is trivial in that caching

BF reduces the number of NAND flash memory access. When the number of tenants is eight, the
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Fig. 10. Change of the number of Bloom Filter (BF) load and impact of caching BF with KV-tenants (1–8).

Fig. 11. Query response time for processing Q1–Q3 in Table 5.

KVSSD-baseline w/ BF cache still improves the response time by 17% over the KVSSD-baseline

w/o BF cache. However, as the number of tenants increases, we observe that the KVSSD-baseline

w/ BF cache cannot outperform the Cerberus w/o BF cache. For example, when the number

of tenants is eight, Cerberus w/o BF cache shows 2.2× lower average response time than the

KVSSD-baseline w/ BF cache. This implies that per-namespace LSM-tree that reduces the depth

of index has more impact on Get() performance than caching BF.

5.4 Evaluation for Effectiveness of VAS Index

The performance of each query on Table 5 is analyzed with the time breakdown, measuring

the following four steps: first, sk-based secondary index search time to read the pk list (Step 0);

second, the pk-based primary index search time to read value log offset (Step 1); third, the NAND

flash memory read time to read actual KV pair (Step 2); and fourth, KV pair transfer time to host

(Step 3).

We first measured the average response time of Cerberus and Cerberus-VAS for Q1, Q2, and Q3

on the glacier dataset. Q1, Q2, and Q3 are top-50 queries that only return 50 pk lists or 50 KV pairs.

Figure 11 shows the average response time of each query processing with different sks (FRAN,

BUHT, AUST, and BOLI ). Figure 11(a) shows the response time of Q1 processing using Get() with

these sks. In Figure 11(a), the response time of Cerberus and Cerberus-VAS is almost the same.

This is because both systems perform sk-based index search to read the pk list corresponding to

the requested sk (Step 0) and then return the pk list to the host (Step 3).

On the other hand, Figures 11(b) and 11(c) show that Cerberus-VAS significantly outperforms

Cerberus in terms of average response time when the Find() is requested. For a specific example,
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Fig. 12. Query response time for processing Q4–Q6 in Table 5.

Cerberus-VAS shows 9.31× lower response time than Cerberus when sk is AUST during Q2 pro-

cessing. Cerberus uses a sk-based secondary index to find the pk list whose Political Unit attribute

value is AUST (Step 0). Then, Cerberus checks the value log offset through pk-based primary in-

dex search (Step 1) and reads actual KV pairs (Step 2). During this process, pk-based index search

time accounts for 84% of the total response time. On the other hand, Cerberus-VAS can directly

check the pk list and value log through VAS index (Step 0) and read KV pairs (Step 2). Thus, the

pk-based index search (Step 1) is unnecessary. Meanwhile, the response time of the case where

the Political Unit value is FRAN has 1.4× lower response time than other cases in Cerberus. This

is because during pk-based index search, the pk list corresponding to FRAN is always searched in

L1 of the tree. On the other hand, the pk list corresponding to other attribute values (BUHT, AUST,

and BOLI ) is always searched in L2 of the tree.

We also measured average response times of Cerberus and Cerberus-VAS for Q4, Q5, and Q6 on

the tweet dataset, which has more large-sized KV pairs than the glacier dataset. Figure 12 shows

average response time of each sk-based query processing with secondary keys (2,517, 3,161, and

1,153). Figure 12(a) exhibits the response time of Q4 processing using Get(). While Q4 is processed,

only Steps 0 and 3 are required, which is the same as Q1 processing. However, in Figure 12(a),

Q4 processing has 5.89× higher average response time than Q1 processing. This is attributed to

sk-based secondary index search time. During Q4 processing, the rate at which sk is searched at

L1 is close to 88% in the sk-based index, while top-50 Q1 processing does not reach to L1 during

sk-based index search.

Figures 12(b) and 12(c) show that Cerberus-VAS has still lower response times than Cerberus.

However, Cerberus-VAS only gives 1.25× improvement in response time at most during Q5 pro-

cessing on the tweet dataset, which is less than the performance improvement of Q2 processing

on the glacier dataset. This is because pk-based primary index search during Q5 processing on the

tweet dataset takes 11.6× less time than pk-based index search during Q2 on the glacier dataset.

Unlike pk-based index search of Q2 processing, 87% of pk is searched at MemTable on average dur-

ing pk-based index search of Q5 processing. In particular, Figure 12(c) shows that Q6 processing

has lower response times than that of Q5 processing. This is because the total amount of KV pairs

transferred to the host during Q6 processing is 29.9× less than that of Q5 processing. While Q5

returns the entire KV pair, which is 8KB in size on average, Q6 returns only text body of tweet,

which is 0.5KB on average.

To check if the effectiveness of the proposed Cerberus-VAS index is valid regardless of the num-

ber of KV pairs, we increased the small glacier dataset by a factor of 10 to create a large dataset

and requested Q1, Q2, and Q3 using the same secondary keys. The results showed that for both

Cerberus and Cerberus-VAS, the sk-based index search time increased for the large dataset com-

pared to the small dataset, resulting in a 2.04× to 2.29× increase in response time. This is due to
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Fig. 13. Comparison of the average response times of KVSSD-baseline, Cerberus, and Cerberus-VAS for pro-

cessing Put() (with pk and sk) and AnalyticOp() (with sk). It is possible for Cerberus and Cerberus-VAS to

enable both host-driven and SSD-driven analytic approaches during AnalyticOp() because of a secondary

index.

a larger number of KV pairs being indexed to the LSM-tree, leading to a longer LSM-tree search

time.

In the case of Q2 and Q3, we confirmed that the data transfer time for Q2 and Q3 remained un-

changed for both small and large datasets in both Cerberus and Cerberus-VAS. For a large dataset,

Cerberus took up to 2.3× longer for sk-based and 9.01× longer for pk-based index search compared

to the small dataset, respectively. Meanwhile, Cerberus-VAS took up to 2.28× longer for sk-based

index search in a large dataset. Unlike Cerberus, Cerberus-VAS does not always perform pk-based

index searches as it directly accesses the value log. The Q3 results were similar to the Q2 results.

Our experimental results indicate that the effectiveness of the Cerberus-VAS index is still valid.

Time Cost of Constructing Secondary Index: Figure 13(a) shows the average response time

of KVSSD-baseline, Cerberus, and Cerberus-VAS for Put() workload on the glacier and tweet

dataset. The response time of Cerberus is 11% and 32% higher than that of KVSSD-baseline when

the glacier and tweet dataset are used, respectively. This additional overhead is attributed to con-

structing an sk-based secondary index. While constructing the secondary index, the sk and corre-

sponding pk pair is written into MemTable and the compaction is also periodically triggered at the

secondary index. These additional operations result in performance overhead during Put() work-

load. Meanwhile, the response time of Cerberus-VAS is almost identical to that of Cerberus. There

is only a 1.4% difference at most between Cerberus and Cerberus-VAS. In Cerberus-VAS, the value

log offset is additionally written to the index entry of the secondary index, which is negligible to

performance of Put().

Space Cost of Maintaining Secondary Index: Unlike KVSSD-Baseline, Cerberus and Cer-

berus-VAS require additional flash memory space for storing the secondary index. For example, in

the case of the glacier dataset, KVSSD-Baseline occupies 264 pages for storing the primary index

and exhibits about 4.22 MB of flash memory space overhead. On the other hand, Cerberus and

Cerberus-VAS need to store secondary indexes additionally, so a total of 591 pages are used and

flash memory space overhead of 9.45 MB is shown. It is enough to cover this overhead for our 1 TB

of SSDs. We observed that the space overhead of Cerberus is the same as that of Cerberus-VAS

in terms of the number of pages used in KVSSD. This is because Cerberus-VAS writes data in SSD

page unit, and even if the value log offset (4 B) and namespace information (1 B) are additionally

stored per index entry, it does not exceed SSD page size (e.g., 16 KB). Assuming the number of
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entries in the secondary index is fixed, as the entry size increases, it is possible to exceed the SSD

page size. Overall, the space amplification of Cerberus-VAS increases in proportion to how many

additional SSD pages are required. For instance, if there are 16 KB SSD pages and 1,000 index

entries of 16 B entry size, then one more page is additionally required.

5.5 Evaluation for In-storage Processing of Cerberus

Figure 13(b) shows the average response time of different analytical query processing approaches

on the glacier dataset. The analysis task is to sort KV pairs by a specific sk, which is a CPU-

intensive computation. Then, after returning only the top-50 KV pairs, the task is completed.

For a KVSSD-baseline, Get() (with pk) is used for reading all KV pairs because it does not have

an sk-based secondary index. In this case, only host-side analysis is a feasible approach. In

Figure 13(b), the host analysis with the KVSSD-baseline took about 40 minutes, which is the worst

latency among comparative groups. The filtering time of the KVSSD-baseline is a time of pk-based

primary index search, which is a leading factor. An AnalyticOp() API, described in Table 2, is used

in Cerberus and Cerberus-VAS because the secondary index exists. The host-analysis approach

on Cerberus shows 577.3 ms. It is confirmed that the secondary index is effective to significantly

shorten the time of sk-based search query processing. However, the in-storage analysis on

Cerberus shows 727.24 ms, which is 1.25× longer than that of the host-analysis approach. Since

the KVSSD has a relatively wimpy ARM-based processor, unlike the host, the time for sort

(computing time) increases by up to 29×. On the other hand, the in-storage analysis on Cerberus

reduces the KV pair transmission time (Tx Time) by up to 3.9× compared to that of host analysis

with Cerberus. This is because the in-storage analysis approach returns only the top-50 KV pairs

as a result after sorting inside the KVSSD. In Cerberus-VAS, both the host-analysis and in-storage

analysis show improvement on response time compared to Cerberus. Specifically, the filtering

time of Cerberus-VAS is reduced by 53.3× compared to that of Cerberus because Cerberus-VAS

bypasses the pk-based primary index during KV pair search.

6 RELATED WORK

Key-value SSDs. Several previous studies have proposed the implementations of KV-Store inside

SSDs [7, 12, 20, 22, 31, 46]. The aforementioned KVSSDs primarily focus on designing primary

key-based indexes and processing searches based on them. LSM tree-based KVSSDs such as iLSM-

SSD [31] and PinK [20] support primary key-based queries. KAML [22] uses a hash-based index

data structure for its internal index implementation. KAML supports namespace isolation, but

KAML does not provide indexes based on secondary keys. These KVSSDs have adopted several

techniques to optimize primary key-based query services: iLSM-SSD [31] adopts key-value sepa-

ration techniques to overcome internal resource constraints. PinK [20] manages to minimize tail

latency by pinning low-level SSTables at DRAM. However, no previous study looked at optimizing

performance with namespace isolation in the LSM tree-based KVSSD. Other than that, resource

(CPU and Memory) contention between different tenants is one of the important issues in a multi-

tenant environment. To address such issues, there have been several studies on optimizing SSD

for multi-tenancy use, such as SSD-level Quality of Services (QoS) support [26], data placement

exploiting multilevel parallelism of SSD [19], and fair multi-resource allocation on the flash-based

system [9]. However, these are out of the scope of our research. Instead, in order to release the

significant performance bottleneck issue on the LSM-tree, we focus on isolating tenants’ index in

KVSSD, which is independent of SSD optimization works. Our future work is to build a KVSSD

that integrates both our proposed design and the aforementioned studies.

In-Storage Processing. ISP uses the SSD’s internal hardware resources such as CPU and mem-

ory for out-of-core execution inside the SSD [16, 23, 24, 27, 28, 32, 39, 44, 45, 48]. The ISP not only
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frees up CPU and memory resources on the host but also reduces the cost of moving data between

the host and the device.

Specifically, several researchers investigated accelerating DB applications with ISP on SSDs.

FCAccel [44] integrated a column-oriented field-programmable gate-array-based acceleration en-

gine into an SSD to offload SQL operators to the SSD. Aquoman [48] is an SSD with a general

analytic query processor prototyped in an FPGA for ISP on the SSD. There was also a study on

running table scan workloads on SSDs in POLARDB [45]. Although there have been some efforts

to process DB queries on SSDs in hardware, previous studies have not looked at the problem of

processing complex search queries in software in the LSM-based KVSSD.

Key-value Searches Using Secondary Indexes. KV-Stores have become a backbone of large-

scale modern applications [13, 15]. Such modern applications including scientific applications

oftentimes tend to access or query data based on several attributes different from primary

key-based indexes [25]. Therefore, several existing works on KV-Stores maintain standalone sec-

ondary indexes to support non-primary attribute-based search queries. For example, a scientific

dataset file such as HDF5 [14] contains thousands of secondary attributes, which are queried for

various processing and analytics [25, 50]. To meet such needs, a recent work proposed Group-

Split-Merge (GSM) [25] atop PMEMKV to support queries spanning over several attributes

for scientific data formats such as HDF5 [14]. MIQS [51] is another work that offers secondary

key queries for scientific datasets by exploiting a set of adaptive Radix trees and self-balanced

search trees. MongoDB [4] follows the traditional relational databases approach and maintains

a B-tree-based secondary index to support secondary search queries. Similarly, BigTable [8] and

Cassandra [1] adopt LSM-tree-based secondary indexes to entertain secondary key-based queries.

However, both MongoDB [4] and BigTable [8] perform eager updates on secondary indexes,

requiring index entry update for every write operation, resulting in performance degradation.

On the contrary, Cassandra [1] performs lazy updates on the secondary index and executes

compaction in the background to mitigate the performance overhead. Note that all these studies

build secondary indexes on host-based KV-Stores and they are not designed for KVSSDs.

7 CONCLUSION

This article proposes Cerberus, a design abstraction to enable namespace and performance isola-

tion for LSM-tree-based KVSSDs in a multi-tenant environment. The key idea is to assign each

user a dedicated namespace, ensuring user data isolation in the presence of multiple users and

constructing a per-namespace-based LSM-tree to meet the performance guarantees. Furthermore,

Cerberus is able to build and maintain secondary indexes to process non-primary attribute-based

search and query requests. Specifically, Cerberus can streamline the process of the search queries

by using VAS indexes. The key idea is to keep the address of the KV pair in the secondary in-

dex entries to access directly without a primary index search. Finally, Cerberus is able to process

and accelerate the analytic query processing that combined search with computing operations.

We prototyped Cerberus on the FPGA-based Cosmos+ OpenSSD in a Linux environment. The

experiment and evaluation confirm that Cerberus restricts tenants’ access to the corresponding

namespaces and outperforms the traditional KVSSD in terms of performance. The experimental

results also show that the VAS index of Cerberus gains huge performance improvement for var-

ious non-primary attribute-based search query scenarios compared to the traditional secondary

index. According to the ISP experiment, Cerberus also outperforms the host side in terms of the

analytic query processing performance.
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