
Iterator Interface Extended LSM-tree-based
KVSSD for Range Queries

Seungjin Lee1, Chang-Gyu Lee1, Donghyun Min1, Inhyuk Park2, Woosuk Chung2,
Anand Sivasubramaniam3, Youngjae Kim1

1 Sogang University, 2 SK hynix, 3 The Pennsylvania State University

2

Key-Value SSD

• Key-Value SSD: Removing the host software I/O stack
• By removing the existing deep software I/O stack,

Conventional Block SSD

Application

File System

Key-value Databases

Device Driver

Key-Value SSD

Application

Key-Value API Library

Key-Value Device Driver

3

Key-Value SSD

• Key-Value SSD: Removing the host software I/O stack
• By removing the existing deep software I/O stack,

Conventional Block SSD

Application

File System

Key-value Databases

Device Driver

Key-Value SSD

Application

Key-Value API Library

Key-Value Device Driver

4

Key-Value SSD

• Key-Value SSD: Removing the host software I/O stack
• By removing the existing deep software I/O stack,

Conventional Block SSD

Application

File System

Key-value Databases

Device Driver

Key-Value SSD

Application

Key-Value API Library

Key-Value Device Driver

5

Key-Value SSD

• Key-Value SSD: Removing the host software I/O stack
• By removing the existing deep software I/O stack,

Conventional Block SSD

Application

File System

Key-value Databases

Device Driver

Key-Value SSD

Application

Key-Value API Library

Key-Value Device Driver

• Higher I/O Throughput
• Lower I/O Latency
• Lower WAF/RAF
with fewer host resources

6

Key-Value SSD

• Key-Value SSD: Removing the host software I/O stack
• By removing the existing deep software I/O stack,

Conventional Block SSD

Application

File System

Key-value Databases

Device Driver

Key-Value SSD

Application

Key-Value API Library

Key-Value Device Driver

• Higher I/O Throughput
• Lower I/O Latency
• Lower WAF/RAF
with fewer host resources

LightStore
(ASPLOS’19)

KAML
(HPCA’17)

iLSM-SSD
(MASCOTS’19)

PinK
(ATC’20)

Samsung
KV-SSD

SK hynix
KV-CSD

7

Range Query for KVSSD

• Existing KVSSDs mostly focus on point queries (Put, Get)
• Index Pinning[1], Index Compression[2], H/W Accelerator for Compaction[1]

• …
• What about range query?

• With ordered data structure, it is often considered simple to implement
• In previous studies, the design detail of range queries is not covered
• We claim that there are more things to consider for range query

[1] PinK: High-speed In-storage Key-value Store with Bounded Tails, USENIX ATC 2020
[2] Modernizing File System through In-Storage Indexing, USENIX OSDI 2021

8

Range Query for KVSSD

• Existing KVSSDs mostly focus on point queries (Put, Get)
• Index Pinning[1], Index Compression[2], H/W Accelerator for Compaction[1]

• …
• What about range query?

• With ordered data structure, it is often considered simple to implement
• In previous studies, the design detail of range queries is not covered
• We claim that there are more things to consider for range query

[1] PinK: High-speed In-storage Key-value Store with Bounded Tails, USENIX ATC 2020
[2] Modernizing File System through In-Storage Indexing, USENIX OSDI 2021

9

Range Query for KVSSD

• Existing KVSSDs mostly focus on point queries (Put, Get)
• Index Pinning[1], Index Compression[2], H/W Accelerator for Compaction[1]

• …
• What about range query?

• With ordered data structure, it is often considered simple to implement
• In previous studies, the design detail of range queries is not covered
• We claim that there are more things to consider for range query

[1] PinK: High-speed In-storage Key-value Store with Bounded Tails, USENIX ATC 2020
[2] Modernizing File System through In-Storage Indexing, USENIX OSDI 2021

10

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

11

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

MemTable

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

12

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

MemTable

SSTable SSTable

SSTable

SSTable SSTableSSTable

Index

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

13

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

MemTable

SSTable SSTable

SSTable

SSTable SSTableSSTable

Index

Value Log

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

14

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

MemTable

SSTable SSTable

SSTable

SSTable SSTableSSTable

Index

Value LogSummary

max key
of KV

LPN
min key

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

15

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

MemTable

SSTable SSTable

SSTable

SSTable SSTableSSTable

Index

Value LogSummary

max key
of KV

LPN
min key

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

16

Key-Value SSD Internals

• LSM-tree-based Key-Value SSD

Memory NAND
Flash

MemTable

SSTable SSTable

SSTable

SSTable SSTableSSTable

Index

Value LogSummary

max key
of KV

LPN
min key

• LSM-tree-based Key-Value SSD
• Key-Value Separation by default
• In memory there are two types of data structures

17

• Range Queries are often served as Iterator Interface
• Seek() and Next()

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

Memory Flash

18

• Range Queries are often served as Iterator Interface
• Seek() and Next()

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

Memory Flash

19

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

Memory Flash

20

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

21

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

22

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer
Level

Iterator

Offset: 1
Key: 10

Offset: 0
Key: 8

Offset: 2
Key: 6

Offset: N/A
Key: N/A

MemTable
Iterator

23

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer
Level

Iterator

Merging
Iterator

Offset: 1
Key: 10

Offset: 0
Key: 8

Offset: 2
Key: 6

Offset: N/A
Key: N/A

MemTable
Iterator

24

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)

1 5

MemTable

1 5 8 26

1 30

4 9 18 5212 16

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer
Level

Iterator

Merging
Iterator

Offset: 1
Key: 10

Offset: 0
Key: 8

Offset: 2
Key: 6

Output
Key = 6

Offset: N/A
Key: N/A

MemTable
Iterator

25

Range Query in LSM-tree-based KVSSD

• On Next(),

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 0
Key: 8

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

Offset: 2
Key: 6

26

Range Query in LSM-tree-based KVSSD

• On Next(),

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 0
Key: 8

Offset: 3
Key: 7

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

27

Range Query in LSM-tree-based KVSSD

• On Next(),

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 0
Key: 8

Offset: 3
Key: 7

Output
Key = 7

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

28

Problems of Current Iterator

• Problem #1 ‒ Inconsistent Range Query
• Range queries are executed through multiple iterator commands
• During range queries, LSM-tree can change by Put, Delete commands
• How can the change in LSM-tree structure be handled?

• Problem #2 ‒ Long Tail Latency Problem
• During range queries, Iterator interface sometimes requires Index Read
• This NAND access (Index Read) incurs long tail latency

• Problem #3 ‒ Poor Range Query Performance
• Every Seek, Next command entails Value Read from Value Log
• This NAND Access (Value Read) incurs poor overall performance

29

Problems of Current Iterator

• Problem #1 ‒ Inconsistent Range Query
• Range queries are executed through multiple iterator commands
• During range queries, LSM-tree can change by Put, Delete commands
• How can the change in LSM-tree structure be handled?

• Problem #2 ‒ Long Tail Latency Problem
• During range queries, Iterator interface sometimes requires Index Read
• This NAND access (Index Read) incurs long tail latency

• Problem #3 ‒ Poor Range Query Performance
• Every Seek, Next command entails Value Read from Value Log
• This NAND Access (Value Read) incurs poor overall performance

30

Problems of Current Iterator

• Problem #1 ‒ Inconsistent Range Query
• Range queries are executed through multiple iterator commands
• During range queries, LSM-tree can change by Put, Delete commands
• How can the change in LSM-tree structure be handled?

• Problem #2 ‒ Long Tail Latency Problem
• During range queries, Iterator interface sometimes requires Index Read
• This NAND access (Index Read) incurs long tail latency

• Problem #3 ‒ Poor Range Query Performance
• Every Seek, Next command entails Value Read from Value Log
• This NAND Access (Value Read) incurs poor overall performance

31

Problems of Current Iterator

• Problem #1 ‒ Inconsistent Range Query
• Range queries are executed through multiple iterator commands
• During range queries, LSM-tree can change by Put, Delete commands
• How can the change in LSM-tree structure be handled?

• Problem #2 ‒ Long Tail Latency Problem
• During range queries, Iterator interface sometimes requires Index Read
• This NAND access (Index Read) incurs long tail latency

• Problem #3 ‒ Poor Range Query Performance
• Every Seek, Next command entails Value Read from Value Log
• This NAND Access (Value Read) incurs poor overall performance

32

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query

1 5

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 4
Key: 9

Output
Key = 9

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

33

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query

1 5

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 4
Key: 9

Output
Key = 9

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

Compaction Triggered by Put()!

34

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query

1 5

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 4
Key: 9

Output
Key = 9 Compaction!

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

35

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query

1 5

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 4
Key: 9

Output
Key = 9

4 52

Compaction!

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

36

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query

1 5

1 30

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

4 52

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 4
Key: 9

Output
Key = 9

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

37

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query

1 5

1 30

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

4 5 6 7 9

Memory Flash

Index Buffer

4 52

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 4
Key: 9

Output
Key = 9

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

Current state of the iterator becomes stale and,
Iterator might lose some key due to compaction

38

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query
• For this reason, host-side Key-Value stores support versioning in general
• An iterator needs to see the version of the LSM-tree at its creation time.

39

Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query
• For this reason, host-side Key-Value stores support versioning in general
• An iterator needs to see the version of the LSM-tree at its creation time.

However, inside the device, memory-efficient versioning is needed!

40

Offset: 4
Key: 9

Problem #2 ‒ Synchronous Index Read

• Synchronous NAND Flash Access for Index Read

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

4 5 6 7 9

Output
Key = 9

41

Offset: 4
Key: 9

Problem #2 ‒ Synchronous Index Read

• Synchronous NAND Flash Access for Index Read

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

4 5 6 7 9

Output
Key = 9

42

Offset: 4
Key: 9

Problem #2 ‒ Synchronous Index Read

• Synchronous NAND Flash Access for Index Read

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

12 13 14 15 16

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

43

Problem #2 ‒ Synchronous Index Read

• Synchronous NAND Flash Access for Index Read

1 5 8 26

1 30

4 9 18 5212 16

MemTable

SSTable (Index)

Value Log

8 16 17 19 26

1 10 13 15 30

12 13 14 15 16

Memory Flash

Index Buffer

Offset: 1
Key: 10

Offset: 1
Key: 16

Offset: 0
Key: 12

Output
Key = 10

Level
Iterator

Merging
Iterator

Offset: N/A
Key: N/A

MemTable
Iterator

1 5

44

Problem #3 ‒ Synchronous Value Read

• Design Challenge #3 ‒ NAND Flash Access for Value Read
• Every Seek() and Next() command requires NAND Flash Access for Value
• Considering that NAND Flash access is much slower than the other steps,

synchronous NAND Flash access for Value may woefully aggravate the
overall performance

Design of IterKVSSD

46

Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?

SSTable SSTable

SSTable

SSTable SSTableSSTable

Memory NAND
Flash

Summary

MemTable

Index

Value Log

max key
of KV

LPN
min key

• Summary represents the state of LSM-tree
• Summary Size ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB

47

Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?

SSTable SSTable

SSTable

SSTable SSTableSSTable

Memory NAND
Flash

Summary

MemTable

Index

Value Log

max key
of KV

LPN
min key

• Summary represents the state of LSM-tree
• Summary Size ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB

48

Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?

SSTable SSTable

SSTable

SSTable SSTableSSTable

Memory NAND
Flash

Summary

MemTable

Index

Value Log

max key
of KV

LPN
min key

• Summary represents the state of LSM-tree
• Summary Size ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB

49

Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?

SSTable SSTable

SSTable

SSTable SSTableSSTable

Memory NAND
Flash

Summary

MemTable

Index

Value Log

max key
of KV

LPN
min key

• Summary represents the state of LSM-tree
• Summary Size ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB

50

Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?

SSTable SSTable

SSTable

SSTable SSTableSSTable

Memory NAND
Flash

Summary

MemTable

Index

Value Log

max key
of KV

LPN
min key

• Summary represents the state of LSM-tree
• Summary Size ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB

51

Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?

SSTable SSTable

SSTable

SSTable SSTableSSTable

Memory NAND
Flash

Summary

MemTable

Index

Value Log

max key
of KV

LPN
min key

• Summary represents the state of LSM-tree
• Summary Size ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB

Keeping Summary for every Iterator is too expensive!

52

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Value Log

53

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Value Log

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

54

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Value Log

Global Version

Tree of
Pointers

MemTable

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

55

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

SST SST

SST

SST SSTSST

Memory NAND Flash

View of Index for
Global Version

Value Log

Global Version

Tree of
Pointers

MemTable

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

56

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

SST SST

SST

SST SSTSST

Memory NAND Flash

Iterator Instance

Tree of
Pointers

Copy of
MemTable

View of Index for
Global Version

Value Log

Global Version

Tree of
Pointers

MemTable

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

57

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

SST SST

SST

SST SSTSST

Memory NAND Flash

Iterator Instance

Tree of
Pointers

Copy of
MemTable

View of Index for
Global Version

Value Log

Global Version

Tree of
Pointers

MemTable

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

SST SST

SST

SST SSTSST

View of Index for
Iterator Instance

58

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

SST SST

SST

SST SSTSST

Memory NAND Flash

Iterator Instance

Tree of
Pointers

Copy of
MemTable

View of Index for
Global Version

Value Log

Global Version

Tree of
Pointers

MemTable

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

SST SST

SST

SST SSTSST

View of Index for
Iterator Instance

59

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

SST SST

SST

SST SSTSST

Memory NAND Flash

Iterator Instance

Tree of
Pointers

Copy of
MemTable

View of Index for
Global Version

Value Log

Global Version

Tree of
Pointers

MemTable

max key
of KV

LPN
min key

ref_cnt

Metadata Pool

SST SST

SST

SST SSTSST

View of Index for
Iterator Instance

Compaction Triggered by Put()!

60

Global Version

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Tree of
Pointers

Copy of
MemTable

Tree of
Pointers

Value Log
MemTable

max key
of KV

LPN
min key

ref_cnt

Iterator InstanceMetadata Pool

View of Index for
Global Version

View of Index for
Iterator Instance

61

Global Version

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Tree of
Pointers

Copy of
MemTable

Tree of
Pointers

Value Log
MemTable

max key
of KV

LPN
min key

ref_cnt

Iterator InstanceMetadata Pool

SST SST

SST

SST SSTSST

View of Index for
Global Version

View of Index for
Iterator Instance

62

Global Version

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Tree of
Pointers

Copy of
MemTable

Tree of
Pointers

Value Log
MemTable

max key
of KV

LPN
min key

ref_cnt

Iterator InstanceMetadata Pool

SST SST

SST

SST SSTSST

View of Index for
Global Version

SST SST

SST

SST SSTSST

View of Index for
Iterator Instance

63

Global Version

Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure

Memory NAND Flash

Tree of
Pointers

Copy of
MemTable

Tree of
Pointers

Value Log
MemTable

max key
of KV

LPN
min key

ref_cnt

Iterator InstanceMetadata Pool

Memory-efficient Versioning can be achieved
while only tracking the difference between each version

SST SST

SST

SST SSTSST

View of Index for
Global Version

SST SST

SST

SST SSTSST

View of Index for
Iterator Instance

64

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row

• KVSSD knows what is the next key to read
2. Key-Value semantic is enabled inside the device

• KVSSD knows where in physical memory the next Key-Value pairs are
stored

3. Inside the SSDs, there are multiple independent channel
controllers

• KVSSD can overlap NAND Flash access with processing storage protocol
and the other steps in parallel

65

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row

• KVSSD knows what is the next key to read
2. Key-Value semantic is enabled inside the device

• KVSSD knows where in physical memory the next Key-Value pairs are
stored

3. Inside the SSDs, there are multiple independent channel
controllers

• KVSSD can overlap NAND Flash access with processing storage protocol
and the other steps in parallel

66

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row
• KVSSD knows what is the next key to read

2. Key-Value semantic is enabled inside the device
• KVSSD knows where in physical memory the next Key-Value pairs are

stored
3. Inside the SSDs, there are multiple independent channel

controllers
• KVSSD can overlap NAND Flash access with processing storage protocol

and the other steps in parallel

67

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row
• KVSSD knows what is the next key to read

2. Key-Value semantic is enabled inside the device
• KVSSD knows where in physical memory the next Key-Value pairs are

stored
3. Inside the SSDs, there are multiple independent channel

controllers
• KVSSD can overlap NAND Flash access with processing storage protocol

and the other steps in parallel

68

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row
• KVSSD knows what is the next key to read

2. Key-Value semantic is enabled inside the device
• KVSSD knows where in physical memory the next Key-Value pairs are

stored
3. Inside the SSDs, there are multiple independent channel

controllers
• KVSSD can overlap NAND Flash access with processing storage protocol

and the other steps in parallel

69

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row
• KVSSD knows what is the next key to read

2. Key-Value semantic is enabled inside the device
• KVSSD knows where in physical memory the next Key-Value pairs are

stored
3. Inside the SSDs, there are multiple independent channel

controllers
• KVSSD can overlap NAND Flash access with processing storage protocol

and the other steps in parallel

70

How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row
• KVSSD knows what is the next key to read

2. Key-Value semantic is enabled inside the device
• KVSSD knows where in physical memory the next Key-Value pairs are

stored
3. Inside the SSDs, there are multiple independent channel

controllers
• KVSSD can overlap NAND Flash access with processing storage protocol

and the other steps in parallel

71

How to Reduce NAND Flash Access Cost?

• Want to hide synchronous NAND Flash Access Penalty
• On every Seek and Next commands,

1. Compute for processing the storage protocol command
2. Read Index from NAND Flash, if necessary
3. Search and Compare the Index for each level
4. Read Value from NAND flash
5. DMA transfer over PCIe to return the result Key-Value pair

72

How to Reduce NAND Flash Access Cost?

• Want to hide synchronous NAND Flash Access Penalty
• On every Seek and Next commands,

1. Compute for processing the storage protocol command
2. Read Index from NAND Flash, if necessary
3. Search and Compare the Index for each level
4. Read Value from NAND flash
5. DMA transfer over PCIe to return the result Key-Value pair

73

How to Reduce NAND Flash Access Cost?

• Want to hide synchronous NAND Flash Access Penalty
• On every Seek and Next commands,

1. Compute for processing the storage protocol command
2. Read Index from NAND Flash, if necessary
3. Search and Compare the Index for each level
4. Read Value from NAND flash
5. DMA transfer over PCIe to return the result Key-Value pair

74

Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

Compute Index
Search

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by

exploiting hardware (NFCs).

75

Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

Compute Index
Search

Value Read

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by

exploiting hardware (NFCs).

76

Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

Compute Index
Search

Value Read

Prefetch Index

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by

exploiting hardware (NFCs).

77

Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

Compute Index
Search

Value Read

DMA

Prefetch Index

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by

exploiting hardware (NFCs).

78

Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

ComputeCompute Index
Search

Value Read

DMA

Prefetch Index

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by

exploiting hardware (NFCs).

79

Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

Compute Index
Search

Value Read

DMACompute Index
Search

Value Read

DMA

Prefetch Index

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by

exploiting hardware (NFCs).

80

Value Prefetching

• Value Prefetching

CPU

NFC1

NFC2

Compute

• When processing Nth Next command, the device issues prefetch request for
the (N+D)th Next command in the future (D: Prefetching Degree).

• Therefore, it can overlap the reading time with other process in advance by
exploiting hardware (NFCs).

81

Value Prefetching

• Value Prefetching

CPU

NFC1

NFC2

Compute

• When processing Nth Next command, the device issues prefetch request for
the (N+D)th Next command in the future (D: Prefetching Degree).

• Therefore, it can overlap the reading time with other process in advance by
exploiting hardware (NFCs).

Value Read

Read for V2

82

Value Prefetching

• Value Prefetching

CPU

NFC1

NFC2

Compute Index
Search

• When processing Nth Next command, the device issues prefetch request for
the (N+D)th Next command in the future (D: Prefetching Degree).

• Therefore, it can overlap the reading time with other process in advance by
exploiting hardware (NFCs).

Value Read

Read for V2

83

Value Prefetching

• Value Prefetching

CPU

NFC1

NFC2

Compute Index
Search

• When processing Nth Next command, the device issues prefetch request for
the (N+D)th Next command in the future (D: Prefetching Degree).

• Therefore, it can overlap the reading time with other process in advance by
exploiting hardware (NFCs).

Value Read

Read for V2

DMA

DMA for V1

84

Value Prefetching

• Value Prefetching

CPU

NFC1

NFC2

Compute Index
Search

• When processing Nth Next command, the device issues prefetch request for
the (N+D)th Next command in the future (D: Prefetching Degree).

• Therefore, it can overlap the reading time with other process in advance by
exploiting hardware (NFCs).

Compute Index
Search

Value Read

Read for V2

DMA

DMA for V1

Value Read

Read for V3

DMA

DMA for V2

Compute Index
Search

Value Read

DMA Compute Index
Search

Read for V4

DMA for V3

85

Experimental Setup

• Implementation of IterKVSSD
• Prototyped on OpenSSD Cosmos+
• Extended NVMe Protocol for Iterator Command

• Experiment
• Evaluated with RocksDB db_bench benchmark
• Populated with 3M Key-Value pairs with 4B Key
• Evaluated with SeekRandom workload
• Evaluated by varying scan length*, value size, and prefetch degree for value

prefetch

*scan length = the number of KV pairs retrieved during a range query

86

Experimental Setup

• Implementation of IterKVSSD
• Prototyped on OpenSSD Cosmos+
• Extended NVMe Protocol for Iterator Command

• Experiment
• Evaluated with RocksDB db_bench benchmark
• Populated with 3M Key-Value pairs with 4B Key
• Evaluated with SeekRandom workload
• Evaluated by varying scan length*, value size, and prefetch degree for value

prefetch

*scan length = the number of KV pairs retrieved during a range query

87

Evaluation ‒ Index Prefetch

• Effect of Index Prefetching

• IterKVSSD-B: Baseline w/o prefetch
• IterKVSSD-I: w/ Index Prefetch +

w/o Value Prefetch
• Scan Length = 200,000 which is enough

to trigger Synchronous Index Read
• Show about 3.6x better P99.9 tail

latency
• Channel conflict prevents it from being

removed completely

88

Evaluation ‒ Index Prefetch

• Effect of Index Prefetching

• IterKVSSD-B: Baseline w/o prefetch
• IterKVSSD-I: w/ Index Prefetch +

w/o Value Prefetch
• Scan Length = 200,000 which is enough

to trigger Synchronous Index Read
• Show about 3.6x better P99.9 tail

latency
• Channel conflict prevents it from being

removed completely

89

Evaluation ‒ Index Prefetch

• Effect of Index Prefetching

• IterKVSSD-B: Baseline w/o prefetch
• IterKVSSD-I: w/ Index Prefetch +

w/o Value Prefetch
• Scan Length = 200,000 which is enough

to trigger Synchronous Index Read
• Show about 3.6x better P99.9 tail

latency
• Channel conflict prevents it from being

removed completely

3.6x lower

90

Evaluation ‒ Index Prefetch

• Effect of Index Prefetching

• IterKVSSD-B: Baseline w/o prefetch
• IterKVSSD-I: w/ Index Prefetch +

w/o Value Prefetch
• Scan Length = 200,000 which is enough

to trigger Synchronous Index Read
• Show about 3.6x better P99.9 tail

latency
• Channel conflict prevents it from being

removed completely

3.6x lower

91

Evaluation ‒ Value Prefetch

• Effect of Value Prefetching
• Evaluated with SeekRandom workload
• Prefetch Degree: 0 ‒ 8
• Value Size : 128B, 4KB, 16KB, 128KB
• Scan Length: 128, 256, 512, 1024, 2048

92

Evaluation ‒ Value Prefetch

• Effect of Prefetching Degree
• With higher prefetch degree, better I/O performance because small

prefetch degree is not enough to hide NAND Flash access latency
completely

• However, prefetch degree over some degree will not improve performance
• When internal bandwidth is saturated
• When NAND Access can be fully overlapped with other steps

93

Evaluation ‒ Value Prefetch

• Effect of Prefetching Degree
• With higher prefetch degree, better I/O performance because small

prefetch degree is not enough to hide NAND Flash access latency
completely

• However, prefetch degree over some degree will not improve performance
• When internal bandwidth is saturated
• When NAND Access can be fully overlapped with other steps

4.7x
higher

7.2x
higher

5x
higher

2.2x
higher

94

Evaluation ‒ Value Prefetch

• Effect of Prefetching Degree
• With higher prefetch degree, better I/O performance because small

prefetch degree is not enough to hide NAND Flash access latency
completely

• However, prefetch degree over some degree will not improve performance
• When internal bandwidth is saturated
• When NAND Access can be fully overlapped with other steps

95

Evaluation ‒ Value Prefetch

• Effect of Prefetching Degree
• With higher prefetch degree, better I/O performance because small

prefetch degree is not enough to hide NAND Flash access latency
completely

• However, prefetch degree over some degree will not improve performance
• When internal bandwidth is saturated
• When NAND Access can be fully overlapped with other steps

96

Evaluation ‒ Value Prefetch

• Effect of Scan Length in Range Query
• With higher scan length, better I/O throughput

1.6x
higher

1.8x
higher

1.7x
higher

1.3x
higher

97

Evaluation ‒ Value Prefetch

• Effect of Value Prefetching
• 1 Seek + N Next (N : Scan Length)
• Seek shows much higher latency than Next
• Therefore, the higher scan length shows the better overall I/O performance

98

Conclusion

• Iterator Interface Extended LSM-tree-based KVSSD
• Explore three problems of current iterator interface

1. Versioning Problem
2. Synchronous Index Read Problem
3. Synchronous Value Read Problem

• IterKVSSD
• Propose solutions for the above problem by exploit the characteristics

of KVSSD
• Memory-efficient Versioning through decoupling and pooling metadata
• Index/Value Prefetch to mitigate NAND Flash Access Penalty
• Shows 2x lower P99.9 tail latency, up to 7.2x better I/O throughput

99

Thank you for listening! Q&A

Iterator Interface Extended LSM-tree-based
KVSSD for Range Queries

Seungjin Lee1, Chang-Gyu Lee1, Donghyun Min1, Inhyuk Park2, Woosuk Chung2,
Anand Sivasubramaniam3, Youngjae Kim1

1 Sogang University, 2 SK hynix, 3 The Pennsylvania State University

