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Range Query for KVSSD

• Existing KVSSDs mostly focus on point queries (Put, Get)
• Index Pinning[1], Index Compression[2], H/W Accelerator for Compaction[1]

• …
• What about range query?

• With ordered data structure, it is often considered simple to implement
• In previous studies, the design detail of range queries is not covered
• We claim that there are more things to consider for range query

[1] PinK: High-speed In-storage Key-value Store with Bounded Tails, USENIX ATC 2020
[2] Modernizing File System through In-Storage Indexing, USENIX OSDI 2021
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Key-Value SSD Internals
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• Range Queries are often served as Iterator Interface
• Seek() and Next()

Range Query in LSM-tree-based KVSSD

• On Seek with start_key=6
• Find Index in the search range (≥ 6)
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Range Query in LSM-tree-based KVSSD
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Problems of Current Iterator

• Problem #1 ‒ Inconsistent Range Query
• Range queries are executed through multiple iterator commands
• During range queries, LSM-tree can change by Put, Delete commands
• How can the change in LSM-tree structure be handled?

• Problem #2 ‒ Long Tail Latency Problem
• During range queries, Iterator interface sometimes requires Index Read
• This NAND access (Index Read) incurs long tail latency

• Problem #3 ‒ Poor Range Query Performance
• Every Seek, Next command entails Value Read from Value Log
• This NAND Access (Value Read) incurs poor overall performance
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Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query
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Problem #1 - Versioning

• Versioning Problem
• Put(), Delete() can be issued in the middle of range query
• For this reason, host-side Key-Value stores support versioning in general
• An iterator needs to see the version of the LSM-tree at its creation time.
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However, inside the device, memory-efficient versioning is needed!
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Problem #3 ‒ Synchronous Value Read

• Design Challenge #3 ‒ NAND Flash Access for Value Read
• Every Seek() and Next() command requires NAND Flash Access for Value
• Considering that NAND Flash access is much slower than the other steps, 

synchronous NAND Flash access for Value may woefully aggravate the 
overall performance



Design of IterKVSSD
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Memory Efficient Versioning Data Structure

• How to support Versioning inside the device?
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• Summary represents the state of LSM-tree
• Summary Size  ∝ # of SSTables
• In our setup,

1. Summary Entry Size = 44B
2. # of SSTables ≈ 65,000
3. Total Size ≈ 2.7MB
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Memory Efficient Versioning Data Structure

• Decoupling and Pooling Metadata from Version Data Structure
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How to Reduce NAND Flash Access Cost?

• Key ideas to minimize synchronous NAND Flash access penalty
1. Range query sequentially retrieves Key-Value pairs in a row

• KVSSD knows what is the next key to read
2. Key-Value semantic is enabled inside the device

• KVSSD knows where in physical memory the next Key-Value pairs are 
stored

3. Inside the SSDs, there are multiple independent channel 
controllers

• KVSSD can overlap NAND Flash access with processing storage protocol 
and the other steps in parallel
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How to Reduce NAND Flash Access Cost?

• Want to hide synchronous NAND Flash Access Penalty
• On every Seek and Next commands,

1. Compute for processing the storage protocol command
2. Read Index from NAND Flash, if necessary
3. Search and Compare the Index for each level
4. Read Value from NAND flash
5. DMA transfer over PCIe to return the result Key-Value pair
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Index Prefetching

• Index Prefetching

CPU

NFC1

NFC2

Compute Index 
Search

• The device can calculate when it becomes needed to read index from NAND.
• Therefore, it can overlap the reading time with other process in advance by 

exploiting hardware (NFCs).
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Value Prefetching

• Value Prefetching
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Compute

• When processing Nth Next command, the device issues prefetch request for 
the (N+D)th Next command in the future (D: Prefetching Degree).

• Therefore, it can overlap the reading time with other process in advance by 
exploiting hardware (NFCs).
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Experimental Setup

• Implementation of IterKVSSD
• Prototyped on OpenSSD Cosmos+
• Extended NVMe Protocol for Iterator Command

• Experiment
• Evaluated with RocksDB db_bench benchmark
• Populated with 3M Key-Value pairs with 4B Key
• Evaluated with SeekRandom workload
• Evaluated by varying scan length*, value size, and prefetch degree for value 

prefetch

*scan length = the number of KV pairs retrieved during a range query 
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Evaluation ‒ Index Prefetch

• Effect of Index Prefetching

• IterKVSSD-B: Baseline w/o prefetch
• IterKVSSD-I: w/ Index Prefetch + 

w/o Value Prefetch
• Scan Length = 200,000 which is enough 

to trigger Synchronous Index Read 
• Show about 3.6x better P99.9 tail 

latency
• Channel conflict prevents it from being 

removed completely
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Evaluation ‒ Value Prefetch

• Effect of Value Prefetching
• Evaluated with SeekRandom workload
• Prefetch Degree: 0 ‒ 8
• Value Size : 128B, 4KB, 16KB, 128KB
• Scan Length: 128, 256, 512, 1024, 2048
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Evaluation ‒ Value Prefetch

• Effect of Prefetching Degree
• With higher prefetch degree, better I/O performance because small 

prefetch degree is not enough to hide NAND Flash access latency 
completely

• However, prefetch degree over some degree will not improve performance
• When internal bandwidth is saturated
• When NAND Access can be fully overlapped with other steps
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Evaluation ‒ Value Prefetch

• Effect of Scan Length in Range Query
• With higher scan length, better I/O throughput
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Evaluation ‒ Value Prefetch

• Effect of Value Prefetching
• 1 Seek + N Next (N : Scan Length)
• Seek shows much higher latency than Next
• Therefore, the higher scan length shows the better overall I/O performance
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Conclusion

• Iterator Interface Extended LSM-tree-based KVSSD 
• Explore three problems of current iterator interface

1. Versioning Problem
2. Synchronous Index Read Problem
3. Synchronous Value Read Problem

• IterKVSSD
• Propose solutions for the above problem by exploit the characteristics 

of KVSSD
• Memory-efficient Versioning through decoupling and pooling metadata
• Index/Value Prefetch to mitigate NAND Flash Access Penalty
• Shows 2x lower P99.9 tail latency, up to 7.2x better I/O throughput
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