
Iterator Interface Extended LSM-tree-based KVSSD
for RangeQueries

Seungjin Lee1, Chang-Gyu Lee1, Donghyun Min1, Inhyuk Park2, Woosuk Chung2
Anand Sivasubramaniam3, Youngjae Kim1∗

1Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea
2Memory System Research, SK hynix

3Dept. of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, USA

ABSTRACT
Key-Value SSD (KVSSD) has shown great potential for several im-
portant classes of emerging data stores due to its high throughput
and low latency. When designing a key-value store with range
queries, an LSM-tree is considered a better choice than a hash table
due to its key ordering. However, the design space for range queries
in LSM-tree-based KVSSDs has yet to be explored, despite range
queries being one of the most demanding features. In this paper, we
investigate the design constraints in LSM-tree-based KVSSDs from
the perspective of range queries and propose three design princi-
ples. Based on these principles, we present IterKVSSD, an Iterator
interface extended LSM-tree-based KVSSD for range queries. We
implement IterKVSSD on OpenSSD Cosmos+, and our evaluation
shows that it increases range query throughput by up to 4.13× and
7.22× for random and sequential key distributions, respectively,
compared to existing KVSSDs.

CCS CONCEPTS
• Computer systems organization → Firmware; • Informa-
tion systems → Storage management.

KEYWORDS
Log-structured Merge-tree, Key-Value SSD, Range Query

ACM Reference Format:
Seungjin Lee1, Chang-Gyu Lee1, Donghyun Min1, Inhyuk Park2, Woosuk
Chung2 and Anand Sivasubramaniam3, Youngjae Kim1. 2023. Iterator Inter-
face Extended LSM-tree-based KVSSD for Range Queries. In The 16th ACM
International Systems and Storage Conference (SYSTOR ’23), June 5–7, 2023,
Haifa, Israel. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3579370.3594775

1 INTRODUCTION
Key-Value SSD (KVSSD) is a new type of SSD that uses keys to
store and retrieve values, with a new set of Key-Value operations

∗Y. Kim is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SYSTOR ’23, June 5–7, 2023, Haifa, Israel
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9962-3/23/06. . . $15.00
https://doi.org/10.1145/3579370.3594775

such as Put, Get, Delete, and Scan. With the new Key-Value in-
terface directly integrated into storage, which is fundamentally
different from the Logical Block Address (LBA) interface used in
conventional SSDs, KVSSDs offer benefits such as a shortened host-
side I/O stack by removing the Key-Value store and file system,
resulting in reduced I/O to the device. These benefits of KVSSD
introduce numerous KVSSD studies [2, 6, 12–16, 19, 22, 26, 28] and
standardization efforts [23, 27].

Range query is a core operation used in many database applica-
tions [1, 3, 7, 29] to retrieve Key-Value pairs belonging to a specific
key range. Therefore, it is vital for KVSSDs to efficiently support
range queries. Typically, a range query is served via an iterator
that consists of Seek() and Next(). An iterator locates the start of a
certain key range using Seek() and retrieves successive Key-Value
pairs by repeating Next() operations. As range queries essentially
require an ordered data structure, the LSM-tree [24] was consid-
ered a natural fit, resulting in its adoption by a large number of
KVSSDs [6, 12, 16, 19, 26].

The current state-of-the-art LSM-tree-based KVSSD with an iter-
ator interface is PinK [12]. PinK proposes pinning index (SSTable)
at the top 𝑘 level to minimize tail latency caused by NAND flash
accesses. However, PinK’s index pinning technique cannot resolve
long tail latency issues when NAND flash accesses to SSTables at
a deeper level occur. Moreover, PinK only presents basic iterator
interfaces that can cause serious problems, such as inconsistent
concurrent range queries and performance issues.

In particular, range queries through an iterator interface are
served over multiple I/O commands, so it is possible that some Key-
Value pairs will be modified, deleted, or created in the middle of
range queries. As a result of this structural modification of the LSM-
tree, the iterator may return inconsistent and unexpected results
for the range query, such as missing keys or even skipping them.

Additionally, PinK focuses on optimizing index reads, which is
not the dominant factor for the performance of range queries. For
the LSM-tree with Key-Value separation, the index size to read is
much smaller than the values, so most of the time is spent accessing
NAND flash to read values synchronously. Considering that NAND
access time is hundreds of times slower thanDRAMaccess time [17],
even a single extra NAND access is critical for KVSSD performance.
Furthermore, the index pinning technique can reduce index read
times to a certain degree, but it may still require synchronous index
reads because some parts of the index cannot be pinned in memory
due to its immense size.

To tackle the above problems, we propose IterKVSSD, an Iterator
interface extended LSM-tree-based KVSSD. IterKVSSD suggests
three techniques to resolve the aforementioned problems of the

60

https://doi.org/10.1145/3579370.3594775
https://doi.org/10.1145/3579370.3594775
https://doi.org/10.1145/3579370.3594775
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579370.3594775&domain=pdf&date_stamp=2023-06-22

SYSTOR ’23, June 5–7, 2023, Haifa, Israel S. Lee et al.

state-of-the-art LSM-tree-based KVSSD. For the inconsistent range
query problem, IterKVSSD implements memory-efficient versioning
via metadata pooling, which decouples the actual SSTable metadata
from the summary data structure, to reduce the memory footprint
used in each version. IterKVSSD also adopts a prefetch method for
SSTables (index) and values to mitigate the synchronous NAND
access costs. This takes advantage of the fact that the KVSSD is
aware of the physical location of values on NAND flash memory.
Furthermore, internal parallelism, due to the independently oper-
ating NAND Flash Channel Controllers (NFCs), makes index and
value prefetch feasible while serving foreground I/O requests in
parallel.

Overall, we make the following contributions:
• We define three design principles for iterator support in LSM-

tree-based KVSSD based on design space exploration.
• We present the design of a memory-efficient versioning mecha-

nism via metadata pooling.
• We perform amathematical analysis of the critical I/O path in pro-

cessing Seek() and Next(), focusing on the NAND flash penalty.
• Based on the analysis of the critical path, we show that index

prefetch and value prefetch can effectively exploit internal paral-
lelism and hide the NAND flash penalty in iterator operations.
We implemented IterKVSSD on theOpenSSDCosmos+[17], which

is an LSM-tree-based KVSSD. Through an extensive evaluation
using db_bench[8], we demonstrate that IterKVSSD is memory-
efficient and robust in handling a wide range of concurrent range
queries. In particular, our evaluation results demonstrate that IterKVSSD
achieves 4.13× and 7.22× higher range query throughput on KVSSDs
with random and sequential key orders, respectively, compared to
the case without prefetching.

2 BACKGROUND & PRIORWORK
2.1 LSM-tree-based Key-Value Store
LSM-tree [24] is one of the most widely adopted data structures
in modern Key-Value stores [5, 8, 11, 18] that demand high write
throughput. Figure 1 depicts the architecture of an LSM-tree-based
Key-Value store. LSM-tree keeps both MemTable and summary
data structures in memory. In persistent media, LSM-tree manages
SSTables (Sorted String Table) that essentially form the levels of the
LSM-tree. Also, LSM-tree has a compaction procedure to create and
organize SSTables. Note that a summary data structure manages
how to construct an entire LSM-tree with SSTables.

LSM-tree handles Key-Value operations as a record, where a
record is identified with its key, but its contents can be interpreted
as a value for the key or the key’s deletion. For simplicity, we
assume only insertion. But note that there is not much difference
because the record for deletion also has to be searched in the LSM-
tree as other existing keys. MemTable can hold records up to a
predefined size. When it gets full, the MemTable is flushed to level 0
as an SSTable, and then the LSM-tree starts over with a new empty
MemTable. An SSTable is a block-based format that stores a set
of records with their index. Collectively, a set of SSTables forms a
level in the LSM-tree. Except for SSTables in level 0, SSTables in
level 𝑖 partition the key extents of level 𝑖 . For example, a level 1
consisting of SSTables covering key extents (42−56) and (60−125),

Disk
DRAM

8 26 95 98

MemTable

Level
(SSTable)

Compaction

V1K1 K2 V2

Value Log (vLog)

K1 Loc(V1) K2 Loc(V2)

K1 V1 K2 V2

Summary

(b) WiscKey

(a) Base LSM-tree

Figure 1: Overall Architecture of LSM-tree.

is a valid level. However, SSTables covering key extents (42 − 56)
and (43 − 56) can not form level 1.

The compaction procedure enforces this property except for
level 0. Each level in LSM-tree has a limit on the total size of SSTa-
bles belonging to a level. The size limit typically increases about
ten times as the level goes deeper, e.g., level 0 has 64 MB, level 1
has 640 MB, and so on. When level 𝑖 exceeds its size limit, the com-
paction procedure takes action to fit level 𝑖 in the size limit. The
compaction procedure picks victim SSTables in level 𝑖 , merges them
with SSTables with an overlapped key range in level 𝑖 + 1, then
creates new SSTables in level 𝑖 + 1, deleting the victim SSTables in
level 𝑖 . The merging during compaction is crucial for the LSM-tree
because it replaces obsolete keys in level 𝑖 + 1 with more recent
keys from level 𝑖 . Since the MemTable flushing and compaction
procedures continuously transform the LSM-tree organization over
time, LSM-tree has a summary data structure that tracks which
SSTables form each level and also keeps brief metadata about SSTa-
bles, which consists of the minimum and maximum keys of each
SSTable.

Key-Value Separation: Meanwhile, keys that are not deleted
by newer records are repeatedly copied as the record moves down
to the last level. These long-lived records contribute significantly to
I/O amplification during compaction, which leads to performance
degradation [21]. To solve this, WiscKey [20] proposed a Key-Value
separation technique that decouples actual value data from a Key-
Value pair in SSTables via indirection to the value log (vLog). Wis-
cKey appends a Key-Value pair to the end of vLog and inserts the
new record into the MemTable with the key and the offset in vLog.
Simple indirection using the vLog offset greatly reduces the I/O
amplification during the compaction procedure since small vLog
offsets are copied instead of the actual value.

2.2 Iterator Interface in LSM-tree
Iterator interface is one of the common ways to provide range
queries. Because LSM-tree maintains the ordering of keys, the iter-
ator interface can be implemented more easily on LSM-tree than
other non-ordered data structures. Specifically, the LSM-tree can
be considered as a tree composed of small ordered data structures
because MemTable and SSTables both organize keys in numerical
order. When we search from MemTable, the uppermost part of the
tree, we can find the keys that reflect the most recent update while
all keys are in numerical order.

61

Iterator Interface Extended LSM-tree-based KVSSD for Range Queries SYSTOR ’23, June 5–7, 2023, Haifa, Israel

LSM-tree

Table id
min key
max key

…

Summary

Iterator

(a) Refer
Summary

(a) Select
Candidate Table

(b) Search
Candidate Keys

SSTable

MemTable

(c)
find the

smallest key

(d) kept and
used for next()

(a), (b) - On Seek()
(c), (d) - On Seek() and Next()

Figure 2: Description of Seek() and Next().

Seek() and Next() are the two essential operations in the iterator
interface. The Seek() operation positions an iterator at the 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 .
When LSM-tree may not have exactly 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 , the iterator will be
positioned at the smallest key that is greater than 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 . To po-
sition the iterator at 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 , the LSM-tree uses the summary data
structure. By selecting SSTables with key extent covering 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡
from all levels, the LSM-tree can have a complete candidate set of
SSTables. Then, the LSM-tree can pick the smallest key from the
search result of 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 from the set of SSTables and the MemTable.
It is possible that the same keys may be found across multiple lev-
els from the candidate SSTables (and MemTable) because obsolete
records are alive from the LSM-tree until compaction reclaims it.
If the same key is found in multiple levels, the LSM-tree takes the
Key-Value pair from the uppermost level as the most recent record.

Next() is used to continue traversing Key-Value pairs in a sequen-
tial manner starting from 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 . To this end, the LSM-tree keeps
the set of SSTables (and MemTable) collected from the previous
Seek() operation to search for the next key. More specifically, the
LSM-tree keeps the exact position in each index of SSTables and
MemTable so that it can simply move to the next item and compare
to get the appropriate key following 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡 .

Figure 2 describes how an LSM-tree works in the case of a Seek()
followed by a Next(). (a) Handling Seek() starts with selecting can-
didate SSTables and MemTable (simply candidate tables hereafter)
by referring to the minimum and maximum key of each SSTable
in the summary data structure. (b) Candidate tables are searched
for the starting key or the smallest key greater than the specified
starting key. Note that MemTable and SSTables are all ordered data
structures, and along with the keys Seek() found (candidate keys),
it also keeps their position as indexes in each table. (c) Next, the
smallest key is selected from the candidate keys. When identical
keys are found in multiple levels, the key from the uppermost level
is selected. In this case, MemTable is considered as the upper level
of level 0 (i.e., level −1) since MemTable always holds the most
recent records. (d) Then with Next(), the iterator utilizes previous
candidate tables to find the next key following the starting key.
Using candidate tables, the candidate keys are again selected and
compared by searching each table for the smallest key greater than
the starting key.

2.3 LSM-tree-based Key-Value SSD
For the past years, KVSSDs have been proposed to reduce I/O
amplification resulting from host I/O stack [6, 12, 13, 16, 19, 25, 28].
Due to their range query capabilities, LSM-tree-based KVSSDs1

1Hereafter, we will use the terms LSM-tree-based KVSSD and KVSSD interchangeably.

gain attention among those KVSSDs. Furthermore, given the limited
memory capacity of KVSSDs, Key-Value separation has also been
actively discussed to reduce memory footprints for compaction
operations and further reduce I/O amplification [12, 16, 19].

KVSSD shares most of the design shown in Figure 1, except for
the way persistent components, such as SSTables, are stored. Since
the file interface is no longer available inside the SSD, KVSSDs must
take on a portion of the file system’s roles to determine the physical
layout of persistent components, so that SSTables and vLog can be
safely persisted and loaded. The summary data structure plays a
critical role for this, which we refer to as simply the Summary from
here on. Each entry in the Summary stores NAND page addresses
that indicate the physical location of SSTable, along with other
attributes such as the minimum and maximum keys. Therefore,
the LSM-tree can be reconstructed on device reset by loading the
Summary and SSTables in order.

2.4 State-of-the-art KVSSD with Iterator
Interface and its Limitations

PinK is a state-of-the-art LSM-tree-based KVSSD that implements
an iterator interface. In order to reduce tail latency caused by load-
ing indexes and filters, PinK proposed pinning indexes at the top
few levels (L0, L1, L2 SSTables) in memory. However, PinK only
provided a basic iterator interface without considering multiple
issues that may lead to serious problems, such as inconsistent range
queries, tail latency, and poor performance issues.

Range queries via iterator are typically composed of one Seek()
and multiple Next() calls. Since a range query is performed across
multiple calls that can be interleaved with other Key-Value op-
erations, it is possible that Put() or Delete() operations followed
by compaction may change the structure of the LSM-tree. This
structural modification includes the change of Summary, and con-
sequently, the iterator created before compaction may not be able
to find SSTables (Index) that were deleted by the compaction pro-
cess. Since iterator objects in most database applications [8, 11] are
intended to see the database at its creation time, it is essential for
KVSSDs to support versioning for consistent range queries. How-
ever, we believe that PinK fails to address this inconsistent range
query problem. In this regard, we believe that PinK fails to address
this inconsistent range query problem.

Furthermore, while pinning high-level SSTables can eliminate
tail latency caused by NAND flash reads for those SSTables, the
pinning approach still requires NAND flash accesses for reading
deeper-level SSTables. This means that even with the pinning tech-
nique, synchronous index reads can still occur, potentially resulting
in tail latency issues during the execution of range queries.

Lastly, PinK uses huge amounts of memory to pin the index
in memory, but using too much memory for pinning or caching
indexes is undesirable for range query performance. It is because
PinK adopts Key-Value separation where the size of the index to
read for Seek() and Next() is much smaller compared to the size
of the value. As we will show in Section 5, the key to optimizing
the overall performance of range queries is to avoid synchronous
NAND flash access for value reads as much as possible. However,
PinK did not consider optimizing synchronous NAND flash access
for value reads, which may result in poor range query performance.

62

SYSTOR ’23, June 5–7, 2023, Haifa, Israel S. Lee et al.

To resolve these problems, a memory-efficient design must be
applied for KVSSDs in order to minimize synchronous NAND ac-
cesses as well as version control. In this paper, we formulate the
design principles for an iterator interface inside the device, and
then we show an example design strictly abiding by the principles
in the following sections.

3 DESIGN PRINCIPLE
To address the aforementioned problems in designing an iterator
interface in KVSSDs, we conceive the following design principles:
P1, P2, P3.

P1.Memory-efficient Versioning Support To enable versioning
inside the device, an iterator needs to manage the minimum infor-
mation about the version at its creation time. It is also important for
KVSSDs to ensure that the corresponding index and value remain
available until the iterator is destroyed. To address these require-
ments, IterKVSSD manages LSM-tree’s state with Summary, which
provides access to SSTable metadata. Since multiple iterators with
the same version share most of the SSTable metadata, we propose a
metadata pooling method that decouples the SSTable metadata from
the summary data structure in memory. Furthermore, IterKVSSD
keeps track of reference counters of each iterator, which ensures
SSTables used by range queries are alive until the end of each query.

P2. Minimize Cost of Index (SSTable) Read There are two pos-
sible cases where NAND flash is accessed to read index (SSTables).
First, when processing the Seek() command, an iterator is required
to read some of the tables covering the smallest key at each level,
which may incur multiple NAND flash reads. This process is un-
avoidable unless all candidate SSTables are cached in device mem-
ory. The second case happens when processing the Next() command.
While the iterator moves forwards it is possible that the iterator
reaches the end of the buffered SSTables. At this moment, Next()
is responsible for loading the next SSTable with the succeeding
key range from the same level. Consequently, the iterator may
encounter a potential NAND read during the process of Next().

To minimize memory footprint without having much cache for
index, IterKVSSD exploits the sequential key access pattern of range
queries and also the parallelism of NAND flash controllers (NFC)
running independently. One thing to note is that Key-Value separa-
tion alleviates the NAND access for index read by Next(). Because
Key-Value separation reduces the size of each entry in an SSTable
by replacing the value to vLog offset, the number of keys in a single
SSTable can be greatly increased compared to a KVSSD without
Key-Value separation in an SSTable of the same size. This increases
the expected number of Next() required to encounter the above
situation which incurs a potential NAND read.

P3. Minimize Cost of Value Read All Seek() and Next() com-
mands need to return a value to the host from the vLog. However,
values of adjacent keys may not be written contiguously in vLog
due to Key-Value separation. Without Key-Value separation, both
keys and values are sorted and written in NAND flash together
during compaction. This is not the case with the Key-Value separa-
tion, as values are not stored with their corresponding keys, and
it is, therefore, hard to expect spatial locality in NAND flash, even
though iterators access sequential keys. This randomness of value

location in vLog woefully deteriorates the throughput of the range
query.

In this case, an extensive read cache may seem to be a solution,
but due to the device’s memory restriction. IterKVSSD adopts a
prefetching method to read values by exploiting the sequential
access pattern of iterators to tackle this problem. Additionally,
IterKVSSD makes full use of the internal parallelism from indepen-
dently working NAND flash controllers to prefetch vLog entries.

4 ITERATOR INTERFACE FOR KVSSDS
In this section, we propose IterKVSSD, an LSM-tree-based KVSSD
strictly following the three design principles. We first explain the
overall architecture of IterKVSSD and address the solutions to meet
each design principle.

4.1 Design of Iterator Interface
Figure 3(a) shows the main data structure for an iterator instance.
When IterKVSSD receives a range query request, IterKVSSD creates
an iterator instance and stores the version information of the LSM-
tree in DRAM. The iterator instance consists of six components as
follows (yellow rectangle in Figure 3(a)).
• Version Handle: The pointer to Summary at the time the itera-

tor was created.
• MemTable: The copy of the MemTable at the time the iterator

was created.
• Mem Iterator:Mem Iterator points to the key currently being

traversed within the MemTable.
• Level Iterator Array: Each array element points to the current

key being traversed within the SSTable of each level in the LSM-
tree. Each level iterator is updated with a new key when iterating
to the next.

• Merge Iterator: Store the smallest key among all the internal
Iterators (Mem Iterator and Level Iterators).

• SSTable Buffers: Buffer for SSTables. By default, one SSTable
buffer is allocated for each level.
Version handle and the copy of the MemTable serve as version

information for range queries. The versioning mechanism will be
described in detail in Section 4.2. These two data structures ensure
that iterators see the KVSSD version as of their creation time, even
when the LSM-tree changes due to upcoming compactions. Ad-
ditionally, an iterator instance also has a working space (SSTable
Buffer) for searching and traversing indexes.

Figure 3(a) depicts the operation flow of the iterator for a range
query. A range query can send commands such as Create(), Seek(),
Next(), Destroy() to IterKVSSD. 1○ When IterKVSSD receives a Cre-
ate() command, IterKVSSD creates an iterator instance with the
aforementioned data structures. After completing the creation of
the iterator instance, IterKVSSD sends a completion command to
the host with an iterator-specific ID. 2○ Afterwards, the host can
initiate a range query by issuing a Seek() command with the it-
erator ID and the start key of the range (≥ 𝑘𝑒𝑦𝑠𝑡𝑎𝑟𝑡). On Seek(),
IterKVSSD first finds the candidate SSTables covering the search
range by consulting its version of Summary, and IterKVSSD reads
the first SSTables of the candidate tables at each level. IterKVSSD
can determine which SSTable contains the first key in the search

63

Iterator Interface Extended LSM-tree-based KVSSD for Range Queries SYSTOR ’23, June 5–7, 2023, Haifa, Israel

① Get Version Handle,
copy MemTable,
initialize instance

③ Search <key, value address>

④ Find the smallest key
and return to host

NAND Flash
DRAM

Value Log (vLog)Index
(SSTable)

N
Levels

SSTable
Buffer

Iterator Instance

Mem
Table

N
Level Iterator
Level Iterator

Mem Iterator
Merge Iterator

Version
HandleSummary

: Data Movement
②, ③, ④ : On Seek/Next Command

: On Create Command①

② Read Index from NAND Flash
= Version of

iterator creation

SSTable
Metadata

Pool

(a) Description of the data structure and the behavior of an
iterator instance on IterKVSSD

copy & keep
for

 versioning

copy & keep
for

 versioning

Compaction
occur

t1 t2 t3 t4 (now)0
No Iterator Creation

Iter1 Iter2

V1 V2 V3 V4

V1 V3

(b) Description ofmanagement of Summary that occurs when versioning is sup-
ported in IterKVSSD

Figure 3: Description of the architecture of an iterator instance on a IterKVSSD.

range of each level and find out the physical address of the table on
NAND flash from Summary. 3○ Each of the level iterator array and
Mem Iterator begin to search for sorted keys to find the Key-Value
address pair with the smallest key within the search range. 4○ Af-
ter all internal iterators find its minimum key, the Merge Iterator
compares them to find the Key-Value address pair with the smallest
key. The Merge Iterator advances the iterator with the smallest
key, pointing to the next Key-Value pair. Finally, IterKVSSD reads
the value of the Key-Value pair found by the Merge Iterator from
the vLog, returns the value to the host, and completes the Seek()
command.

A user may continue the range query by issuing Next() with the
iterator ID. When IterKVSSD receives a Next() command, it checks
the Level and MemTable Iterators of the iterator instance and finds
the Key-Value address pair with the smallest key. After that, it
behaves similarly as described in Seek() above. However, if any of
the level iterators reaches the end of an SSTable, the next SSTable
has to be read from NAND flash to point to the next Key-Value
address pair. Finally, IterKVSSD reads the value from vLog with the
Key-Value address pair found by the Merge Iterator and sends it to
the host, completing the Next() command. When the range query
is done, the user can release the Iterator by specifying its ID with
the Destroy() command.

4.2 Memory Efficient Versioning Support
As mentioned in Section 3, range queries with the iterator interface
can be interleaved with Put() and Delete() commands, which may
trigger compaction and change the state of the LSM-tree. How-
ever, an application that created an iterator instance before even
compaction cannot be aware of what happens inside the device.
Therefore, to give iterator instances inside the device their own view
of the entire database, we propose a memory-efficient versioning
method.

Keeping a specific version of Summary is crucial in guaranteeing
a consistent view of the LSM-tree that matches the creation time
of an iterator. However, since Summary contains every SSTable
metadata of the entire database, keeping the size of Summary as
small as possible is the key to minimizing the memory footprint of

the version. Moreover, copying SSTable metadata on every iterator
creation results in duplication since compaction modifies only a
fraction of the many SSTables that compose the LSM-tree.

To minimize the size of Summary, IterKVSSD decouples actual
SSTable metadata from Summary and keeps them in a pool. In the
pool, each SSTable metadata stores its table ID, physical location,
reference counter, and attributes, such as its minimum and maxi-
mum key. This way, Summary only needs to keep pointers to each
entry in the pool.

Figure 3(b) shows how versioning works inside IterKVSSD in
a memory-efficient way. First, IterKVSSD keeps one global Sum-
mary (𝑉1) for the up-to-date LSM-tree. If an iterator instance (Iter1)
is created, the instance will have the Version Handle to 𝑉1. If com-
paction happens while 𝑉1 is referenced by Iter1, 𝑉1 is copied and
kept for Iter1. Afterwards IterKVSSD continues managing the up-
to-date global Summary (𝑉2) reflecting the changes made by com-
paction. The reference counter in each SSTable metadata keeps
track of how many versions are using the corresponding SSTable.
This mechanism prevents the corresponding SSTable from being
discarded.

We now show an example of a memory footprint analysis for an
iterator instance. In our implementation, the size of theMemTable is
48 KB. Since each internal iterator only stores the value offset, size,
and key, the total memory space required for all internal iterators
is only tens of bytes. Therefore, the size of the iterator instance
is mainly bound to the Summary and SSTable buffers. For a more
detailed analysis, suppose a situation where the DB/LSM-tree is
populated with 25 M ×4 KB value Key-Value pairs (100 GB). To
keep things simple, let us say SSTables are 48 KB in size for all
levels. In this case, one SSTable can store 4 K (key, value address)
tuples (12 B for each), and the LSM-tree requires a total of 6,400
SSTables to store 100 GB data. Considering that Summary is a tree
of pointers (4 B) to metadata entries in the pool, the total size of
Summary is about 25 KB. To sum up, for a DB of 100 GB, the storage
space size for LSM-tree is 300 MB (6,400 ×48 KB), while Summary
only requires 25 KB, making the size of Summary about 0.008% of
the LSM-tree. We consider this ratio a reasonably small memory
footprint, even if we take into account the size of the pool.

64

SYSTOR ’23, June 5–7, 2023, Haifa, Israel S. Lee et al.

4.3 Critical Path and Serialization Points
We now examine the critical I/O paths of Seek() and Next() to mini-
mize the NAND access penalty. IterKVSSD executes the following
steps when processing Seek() and Next() commands.
• (a) Memory Reference and Computation: For Seek(), an it-

erator finds the candidate SSTables, and for Next(), the iterator
checks if the internal iterator reaches the end of the buffered
SSTables.

• (b) Index (SSTable) read: If an internal iterator points to the
end of an SSTable, the iterator reads the next table from NAND
flash.

• (c) Increment and compare:Moves the iterator’s cursor to the
next. Then compares the key found in the MemTable with the
keys found from each level iterator to select the minimum key.

• (d) Value read: Reads the value from vLogwith the value address
of the key found in Step(c).

• (e) Return to host: Returns the value read from vLog to the
host.
In the whole process, Steps(b)&(d) are the main causes of a bot-

tleneck when NAND flash accesses happen synchronously. To min-
imize the NAND flash access penalty, we propose a prefetching
method by utilizing the following two device characteristics. The
first is the fact that Key-Value semantic is enabled in the KVSSD.
This means that IterKVSSD knows exactly which Key-Value pair (in-
dex and value) to read and where it is stored. The second one lies in
the device’s internal parallelism from multiple independent NAND
flash controllers (NFCs). Since each NFC is running independently
of the device CPU, it can access NAND flash while the CPU pro-
cesses other tasks. Through these two characteristics, IterKVSSD
minimizes synchronous NAND flash access time by fetching index
and value into memory before they are used.

4.4 Index Prefetch
Figure 4(a) depicts the synchronous NAND access problem due to
Step(b) on Next(). In Figure 4(a), the CPU in KVSSD executes Step(a).
If it finds out that the end of the cached SSTable has been reached,
it requests NFC1 to read the next SSTable. Here, in KVSSD, the CPU
will block until the next SSTable read by NFC1 is completed.

To avoid blocking, IterKVSSD reads the SSTable ahead of time (In-
dex Prefetch). Figure 4(b) describes the Index Prefetch process.
When the CPU requests NFC1 to read the value in Step(c), the
CPU checks whether to read the next SSTable in advance and, if
necessary, requests NFC2 to read the next table. As a result of this
index prefetch, the NAND flash access penalty associated with
synchronous index reading is virtually eliminated. Of course, the
NFC which is in charge of prefetching may be busy. In that case,
the effect of Index Prefetch will decrease due to channel conflict.
This channel conflict problem is fundamentally a data allocation
problem which we leave as future work.

Effect of Index Prefetch: We now analyze the performance
gain through Index Prefetch. Suppose a user creates an iterator for
range query, calls Seek() once and Next() N times, and then destroys
the iterator after the range query.

Since each command is performed sequentially, the execution
time of range query (RQ) 𝑇𝑅𝑄 can be expressed in the form of a

c. Increment & comparea. Compute
d. Flash (Value) read

b. Flash (SSTable) read
e. Transfer to host

Synchronous Index Read

a c ea c e a c e

bd d

CPU

NFC1

NFC2 d

(a) Without Index prefetch

a c ea c a c e

d d

CPU

NFC1

NFC2 db

e a c

(b) With Index prefetch

Figure 4: Description of Index Prefetch.

linear combination of the time required for each operation: 𝑇𝑅𝑄 =

𝑇𝑐𝑟𝑒𝑎𝑡𝑒 +𝑇𝑠𝑒𝑒𝑘 + 𝑁 ·𝑇𝑛𝑒𝑥𝑡 +𝑇𝑑𝑒𝑠𝑡𝑟𝑜𝑦 .𝑇𝑛𝑒𝑥𝑡 can vary with different
execution flows depending on whether Step(b) is executed or not.
Suppose the frequency of occurrence of Step(b) during the execution
of range query is 𝑓 . Then,𝑇𝑛𝑒𝑥𝑡 = 𝑇𝑆𝑡𝑒𝑝 (𝑎) + 1

𝑓
·𝑇𝑆𝑡𝑒𝑝 (𝑏) +𝑇𝑆𝑡𝑒𝑝 (𝑐) +

𝑇𝑆𝑡𝑒𝑝 (𝑑) +𝑇𝑆𝑡𝑒𝑝 (𝑒) . 𝑓 is bound to the number of (key, value address)
tuples stored in a SSTable at the 𝑖 level and the height of the LSM-
tree. In other words, if more Key-Value pairs are buffered inmemory,
Step(b) is less likely to happen during the range query.

With Key-Value separation, the size of Key-Value address pair is
12 B. If we align the size of SSTables (48 KB in our setup) with the
NAND flash page size (16 KB in our setup), 4 K Key-Value address
pairs can be stored in one SSTable. That is, considering the multiple
levels in the LSM-tree, 𝑓 is typically more than a few thousands
which means Step(b) happens once while processing thousands
of Next(), which is relatively big compared to real world cases [3].
As described above, the effect of the Index Prefetch on the total
time 𝑇𝑅𝑄 is insignificant. However, the rare occurrence of Step(b)
can introduce tail latency of Next() operations. Therefore, Index
Prefetch is expected to be effective in alleviating the tail latency
problem.

4.5 Value Prefetch
Figure 5(a) shows where the device CPU is blocked while IterKVSSD
reads the value during Step(d), leading to decreased range query
throughput. To solve this problem, we propose the idea of reading
values in advance (Value Prefetch).

Figure 5(b) depicts the execution of Value Prefetch with a degree
of 2. Whenever Step(e) is executed, the CPU requests the NFCs
to prefetch the next values in advance to minimize synchronous
NAND access. Next, we describe the process of Value Prefetch
in detail. Assume that the prefetching degree is 𝑁 and the Next()
commandwill return (𝐾𝑖 ,𝑉𝑖). Before returning (𝐾𝑖 ,𝑉𝑖) frommemory
to the host in Step(e), IterKVSSD requests NFCs to prefetch (𝐾𝑖+𝑁 ,
𝑉𝑖+𝑁). Since the physical location of𝑉𝑖+𝑁 can be obtained from the
SSTable buffered in memory, there is no need for additional access
to NAND flash. As such, the larger the prefetching degree, the
more it can be expected to hide CPU blocking time for NAND flash
access. However, if the prefetching degree is too large, unnecessary

65

Iterator Interface Extended LSM-tree-based KVSSD for Range Queries SYSTOR ’23, June 5–7, 2023, Haifa, Israel

d. Flash (Value) read
e. Transfer to host

a. Compute
b. Flash (SSTable) read
c. Increment & compare

A.

Synchronous Value Read

CPU

NFC1

NFC2

V1 V3

V2 V4

V1 V2 V3 V5

(a) Without Value Prefetch

NFC2 V6 V8 V10 V12

CPU

NFC1

V4 V5 V6 V7 V8 V9 V10 V11V3

V5 V7 V9 V11

(b) With Value Prefetch (prefetching degree=2)

Figure 5: Description of Value Prefetch.

read ahead causes waste of memory and loss of internal bandwidth.
Therefore, finding an appropriate prefetching degree is critical in
terms of memory space utilization and performance.

Finding Optimal Degree of Prefetch (𝐷𝑜𝑝𝑡): Figure 6 shows
the effect of the prefetching degree in Value Prefetch. Figure 6(a)
depicts the case where the prefetching degree is smaller than 𝐷𝑜𝑝𝑡 .
In this case, the CPU blocks in Step(d) because the requested value
is not present in memory. On the other hand, Figure 6(b) describes
the case where the prefetching degree is larger than or equal to
𝐷𝑜𝑝𝑡 . Because sufficient values are prefetched, the CPU does not
block in Step(d).

Next, we describe an example of how to find the optimal de-
gree (𝐷𝑜𝑝𝑡) with the followingmathematical notations. On a request
for the 𝑖th Key-Value pair, we define𝑇𝐴 (𝑖) = 𝑇𝑎 (𝑖)+𝑇𝑏 (𝑖)+𝑇𝑐 (𝑖), the
sum of the times Steps(a), (b), and (c). 𝑇𝑤𝑎𝑖𝑡 (𝑖) is the time interval
that the device waits for the next request after the completion of
the current request. 𝑇𝐹 (𝑖) is the time from when the 𝑖th Key-Value
pair is requested to be prefetched to when the 𝑖th Key-Value pair is
actually requested. Refer to the notations in Figure 6 for a better
understanding.

Assume that the 𝑖th Key-Value pair has been requested with
the prefetching degree of 𝐷𝑜𝑝𝑡 at time 𝑡𝑖 . Then, the time to finish
loading the 𝑉𝑖 into DRAM can be expressed as 𝑡𝑖 + 𝑇𝑑 (𝑖 + 𝐷𝑜𝑝𝑡).
In the future, assume that the (𝑖 + 𝐷𝑜𝑝𝑡)th Key-Value pair will be
requested. When it is requested, to prevent the CPU from blocking
in Step(d), its value must have been loaded into memory before
𝑡𝑖+𝑇𝐹 (𝑖 + 𝐷𝑜𝑝𝑡). Therefore, the condition for𝐷𝑜𝑝𝑡 can be expressed
as follows: 𝑡𝑖+𝑇𝐹 (𝑖 + 𝐷𝑜𝑝𝑡) ≥ 𝑡𝑖 + 𝑇𝑑 (𝑖 + 𝐷𝑜𝑝𝑡).

Meanwhile, 𝑇𝐹 (𝑖 + 𝐷𝑜𝑝𝑡) can be expressed as follows:

𝑇𝐹 (𝑖 + 𝐷𝑜𝑝𝑡) = 𝑇𝑒 (𝑖) +𝑇𝑤𝑎𝑖𝑡 +𝑇𝐴 (𝑖 + 1)
+𝑇𝑒 (𝑖 + 1) + ... +𝑇𝑤𝑎𝑖𝑡 +𝑇𝐴 (𝑖 + 𝐷𝑜𝑝𝑡)

=

𝐷𝑜𝑝𝑡∑
𝑗=1

[
𝑇𝑒 (𝑖 + 𝑗 − 1) +𝑇𝑤𝑎𝑖𝑡 +𝑇𝐴 (𝑖 + 𝑗)

]
= 𝐷𝑜𝑝𝑡 ·𝑇𝑤𝑎𝑖𝑡 +

𝐷𝑜𝑝𝑡∑
𝑗=1

[
𝑇𝑒 (𝑖 + 𝑗 − 1) +𝑇𝐴 (𝑖 + 𝑗)

]

CPU

NFC1

NFC2

V4

V5

V4V3

Twait

Td

TeTA

V6

V6 V7V5

V7

V8

blockedblocked

d. Flash (Value) read
e. Transfer to host

a. Compute
b. Flash (SSTable) read
c. Increment & compare

A.

(a) Prefetching degree=1 (𝐷𝑜𝑝𝑡 ≥ 2)

CPU

NFC1

NFC2

V5

V6

V4 V5V3

V7

V8

V6

V9

V8 V9V7

V10

V11

(b) Prefetching degree=2 (𝐷𝑜𝑝𝑡 ≥ 2)

Figure 6: Description of the situation where CPU blocking
occurs in Step(d) according to the degree of prefetch.

Assuming that𝑇𝐴 ,𝑇𝑒 , and𝑇𝑑 are constant,𝑇𝐹 (𝑖 + 𝐷𝑜𝑝𝑡) = 𝐷𝑜𝑝𝑡 ·
(𝑇𝐴 +𝑇𝑒 +𝑇𝑤𝑎𝑖𝑡). Also, since 𝑇𝐹 (𝑖 + 𝐷𝑜𝑝𝑡) ≥ 𝑇𝑑 (𝑖 + 𝐷𝑜𝑝𝑡), where
𝑇𝐹 (𝑖 +𝐷𝑜𝑝𝑡) = 𝐷𝑜𝑝𝑡 · (𝑇𝐴 +𝑇𝑒 +𝑇𝑤𝑎𝑖𝑡) and𝑇𝑑 (𝑖 +𝐷𝑜𝑝𝑡) = 𝑇𝑑 , 𝐷𝑜𝑝𝑡

can be determined from the following inequality.

𝐷𝑜𝑝𝑡 ≥ 𝑇𝑑

𝑇𝐴 +𝑇𝑒 +𝑇𝑤𝑎𝑖𝑡

Note that the inequality above shows the lower bound of the
prefetching degree that maximizes the range query performance. In
a more realistic scenario,𝑇𝐴 ,𝑇𝑒 , and𝑇𝑑 may vary by Value size, I/O
traffic from the host, and so on. As a result, the optimal degree of
𝐷𝑜𝑝𝑡 could also vary, making it difficult to predict the exact optimal
degree. Therefore, the device may need to prefetch more than the
lower bound to maximize the range query performance safely.

However, since the memory resource in the device is limited, the
range query performance will diminish over a certain prefetching
degree. In other words, if the prefetching degree is too high com-
pared to available memory in the device, prefetched entries will be
evicted due to memory shortage. It suggests that the prefetching
degree should be carefully set between 𝐷𝑜𝑝𝑡 and the upper bound
determined by the memory constraint. To maximize the perfor-
mance of range queries in a more realistic scenario, we plan to
investigate the mathematical model of the upper bound and the
adaptive prefetching mechanism at the host level in the future.

5 EVALUATION
5.1 Experimental Setup
We prototyped IterKVSSD on the OpenSSD Cosmos+ platform [17]
which has Xilinx Zynq-7000 SoC, 1 TB NAND, and 1 GB DRAM.
We set up OpenSSD Cosmos+ with the host machine through PCIe
Gen2 8-lane with NVMe protocol. The host machine is equipped
with Intel i7-8700K running at 3.7GHz and 16 GB DRAM.

Workload:Weused db_bench [9], the representativemicrobench-
mark tool that is used to benchmark RocksDB’s performance. Before
each experiment was conducted, we populated the KVSSD with
key-value pairs that would be subjected to range queries. The size
of the key is fixed at 4 B for all workloads, and we tested various

66

SYSTOR ’23, June 5–7, 2023, Haifa, Israel S. Lee et al.

0 250 500 750 1000 1250 1500
Response Time (µs)

0.0

0.2

0.4

0.6

0.8

1.0
C
um

ul
at
iv
e
D
is
tri
bu

tio
n
Fu

nc
tio

n

IterKVSSD-B
IterKVSSD-I

0 250 500 750 1000 1250 1500
0.994

0.995

0.996

0.997

0.998

0.999

1.000

Figure 7: Analysis of the impact of Index Prefetch of
IterKVSSD-I without Value Prefetch.

value sizes from 128 B to 128 KB. Also, the number of key-value
pairs is 3 M for each workload. We used both fillrandom and fillseq
workloads to verify the efficiency of our solution under the different
key distributions. Afterward, we measured the throughput and la-
tency of the range query while running the SeekRandom benchmark
of db_bench. SeekRandom workload is a workload that repeatedly
searches a random key range using an iterator. In this workload, a
single range query consists of Create(), Seek(), multiple Next()s, and
Delete() commands. Scan length determines the number of Next()
commands called in a range query. To verify the performance of
range queries in more practical scenarios, we determine the scan
length based on previous studies on workload analysis of Key-Value
store [1, 3].

5.2 Effect of Index Prefetch
In order to measure the effect of Index Prefetch precisely, we con-
duct our evaluation and compare our proposed design with a base-
line design as follows:
• IterKVSSD-B: A baseline design of KVSSD with an iterator in-

terface without Index Prefetch.
• IterKVSSD-I: KVSSD with an iterator interface that implements

the Index Prefetch technique on IterKVSSD-B.
Figure 7 shows the results of the cumulative distribution func-

tion (CDF) of the response times to compare IterKVSSD-B and
IterKVSSD-I. As mentioned in Section 4.4 Index Prefetch is barely
triggered during the execution of Next() commands. In order to
prove the effect of Index Prefetch, we set the scan length of SeekRan-
dom to 200 k, which is enough to trigger an index read in the middle
of a range query. Then, we measured the latency of Next() to ob-
serve the tail latency. It must be noted that Value Prefetch is disabled
to only evaluate the effect of Index Prefetch for IterKVSSD-I.

We noticed that IterKVSSD-B and IterKVSSD-I show almost the
same latency for Next(). However, we observed that IterKVSSD-
I significantly reduces the tail latency of IterKVSSD-B (the en-
larged plot). The P99.9 tail latency of IterKVSSD-I is about 3.6 times
lower than IterKVSSD-B. Nevertheless, it is presumed that the rea-
son IterKVSSD-I cannot completely eliminate the tail latency of
IterKVSSD-B is due to the unavoidable channel conflict between
NAND requests for the background Index Prefetch and foreground
NAND requests.

One thing to note is that the proposed Index Prefetch technique is
an orthogonal approach with the index pinning technique adopted
by PinK. The index pinning technique still requires synchronous
index reads for the deeper-level SSTables, which cannot be pinned
in memory due to limited memory. Consequently, when accesses
to deeper-level SSTables occur, the pinning index may still incur
tail latency. In this regard, the advantage of Index Prefetch is that
it can be applied simultaneously to PinK since it does not require
much memory to operate.

5.3 Effect of Value Prefetch
In order to measure the effect of Value Prefetch precisely, we con-
duct our evaluation and compare our proposed design with a base-
line design and PinK as follows:
• IterKVSSD-B: A baseline design of KVSSD with an iterator in-

terface without Prefetch.
• IterKVSSD-P: KVSSD with an iterator interface that implements

the Prefetch techniques (Index and Value).
Figure 8, 10 shows the efficiency of Value Prefetch on IterKVSSD.

Here, we varied the scan length from 128 to 2048. As stated in Sec-
tion 4.4, a scan length of 2048 is not long enough to trigger NAND
accesses for reading consecutive SSTables. Since Index Prefetch
rarely happens, Index Prefetch had little effect on the subsequent
experimental results.

Comparison with PinK: We also implemented and evalu-
ated PinK, which is a state-of-the-art solution. Our evaluation re-
vealed that the overall performance difference between PinK and
IterKVSSD-B is negligible under our setup. Range queries via an
iterator interface first read the index from NAND flash on Seek()
and then continue to traverse based on the index in memory on
multiple Next() commands. In other words, once KVSSD reads the
index from NAND flash, there is little chance to read the index in
the middle of the range query. It means that the effect of the pinning
index in memory has much little impact on the overall performance
of range queries. In the following, we refer to PinK as IterKVSSD-B
and continue the analysis.

5.3.1 Random Key Distributions. Figure 8 shows the range query
throughput comparison of IterKVSSD-B and IterKVSSD-P with the
random key distribution. We measured throughput (MB/s) of range
queries while varying the prefetching degree, value size, and scan
length.

Effect of the prefetching degree and scan length: Figure 8(a)-
(d) show the change in throughput as the prefetching degree and
scan length increase. The throughput of the range query increases
rapidly at first as the prefetching degree increases and then in-
creases gradually, as shown in each figure. This increase is mainly
due to the effect of hiding NAND flash access time with Value
Prefetch, which is processed in parallel with foreground requests.
The gradual increase is due to internal parallelism no longer being
exploited after a certain prefetching degree.

In Figure 8(a), we also observe that the throughput of the range
query increases as scan length increases, regardless of the degree of
prefetching. The reason is explained in detail in Figure 9. Figure 9
shows the difference in latency between Seek() and Next() during
the range query. The result shows that the average latency of Seek()

67

Iterator Interface Extended LSM-tree-based KVSSD for Range Queries SYSTOR ’23, June 5–7, 2023, Haifa, Israel

0 1 2 3 4 5 6 7 8
Prefetch Degree(PinK)

0.5

1.0

1.5

2.0

Th
ro
ug

hp
ut

(M
B
/s
)

0 1 2 3 4 5 6 7 8
Prefetch Degree

10

20

30

40

50

60

70

Th
ro
ug
hp
ut
(M
B
/s
)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

50

100

150

200

250

Th
ro
ug
hp
ut
(M
B
/s
)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

250

300

350

400

450

500

550

Th
ro

ug
hp

ut
(M

B
/s

)

Scan length
2048
1024
512
256
128

(PinK)

(a) 128 B (b) 4 KB (c) 16 KB (d) 128 KB

0 1 2 3 4 5 6 7 8
Prefetch Degree

0

100

200

300

400

500

600

E
xe
cu
tio
n
Ti
m
e
of
R
Q
(m
s)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

0

100

200

300

400

500

600

E
xe
cu
tio
n
Ti
m
e
of
R
Q
(m
s)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

0

200

400

600

E
xe
cu
tio
n
Ti
m
e
of
R
Q
(m
s)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

0

200

400

600

800

1000

E
xe
cu
tio
n
Ti
m
e
of
R
Q
(m
s) Scan length

2048
1024
512
256
128

(PinK)

(e) 128 B (f) 4 KB (g) 16 KB (h) 128 KB

Figure 8: Evaluation of the effect of value prefetch on throughput (a)-(d) and execution time (e)-(h) for SeekRandom with
random key distributions for different value sizes. Standard deviations are shown in error bars. RQ on the y-axis denotes
Range Query.

0 1 2 3 4 5 6 7 8
Prefetch Degree

500

1000

1500

2000

2500

Av
er
ag
e
La
te
nc
y
(µ
s)

0 1 2 3 4 5 6 7 8
Prefetch Degree

50

100

150

200

250

300

Av
er
ag
e
La
te
nc
y
(µ
s)

Scan length
2048
1024
512
256
128

(a) Seek() (b) Next()

Figure 9: Performance comparison of the Seek() and Next()
commands for a value size of 128 B with varying prefetch
degrees.

is higher than that of Next(). That is, as scan length increases, the
overall range query performance is dominated by Next(), which is
faster than Seek(). Similar tendencies with Figure 8(a) can also be
observed in Figure 8(b)-(d).

Effect of value size: Figure 8(a)-(d) show the increase in through-
put as value size increases. Although the number of Key-Value pairs
to retrieve through a range query remains the same, the overall data
retrieved increases in size, which improves throughput. Moreover,
when the value size is 128 KB or higher, the increase rate of the
throughput by the prefetching degree rapidly becomes slower (refer
to Figure 8(d)). This is because the internal bandwidth of the SSD
is quickly saturated when value sizes are sufficiently large.

Figure 8(e)-(h) shows the execution time of the same experiments.
We observe that the execution time decreases as the prefetching
degree increases. This result also explains the reason for the increase
in throughput as the prefetching degree increases. We also find that

execution time increases as scan length increases. This is because
the larger the scan length, the larger the number of key-value pairs
retrieved through range queries, and thus a larger amount of data is
requested. Moreover, we observe that the execution time increases
as value size increases as well. This is because the amount of data
to be read through range query increases as the size of the value to
be read increases as well. Interestingly, we observe that execution
times are the same in Figure 8(e) and Figure 8(f). This is due to the 4
KB minimum transfer size of the NVMe protocol. Thus, even when
the device sends 128 B data to the host, it actually transfers 4 KB
with the data to be sent.

5.3.2 Sequential Key Distributions. Figure 10 shows the results
with the sequential key distribution. Except for the workload char-
acteristics, the experimental methodology is the same as the ex-
periment for Figure 8. Figure 10 shows that the overall throughput
of range queries in sequential key distribution is higher than that
with random key distribution as shown in Figure 8. In sequential
key distribution, Key-Value pairs with adjacent keys are also stored
contiguously in vLog as opposed to random key distribution. Be-
cause of this high spatial locality, IterKVSSD-P can prefetch more
values with fewer NAND flash reads and can utilize more inter-
nal bandwidth. Except for these observations, the overall trends in
throughput of range queries are similar to those in Figure 8. Also,
Figure 10(e)-(h) shows similar tendencies for the execution time of
range queries with the results in Figure 8(e)-(h).

5.3.3 Latency comparison for each command of range query. A
range query is composed of one Seek() and repeated Next() com-
mands. To compare the performance difference between these two
commands, we measured the average latency of each, with a ran-
dom key distribution, while increasing the prefetching degree and

68

SYSTOR ’23, June 5–7, 2023, Haifa, Israel S. Lee et al.

0 1 2 3 4 5 6 7 8
Prefetch Degree

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro
ug
hp
ut
(M
B
/s
)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

40

60

80

100

120

Th
ro
ug
hp
ut
(M
B
/s
)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

50

100

150

200

250

300

350

Th
ro
ug
hp
ut
(M
B
/s
)

(PinK)
0 1 2 3 4 5 6 7 8

Prefetch Degree

250
300
350
400
450
500
550
600

Th
ro

ug
hp

ut
(M

B
/s

)

Scan length
2048
1024
512
256
128

(PinK)

(a) 128 B (b) 4 KB (c) 16 KB (d) 128 KB

(PinK) (PinK) (PinK) (PinK)

(e) 128 B (f) 4 KB (g) 16 KB (h) 128 KB

Figure 10: Evaluation of the effect of Value Prefetch on throughput (a)-(d) and execution time (e)-(h) for SeekRandom with
sequential key distributions for different value sizes.

Figure 11: Evaluation of concurrent range queries.

scan length. Figure 9 shows the results when the value size is 128 B.
In Figure 9, we observe that the average latency of Seek() is higher
than that of Next(). This is because Seek() must synchronously
read SSTables covering the search range from NAND flash. On the
other hand, synchronous SSTable reads from NAND flash are not
always necessary for Next(), as Next() can retrieve the keys using
the SSTable already loaded into DRAM.

Moreover, we observe that the average latency of Seek() does not
improve at all as the prefetching degree increases while the average
latency of Next() greatly decreases. Since Seek() initiates a range
query, it is hard to exploit the advantage of Value Prefetch. However,
in the case of Next(), while it is repeatedly called, successive values
can be prefetched in the background, which greatly improves the
average latency. For this reason, we notice that the latency of Next()
decreases as the prefetching degree increases.

5.3.4 Evaluation of concurrent range queries. We evaluate the per-
formance whenmultiple iterators perform concurrent range queries
for IterKVSSD-P. For the evaluation, we performed the following
experiments. We used the fillseq workload of db_bench the same
way as for the previous experiments. The value size and scan length
were fixed at 128 B and 128, respectively. After that, we created
multiple threads, each thread performing a range query with the

workload SeekRandom, and measured the aggregate throughput of
threads by increasing the prefetching degree. Figure 11 shows that
the aggregate throughput increases as the prefetching degree and
the number of threads both increase.

We observe that the rate of increase in throughput slows down
when the scan length is large, and the degree of prefetching is high.
This is because some iterators already saturate the SSD’s internal
bandwidth completely.

In the current implementation, we allocate device memory stati-
cally for versioning data structures, so the versioning feature itself
has little impact on the performance of range queries, even if mem-
ory is allocated for multiple iterator instances. However, if multiple
iterator instances concurrently conduct range queries, it may affect
the performance of each iterator instance because the iterators share
some resources, such as prefetching buffer and internal bandwidth
for NAND flash controllers. This interference between multiple
iterators’ performance should also be handled from the host side by
adaptively setting the prefetching degree and range query traffic
control.

6 RELATEDWORK
Support for Range Query in KVSSDs: There have been few previous
studies on KVSSDs that support range queries even though it is
an essential feature of KVSSDs. Since LSM-tree is an ordered data
structure, it has been actively discussed as a suitable candidate
for range queries in KVSSDs. For instance, KevinSSD [16] also
presents an iterator interface to support range queries, along with
PinK. In KevinSSD, a new type of file system named KevinFS that
supports the Key-Value interface was proposed as a replacement for
a traditional file system. However, proposed techniques adopted by
KevinSSD, such as index compression, are compatible and feasible
only with KevinFS.

69

Iterator Interface Extended LSM-tree-based KVSSD for Range Queries SYSTOR ’23, June 5–7, 2023, Haifa, Israel

Host-side Key-Value Store: There are many key-value solutions
that try to follow the aforementioned principles (P1, P2, P3) from
the host side. For the past years, there have been various key-value
stores at the host side adopting the LSM-tree such as BigTable, Lev-
elDB, Cassandra, RocksDB [5, 8, 11, 18]. In particular, RocksDB [8],
developed by Facebook, has been widely deployed by a number of
companies due to its high performance and adaptability. To resolve
the three challenges described in Section 3, RocksDB has adopted
the following solutions [8, 10]. First of all, for the P1, RocksDB
introduces three concepts named Version, VersionEdit, and trans-
actional log for VersionEdit (MANIFEST). By enabling the version
control mechanism, iterator objects in RocksDB can keep track of
the states of the whole database at their creation time. RocksDB
meets P2 by a huge amount of indexes pinned in memory. As a
result, iterators in RocksDB can usually find the location of a value
without accessing storage. For the last P3, RocksDB also has a large
block cache layer and performs internal auto-prefetching when it
notices sequential reads. With auto prefetching in the background,
RocksDB can hide the latency for accessing storage devices. The
above solutions adopted by RocksDB mostly leverage host-side
abundant DRAM to minimize access to storage.

Along with RocksDB, multiple host-level Key-Value stores such
as WiscKey [20] and HashKV [4] introduced Value Prefetching to
boost the performance of range queries. However, since these are
also host-level solutions, their approaches are not feasible for an
SSD device. Furthermore, they entail significant I/O amplification
and require large I/O bandwidth. On the other hand, KVSSDs offer
full control over data placement at the hardware level, including
NAND flash channels, blocks, and pages. This enables efficient
management of data placement at the hardware level and the ex-
ploitation of internal parallelism of SSDs. In other words, IterKVSSD
can directly access physical addresses and execute prefetching with-
out any overhead from other layers, such as file systems.

7 CONCLUSION
In this paper, we present IterKVSSD strictly following the design
principles with three specific enhancements: (i) A versioning mech-
anism using the Summary of the LSM-tree with a memory-efficient
pooling method; (ii) Index Prefetch to mitigate the NAND access
cost for index reads; (iii) Value Prefetch tomitigate the NAND access
cost for value reads. Extensive evaluations using a real implemen-
tation on the OpenSSD Cosmos+ platform show that our proposed
ideas exhibit high memory space efficiency and high range query
performance.

ACKNOWLEDGMENTS
We would like to thank our shepherd, Patrick P. C. Lee, for his
feedback. This work was funded in part by the National Research
Foundation of Korea (NRF) grant funded by the Korean government
(MSIT) (No. NRF-2021R1A2C2014386) and in part by SK hynix
research grant.

REFERENCES
[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload Analysis of A Large-scale Key-Value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems. ACM, 53–64.

[2] Janki Bhimani, Jingpei Yang, Ningfang Mi, Changho Choi, and Manoj Saha. 2021.
Fine-grained Control of Concurrency within KV-SSDs. In Proceeding of the 14th

ACM International System and Storage Conference (SYSTOR ’21). ACM, Association
for Computing Machinery, 1–12.

[3] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies
(FAST ’20). 209–223.

[4] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. HashKV:
Enabling Efficient Updates in KV Storage via Hashing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 1007–1019.

[5] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’06).
1–15.

[6] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and Sungjin Lee. 2019. Light-
Store: Software-Defined Network-Attached Key-Value Drives. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’19). 939–953.

[7] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10). 143–154.

[8] Facebook. 2021. RocksDB. http://rocksdb.org
[9] Facebook. 2021. RocksDB Database Benchmark Tool. https://github.com/facebook/

rocksdb/wiki/Benchmarking-tools
[10] Meta. Facebook. 2022. RocksDB v7.2.2 Release. https://github.com/facebook/

rocksdb/releases/tag/v7.2.2.
[11] Google. 2017. LevelDB. https://github.com/google/leveldb.
[12] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and Sungjin Lee. 2020. PinK:

High-speed In-storage Key-value Store with Bounded Tails. In Proceedings of the
USENIX Annual Technical Conference (ATC ’20). 173–187.

[13] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven Swanson.
2017. KAML: A Flexible, High-performance Key-value SSD. In Proceedings of the
IEEE International Symposium on High Performance Computer Architecture (HPCA
’17). 373–384.

[14] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee, Francisco
Londono, SangyoonOh, Jongyeol Lee, and Daniel DG Lee. 2019. Towards Building
A High-performance, Scale-in Key-Value Storage System. In Proceedings of the
12th ACM International Conference on Systems and Storage (SYSTOR ’19). 144–154.

[15] Yang Seok Ki. 2017. Key Value SSD Explained–Concept, Device, System, and
Standard. In Storage Developer Conference.

[16] Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee, Bryan S. Kim,
and Sungjin Lee. 2021. Modernizing File System through In-Storage Indexing.
In Proceedings of the 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’21). 75–92.

[17] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong, and Yong Ho Song. 2020.
Cosmos+ OpenSSD: Rapid Prototype for Flash Storage Systems. ACM Trans.
Storage, Article 15 (July 2020), 35 pages.

[18] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (2010), 35–40.

[19] Chang-Gyu Lee, Hyeongu Kang, Donggyu Park, Sungyong Park, Youngjae Kim,
Jungki Noh, Woosuk Chung, and Kyoung Park. 2019. iLSM-SSD: An Intelligent
LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’19). 384–395.

[20] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values
in SSD-conscious Storage. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST ’16). 133–148.

[21] Chen Luo and Michael J Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (2020), 393–418.

[22] Donghyun Min and Youngjae Kim. 2021. Isolating namespace and performance
in key-value SSDs for multi-tenant environments. In Proceedings of the 13th ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage ’21). 8–13.

[23] Inc NVM Express. 2021. NVM Express Key Value Command Set Specification.
https://nvmexpress.org/developers/nvme-specification/

[24] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[25] Manoj P. Saha, Adnan Maruf, Bryan S. Kim, and Janki Bhimani. 2021. KV-SSD:
What Is It Good For?. In Proceedings of the 58th ACM/IEEE Design Automation
Conference (DAC). 1105–1110.

[26] SK hynix and Los Alamos National Laboratory. 2022. Los Alamos National
Laboratory and SK hynix to demonstrate first-of-a-kind ordered Key-value Store
Computational Storage Device. https://discover.lanl.gov/news/0728-storage-
device.

[27] SNIA. 2020. Key Value Storage API Specification. https://www.snia.org/keyvalue
[28] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang. 2018. KVSSD: Close Integra-

tion of LSM Trees and Flash Translation Layer for Write-efficient KV Store. In
Proceeding of the 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE ’18). IEEE, 563–568.

[29] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX: Efficient
Range Query for LSM-trees. In Proceedings of the 19th USENIX Conference on File
and Storage Technologies (FAST ’21). 51–64.

70

http://rocksdb.org
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/releases/tag/v7.2.2
https://github.com/facebook/rocksdb/releases/tag/v7.2.2
https://github.com/google/leveldb
https://nvmexpress.org/developers/nvme-specification/
https://discover.lanl.gov/news/0728-storage-device
https://discover.lanl.gov/news/0728-storage-device
https://www.snia.org/keyvalue

	Abstract
	1 Introduction
	2 Background & Prior Work
	2.1 LSM-tree-based Key-Value Store
	2.2 Iterator Interface in LSM-tree
	2.3 LSM-tree-based Key-Value SSD
	2.4 State-of-the-art KVSSD with Iterator Interface and its Limitations

	3 Design Principle
	4 Iterator Interface for KVSSDs
	4.1 Design of Iterator Interface
	4.2 Memory Efficient Versioning Support
	4.3 Critical Path and Serialization Points
	4.4 Index Prefetch
	4.5 Value Prefetch

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effect of Index Prefetch
	5.3 Effect of Value Prefetch

	6 Related Work
	7 Conclusion
	References

