
MFence: Defending Against Memory Access Interference in a
Disaggregated Cloud Memory Platform

Jinhoon Lee
1
, Yeonwoo Jung

1
, Suyeon Lee

2
, Safdar Jamil

1
, Sungyong Park

1
, Kwangwon Koh

3

Hongyeon Kim
3
, Kangho Kim

3
, Youngjae Kim

1∗

1
Sogang University, Seoul, Korea,

2
Georgia Institute of Technology, GA, USA,

3
ETRI, Daejeon, Korea

ABSTRACT

A VM-based disaggregated cloud memory platform (DCM) virtu-

alizes the memory device of a remote server connected to a high-

speed network as an expansion of local memory. DCM provides

large memory to applications to increase throughput. However,

DCM is not well-suited to managing fair memory usage between

processes when they run concurrently in a VM. This is because

DCM has no mechanism to provide independent memory space

to each process. As a result, DCM does not guarantee fairness and

performance to processes. Partitioning memory for each process

is a way to solve this problem. However, in DCM, the host kernel

running DCM cannot obtain the memory page information of a

process (including memory page address and PID) running in the

guest kernel. So it can not segregate memory pages according to

the process. Therefore, this paper proposes an efficient method for

the host kernel to obtain the memory page information to parti-

tion the memory for each process in DCM, called MFence. The

MFence was evaluated using two Linux servers connected by a 100

Gbps IB network. Extensive evaluation has confirmed that MFence

ideally provides memory partitioning to provide fairness between

processes and improve overall performance.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; • Soft-

ware and its engineering → Distributed memory; Process

management.

KEYWORDS

Operating System, Virtualization, Cache Partitioning

ACM Reference Format:

Jinhoon Lee
1
, Yeonwoo Jung

1
, Suyeon Lee

2
, Safdar Jamil

1
, Sungyong Park

1
,

Kwangwon Koh
3
, Hongyeon Kim

3
, Kangho Kim

3
, Youngjae Kim

1
. 2023.

MFence: DefendingAgainstMemoryAccess Interference in a Disaggregated

Cloud Memory Platform. In The 38th ACM/SIGAPP Symposium on Applied
Computing (SAC ’23), March 27-March 31, 2023, Tallinn, Estonia. ACM, New

York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/3555776.3577714

∗
Y. Kim is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC’23, March 27-March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00

https://doi.org/10.1145/3555776.3577714

1 INTRODUCTION

In-memory workloads, such as graph processing andmachine learn-

ing, running in distributed clusters, are rising the popularity but

are meeting a memory wall, leading to several bottlenecks, includ-

ing running out of memory [1, 4, 5, 11, 12, 14, 15]. Additionally,

with out-of-memory issues, clients are often required to re-execute

their workloads. To overcome the out-of-memory issue, several

distributed systems have deployed virtual memory using block-

based storage devices. However, one of the significant drawbacks of

virtual memory is expensive disk swapping, which leads to higher

access latency for workloads.

Several studies have introduced remote memory access solutions,

such as Fastswap [1], DCM [13], FluidMem [2], and AIFM [17], to

use the memory devices of remote servers within a cluster con-

nected through a high-speed network. The intuition is to consider

the memory of a remote server as an extension of local memory to

prevent memory shortage problems. Among these solutions, the

VM-based distributed cloud memory platform (DCM) is a state-of-

the-art VM-based remote memory solution.

A high-speed network is essential for the aforementioned remote

memory access solution. However, despite a high-speed network,

network data transmission delay cannot be neglected. For instance,

the access latency of an application to fetch a 4KB memory page

from local memory is 10 ns to 256 ns. In comparison, when the

application reads the 4KB memory page from a remote server con-

nected by EDR InfiniBand (IB) 100 Gbps, it takes 2.8 μs [8]. Because

of this high remote memory access time, the remote memory access

solution employs a hierarchical architecture design that aims to

use local memory as an inclusive cache for remote memory and

increase the hit ratio on local memory.

A user typically runs multiple processes in a VM-based server.

For multiple processes, DCM’s local memory is a shared cache,

and processes compete for cache space [18]. If a process takes up

only an unreasonably small amount of cache space, the process

would unintentionally experience increased memory access times.

This is the traditional shared resource contention problem. DCM

(host kernel module) does not provide safeguards for managing a

partitioned cache per process. For partitioned cache management,

it is necessary to identify the owner/process operating on the VM

(guest kernel) for each virtual memory page at the DCM level (host

kernel). Therefore, this paper presents a method to identify the

owner of a virtual memory page at the DCM kernel layer and

explores the effectiveness of partitioned cache management for

each process.

This paper makes the following contributions:

• We identified the problem of memory access interference be-

tween processes due to local shared cache contention in DCM.

1309

https://doi.org/10.1145/3555776.3577714
https://doi.org/10.1145/3555776.3577714
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555776.3577714&domain=pdf&date_stamp=2023-06-07

SAC’23, March 27-March 31, 2023, Tallinn, Estonia
Jinhoon Lee1 , Yeonwoo Jung1 , Suyeon Lee2 , Safdar Jamil1 , Sungyong Park1 , Kwangwon Koh3

Hongyeon Kim3 , Kangho Kim3 , Youngjae Kim1

Memory
Donor

Memory Donor Node

NIC

Page Fault

Pages in RDMA Buffer

RDMA Buffer

Page Descriptor
App1 App2

User Layer

Guest
Kernel KVM

Kernel Layer

NIC

…

2

1
3

DCM

RDMA Buffer

4

5

LRU Queue

Virtual Machine Node

Figure 1: An overview of DCM [13].

So, we proposed MFence, which provides a fair partition of the

shared cache for each process in a VM-based disaggregated cloud

memory platform (DCM) [13].

• To identify the owner (process) of memory pages accessed by

processes running in the guest kernel, we explored two possible

memory page owner identification methods for MFence: (i) using

Hypercall to inform the memory page’s process ID from guest

kernel to host kernel. and (ii) using guest control register 3 (gCR3),

which stores the page directory address (unique per process)

• We implemented both Hypercall and gCR3 methods for MFence

in DCM and experimented on two Linux servers connected by a

100 Gbps IB network. Extensive evaluations confirmed that for

big data application kernels, MFence not only ensures fair cache

partitioning between processes but also minimizes the unfair

increase or decrease in the response time of each process, and

even improve overall performance.

2 BACKGROUND AND MOTIVATION

This section presents the background to the disaggregated cloud

memory platform (DCM) and explains the problems that arise from

unfair cache sharing in DCM.

2.1 Disaggregated Cloud Memory Platform

A disaggregated cloud memory platform (DCM) [13] is a state-of-

the-art VM-based remote memory solution in a virtualized environ-

ment. Figure 1 describes the hardware and software components

for DCM and how they interact with each other. DCM runs on a

client and server architecture. The two machines are connected by

a high-speed network, such as a 100 Gbps IB network. In the figure,

the client is a virtual machine node (VM node), and the server is

a memory donor node. In a VM environment, the client can run

multiple VMs. The VM node is divided into host and guest areas.

The host area runs a hypervisor (KVM) atop the host OS through

which multiple guest OSes/VMs are deployed. The guest area con-

sists of the guest OS and applications running on it. A memory

donor donates a portion of its local memory to a VM node. DCM

is a Linux kernel module running in the host area of a VM node.

It virtualizes the donor’s local memory as if it were local memory.

DCM uses local memory as an inclusive cache for remote memory

to implement memory virtualization. DCM employs an LRU-based

page replacement policy for cache management.

Figure 1 illustrates the operation flow of DCM, which consists

of the following five steps. Step 1 is handshaking for DCM to use

the memory donor as a swap space. DCM first requests a channel

Linear Random

C
ac

he
 O

cc
up

an
cy

 R
at

io
 (%

)

0

20

40

60

80

100

Page Fault Number
0 1000 2000 3000 4000

Linear Random

R
el

at
iv

e
la

te
nc

y
ra

te

0

0.25

0.5

0.75

1

1.25

1.5

Experiment type
Single Run Shared Run

(a) Cache occupancy (b) Relative latency

Figure 2: Unfair cache occupancy and performance gain.

connection through RDMA communication to the memory donor

node to get the RDMA buffer addresses of the memory donor node.

When established, a channel can perform RDMA (read/write) opera-

tions between the two. In Step 2 , when a process accesses memory,

the guest OS generates a page fault if there is no page in local mem-

ory. The guest OS then forwards the page fault event to the host

OS/hypervisor, which delegates page fault handling to DCM. In

step 3 , DCM searches for free space in local memory first. Step 4 ,

if there is no free space, DCM selects pages to be replaced according

to LRU policy and evicts them to the remote donor node to create

new empty space. In step 5 , DCM then fetches the faulted page

from remote memory to local memory via RDMA communication

and adds its page descriptor to the LRU-based queue/cache.

2.2 Motivation

DCM improves the performance of applications that support in-

memory computation by utilizing local memory as a cache. DCM

adopts the LRU policy to manage the memory pages at the local

memory cache. However, a critical limitation of DCM is that processes
overprovision the cache space.As the local memory is shared between

multiple processes, overprovisioning results in cache contention

and an unfair cache occupancy problem.

To explain the unfair cache occupancy problem between pro-

cesses in DCM, we conducted the following experiments. We cre-

ated two processes where one process ran a linear pattern while

the other ran random pattern workloads of Pmbench [9]. We con-

sidered two execution situations (single run and shared run). In

a single run, each process runs alone on the VM where the local

cache is 4GB and the memory footprint is 8GB. A shared run al-

lows two processes to run together on the VM. Details about the

experimental setup are given in Section 4.

For evaluation, we measured the local memory cache occupancy

percentage for all page faults. We also defined the relative latency

rate for a fair comparative evaluation. This value indicates how

much response time is affected by other processes. If this value is

1, it means ideally fair memory partitioning. A value greater than

or less than 1 indicates that the response time either increased or

decreased due to unfair memory partitioning. Figure 2(a) shows the

cache occupancy ratios at every page fault, and Figure 2(b) shows a

relative latency rate of each process. From the figure, we summarize

the two research motivations of this study as follows.

• Imbalanced utilization of the shared cache: In Figure 2(a), the

local memory/cache occupancy increases until the local memory

1310

MFence SAC’23, March 27-March 31, 2023, Tallinn, Estonia

is full (i.e., around page fault number 600). After that, the cache

occupancy steadily increases for the random pattern workload

and decreases for the linear pattern workload. The reason is that

the random workload evicts pages of the linear workload from

the LRU queue since it demands caching of more memory pages

than the linear workload. After that, the memory usage of the

linear workload saturates to the minimum required amount to

operate. As a result, the random workload occupies an average

of 20% more memory than the linear workload.

• Increased response time: Figure 2(b) shows the relative change

in latency of a shared run compared to a single run. In a single

run, each process runs alone, so the relative latency rate of each

is 1. On the other hand, in the shared run, since two processes are

executed together, each process has a relative latency rate greater

than or less than 1. The random workload improved memory

access time by about 15% due to unfair cache occupation.

As observed in the analysis above, since DCM does not support

cache partitioning, memory-greedy processes can occupy cache

space unreasonably. However, as we explained earlier, implement-

ing cache partitioning in DCM is a challenging task. In particular,

for cache partitioning in DCM, there must be a way for the host

OS to identify the owner of each memory page requested by the

process running in the guest OS. Therefore, this paper presents two

possible ways to identify the owner/process of each memory page

and explores a cache partitioner for DCM called MFence.

3 MFENCE: DESIGN AND IMPLEMENTATION

Our proposed solution, MFence, leverages the partitioning tech-

nique to overcome the unfair utilization of the local cache between

processes/applications. This section describes the design goals and

details of the design and implementation of MFence.

3.1 Design Goals

In this section, we discuss our key design principles.

• Lightweight identification of ownership of a memory page:

Each memory page’s owner (process) must be identified for

MFence to provide cache partitioning for each process. Since

DCM operates in the host area, the page information of the pro-

cess running on the guest OS/VM cannot be directly known in

the host area. So, MFence designs a mechanism to identify the

page of the guest process on the host. Also, identifying the owner

of a page for each memory page access increases the latency of

page fault handling, incurring extra overhead. Thus, MFence

provides a way to identify the owner of each memory page at

high speed through gCR3.

• User-defined cache management: DCM can provide multiple

cache partitions and manage them. The user can request cache

partitioning from the DCM to create and destroy a cache partition.

In addition, the user should be able to command a specific process

to use (or not use) a particular cache partition. For example, (i)

the user requests DCM to create a cache partition with a size,

(ii) the user can register a process to use the created cache, and

(iii) once the process ends, the user can de-register the process

to not use the cache anymore, and if none of the processes uses

the cache, destroy it. So, MFence offers the API set for the user

to manage the local cache by a system call.

APP1

APP2
Page Fault

Guest User Guest Kernel Host Kernel

KVM
Virtual
MMU

User Thread

Guest Kernel Thread

Host Kernel Thread

Memory Access Page Table

VM-exits

Figure 3: Description of the page fault handling in the VM.

3.2 MFence Overview

Figure 3 shows the page fault handling process in the VM. While

an application is running, a page fault occurs if a mapping for the

page of a specific memory address does not exist in the page table.

When a page fault occurs, a context switch from the guest kernel

to KVM (Hypervisor) occurs. Now, the host kernel needs to obtain

the snapshot of the process which caused the page fault (e.g., the

guest page address (GPA) which caused the page fault and the PID

of the GPA and gCR3 register) when VM-exit occurs. However, in

this situation, there is no way for the guest kernel to transmit PID

along with GPA to the host kernel.

Hypercall is a method that allows the guest kernel and host

kernel to communicate so that the GPA and PID can be transmitted

between them. However, Hypercall is slow, but it can identify the

owner who caused the page fault on a per-thread basis and its

GPA. In addition, another method is using the gCR3 register of

the snapshot, which can be used as a PID value. Using the gCR3

register is faster than Hypercall. Still, it cannot identify the owner

on a per-thread basis but on a per-process basis. Details of each

method are shown in Section 3.4.

MFence enables partitioning of the shared cache for each process.

MFence consists of a cache module, the page’s owner identification

module, and a cache control module. The cache module manages

multiple cache partitions, each implemented as a linked list-based

queue. Each cache partition manages memory pages that belong to

the same group of processes. Note that a cache partition can be set

to manage pages of a single process or those of multiple processes

in a partition group. The owner identification module identifies the

page’s owner fetched from the page fault handling. As explained

earlier, there are two methods – Hypercall or using gCR3. The user

uses the control module for cache management (resizing, allocating,

and freeing cache). The user can create a region on the cache and

assign a process to it. So, the partitioned cache can accommodate

servicing of multiple processes.

3.3 Cache Module

MFence manages per-process LRU queue to provide different sizes

of local memory partition. Initially, there is a single queue using a

linked list-based data structure. When a cache partition allocation

is requested, MFence partitions the queue to make a cache area for

the request. MFence offers APIs for the user to allocate cache region

and partition the queue to make a cache partition for the request.

The partitioned queue (cache) is assigned a unique group ID (GID).

Details about the GID and the APIs are shown in section 3.5.

3.4 Page Owner Identification Module

As described above, there is an LRU queue for each process. Each

LRU queue caches only pages belonging to the process. To deter-

mine which queue to insert the page fetched from the remote server

1311

SAC’23, March 27-March 31, 2023, Tallinn, Estonia
Jinhoon Lee1 , Yeonwoo Jung1 , Suyeon Lee2 , Safdar Jamil1 , Sungyong Park1 , Kwangwon Koh3

Hongyeon Kim3 , Kangho Kim3 , Youngjae Kim1

Page
Hit?

APP1

Page
Hit?

Y

N

Guest User

Guest Kernel

Host Kernel

APP2

Return
to

context

KVM

DCM
…

…

Queue 1

Queue 2

Memory

Comm Buff

Fetch Remote page

Write GPA to
Comm Buff

GIDPID

Hypercall to notify
completion

Read register and
Add tuple to table

User Thread Guest Kernel Thread

Host Kernel Thread

2

1

3

4

5
7

Add page to queue

Transfer

Owner Id Module

8

Search
MM struct

Hypercall

6

Control Module

PID-GID
table

Cache Module

Figure 4: Description of the Hypercall method for MFence.

on a page fault, it is necessary to know the information (PID) of the

process to which the page belongs at the time the page fault occurs.

When a page fault occurs in the VM/guest kernel, a VM-exit and a

context-switch to the host kernel occur. And DCM running on the

host kernel is in charge of fetching pages from the remote server.

Since the context-switch has already occurred from the guest kernel

to the host kernel at the time the page fault occurred with VM-exit,

the host kernel has no way of knowing information about the pro-

cess that is the owner of the page that caused the page fault. We

introduce two methods, using Hypercall or gCR3 value below, and

explain how to determine the queue into which the fetched page

should be inserted.

3.4.1 Hypercallmethod. Figure 4 describes theHypercall method

step-by-step. First, assume that the cache is already partitioned for

the process. How users/processes create their own partitioned cache

in DCM and register themselves is detailed in section 3.5. The figure

shows three layers: application, guest kernel, and host kernel. The

KVM and DCM run on the host kernel. MFence is implemented

by extending the DCM module. Specifically, the DCM module has

two important data structures: a cache for GPA-PID entries and

a PID-GID table. The cache minimizes Hypercall overhead, and a

PID-GID table is used to maintain which process uses which cache

area. A detailed description will be presented next.

1 First, MFence create a communication buffer in the guest

kernel. MFence uses an initial one-time Hypercall to provide the

communication buffer address from the guest kernel to the host

kernel. This communication buffer is used for information exchange

between the guest and host kernels. As explained later, the host

kernel writes the GPA of the page that caused the page fault in

the communication buffer, and the guest kernel will read it from

the buffer. 2 When a page fault occurs in the guest kernel, a VM-

exit occurs, and a context switch to the host kernel occurs. Now,

the host kernel reads the register value of the vCPU to obtain the

GPA address of the page that caused the page fault. The vCPU

stores various information in registers, including the page’s address

that caused the page fault. 3 After that, the host kernel/KVM

delegates page fault handling to DCM. 4 MFence fetches the page

from the remote memory through RDMA and buffers it in the

pre-reserved RDMA area. 5 The host kernel writes the GPA to

Page
Hit?

APP1

Page
Hit?

Y

N

Guest User

Guest Kernel

Host Kernel

APP2

Return
to

context

KVM

DCM
…

…

Queue 1

Queue 2

Memory

Fetch Remote
page

GIDPGD

User Thread

Guest Kernel Thread

Host Kernel Thread
1

2

5

Add page to queue

4
Transfer

Read gCR3 from
KVM

Find GID
corresponding to PGD

Cache Module Control
Module

Owner Identification Module

3

PGD-PID
table

6

Figure 5: Description of the gCR3 method for MFence.

the communication buffer. 6 Later, a context-switch from host

kernel to guest kernel occurs, and the thread that has polled the

communication buffer in the guest kernel begins to traverse the

memory management-related kernel data structure (e.g., struct

anon_vma) to obtain the PID of the corresponding GPA. Since the

guest kernel has obtained the PID for the GPA, it makes a Hypercall

to tell the host kernel the PID corresponding to the GPA. 7 Lastly,

MFence inserts the page fetched from the remote memory into the

corresponding queue and terminates the page fault handling.

As described above, whenever a page fault occurs, the overhead

involved in the Hypercall method through the communication

buffer is too significant. Accordingly, MFence could minimize the

overheads described above due to Hypercall by caching entries for

GPA-PIDs but requires non-negligible expensive space overhead. In

this work, we do not take into account the cache implementation.

3.4.2 gCR3method. Figure 5 describes the gCR3 method step-by-

step. Like the Hypercall method, assume that the cache is already

partitioned for the process. The guest control register 3 (gCR3)

method uses the address of the page global directory (PGD) of the

page that caused the page fault in the host kernel as a substitute for

PID. The address of the PGD can easily be obtained from the host

kernel by simply reading the value of gCR3, one of several registers

in the vCPU. So, unlike the Hypercall method, the host kernel does

not have to communicate with the guest kernel to obtain the PID

of the page that caused the page fault. Also, the gCR3 method does

not manage the mapping for GPA-PID, so there is no need for a

cache for them. Instead, it maintains a small table for PID-PGDs

and a table for PGD-GIDs. A detailed explanation is given below.

1 Similar to Hypercall method, when a page fault occurs in

the guest kernel, the host kernel can obtain the GPA of the page

that caused the page fault by simply reading the register value of

the vCPU. 2 The host kernel/KVM delegates the handling of the

page fault to DCM. 3 MFence fetches the page from the remote

memory through RDMA and buffers it in the pre-reserved RDMA

area. 4 MFence reads the vCPU’s gCR3 value and uses this value

to determine which queue to insert the page into and then finds the

PGD corresponding to the PID and consults the PGD-GID table to

find the GID. 6 Lastly, MFence fetches the buffered memory page

into the corresponding queue and terminates page fault handling.

1312

MFence SAC’23, March 27-March 31, 2023, Tallinn, Estonia

Table 1: Cache Control Module APIs for MFence.

Function Description

Alloc_CRegion(size) Allocate size to a new queue of the group

Add_Process_CRegion(PID, GID) Add the process with PID to the group to GID

Remove_Process_CRegion(PID, GID) Remove the process with PID from the group with GID

Destory_CRegion(GID) Delete the group with to the parameter GID

Info_CRegion_All() Show information about all cache regions, such as CRegion’s GID and region size

Info_CRegion(GID) Show information about a cache region with GID such as processes that use the cache region with GID

The associated overhead of identifying the page owner during

page fault handling is small compared to the Hypercall method. But

it’s not free. So, like the Hypercall method, MFence can cache en-

tries for GPA-PID, PID-GID, and GID-QID, minimizing the overhead

of identifying the page owner.

3.5 Cache Control Module

The cache control module allows the user to manage the cache of

that process. For example, a user can create zones in the cache and

dedicate their own process to using a partitioned cache to ensure

fairness and performance. Table 1 shows the list of APIs available

to users. The user can use the APIs in the table to execute settings

such as cache group allocation, cache area creation, and process

allocation for cache groups right after a process is created or before

the process completes.

User allocates cache region using Alloc_CRegion(size) and gets

GID as a return value. Then, the user uses Add_Process_CRegion(PID,

GID) to make the process with PID use the cache region with GID.

The host kernel internally manages a table data structure (PID-GID

table) of PID-GID mapping entries, so it manages which process

uses which cache region. After the process is completed, the user

deletes the corresponding entry from the PID-GID table using Re-

move_Process_CRegion(PID, GID). If there is no process mapped

to the cache region with GID, the user calls Destory_CRegion(GID)

to destroy the cache region. In addition, the user can check the in-

formation of cache regions using APIs such as Info_CRegion_All()

or Info_CRegion(GID). MFence does not consider the handling of

memory leaks caused by not calling this function.

4 EVALUATION

This section describes the experimental setup and shows how DCM

outperforms traditional disk swapping on local SSDs, and the effi-

ciency of MFence in DCM for various workload cases.

4.1 Experimental Setup

We implemented MFence in DCM [13] and evaluated it on two

Intel servers running Linux, connected by a 100 Gbps IB network.

The details of our experimental setup are shown in Table 2.

Table 2: Specifications of the server cluster.

CPU Intel® Xeon Gold 6330, 2.00 GHz 28core × 2

Memory 16GB (DDR4, 3200MHz) × 8

Network Mellanox ConnectX-5 100Gb/s EDR HCA

SSD Intel SSD 750 (Read: 2.2 GB/s, Write: 900 MB/s) [3]

OS Linux kernel-4.18.0-240.10.1.el8

We used representative big data application kernels [10] such

as Grep, Aggregation (AG), and Group by Aggregation (GAG) and

synthetic workloads using PMbench [9] for evaluation. Grep is a

kernel to get the total number of occurrences of a specific word

in a file of a set of words. Aggregation (AG) calculates the sum

of numbers in a file of sets of numbers. Group by Aggregation

(GAG) finds the sum of values of pairs with the same key in a

given file with key and value pairs. We also used PMbench [9], a

user-level micro-benchmark designed to measure memory access

latency. PMbench generates memory-intensive workloads, referred

to as linear or random workloads depending on the memory access

pattern.

4.2 Evaluating the DCM

4.2.1 Effectiveness of DCM. Figure 6 shows the results of page
fault frequency and average page fault latency of the application

kernel by varying the local cache size. We changed the local cache

size as follows:

• L50 : Application workload size fits 50% of local cache capacity

• L70 : Application workload size fits 70% of local cache capacity

• L90 : Application workload size fits 90% of local cache capacity

In Figure 6, DCM shows lower page fault frequency and page

fault latency overall compared to the local disk swap. The lower

each value is the less page fault overhead. In all experiments, DCM’s

page fault overhead improvement is remarkable in all application

kernels.

As shown in Figure 6(a), local disk swap in the Grep kernel shows

an average page fault latency of 39 μs, while DCM shows 13 μs.

In the case of page fault frequency, the local disk swap at L50 was

952,270 and 218,202 at DCM, showing a difference of about 4.36

times. In local disk swap, the page fault frequency of L70 and L90

decreased by 23% and 28%, respectively, compared to L50, but the

page fault frequency of DCM is still low in L70 and L90. The Grep

kernel traverses the file, reads it in character units, and stores it in a

string buffer. Then, the number of words to be found is aggregated

while scanning the string buffer. A page fault occurs when the string

buffer size exceeds the local cache size or the memory page mapped

to that word is not in the local cache while scanning the string

buffer. The higher the ratio of the working set that does not fit the

local cache size, the higher the page fault frequency and latency. In

contrast, according to local cache size, DCMhas very little change in

page fault frequency and page fault latency. The different pattern of

page fault overhead between the two mechanisms is due to DCM’s

fast paging and page prefetching effects. DCM fetches multiple

memory pages from remote memory at once in case of a page fault,

significantly reducing the chance of future page faults. Moreover,

1313

SAC’23, March 27-March 31, 2023, Tallinn, Estonia
Jinhoon Lee1 , Yeonwoo Jung1 , Suyeon Lee2 , Safdar Jamil1 , Sungyong Park1 , Kwangwon Koh3

Hongyeon Kim3 , Kangho Kim3 , Youngjae Kim1

Page Fault Frequency (#)

0

200k

400k

600k

800k

1M

1.2M

Swap(PF Latency)
DCM(PF Latency)

Swap(PF Frequency)
DCM(PF Frequency)

Pa
ge

 F
au

lt
La

te
nc

y
(u

s)

0

10

20

30

40

50

60

Ratio of Cache Size to Working Set
0.5 0.7 0.9

Page Fault Frequency (#)

0

200k

400k

600k

800k

1M

1.2M

Swap(PF Latency)
DCM(PF Latency)

Swap(PF Frequency)
DCM(PF Frequency)

Pa
ge

 F
au

lt
La

te
nc

y
(u

s)

0

10

20

30

40

50

60

Ratio of Cache Size to Working Set
0.5 0.7 0.9

Page Fault Frequency (#)

0

200k

400k

600k

800k

1M

1.2M

Swap(PF Latency)
DCM(PF Latency)

Swap(PF Frequency)
DCM(PF Frequency)

Pa
ge

 F
au

lt
La

te
nc

y
(u

s)

0

10

20

30

40

50

60

Ratio of Cache Size to Working Set
0.5 0.7 0.9

(a) Grep (b) GAG (c) AG

Figure 6: Page fault frequency and average page fault latency for different local cache sizes for DCM and disk swap on SSD. In

the legend, PF denotes Page Fault.

Disk SwapDCM

FileIO Compute PageFault

R
un

tim
e

(s
ec

)

0
100
200
300
400
500

0.5 0.7 0.9 0.5 0.7 0.9
Disk SwapDCM

FileIO Compute PageFault

R
un

tim
e

(s
ec

)

0
50

100
150
200
250
300

0.5 0.7 0.9 0.5 0.7 0.9
Disk SwapDCM

FileIO Compute PageFault

R
un

tim
e

(s
ec

)

0

50

100

150

200

0.5 0.7 0.9 0.5 0.7 0.9

(a) Grep (b) GAG (c) AG

Figure 7: Time-break down analysis of a kernel runtime for DCM and disk swap on SSD. In the figure, X-axis represents the

ratio of cache size to working set.

memory paging through high-speed interconnects accelerates page

fault latency. These effects are prominent in the application kernel,

where values corresponding to keys are randomly scattered.

Figure 6(b) and 6(c) shows the page fault overhead between

two mechanisms in GAG and AG kernel. Figure 6(b), the GAG

kernel shows a significant page fault overhead gap between the

two mechanisms among the two application kernels. In the case of

page fault frequency, the local disk swap at L50 was 1,074,375 and

79,908 at DCM, showing a difference of about 13.4 times. The GAG

kernel stores many values corresponding to each duplicate key as a

linked list and reads all values mapped to the key in memory during

aggregation. When performing aggregation for each key, if values

corresponding to the keys are randomly scattered, the page fault

overhead of the disk swap increases rapidly. On the other hand,

DCM fetches memory pages as large chunks during a single page

fault to reduce future page faults. This reduces page fault overhead

in applications that exhibit random memory patterns. This page

fault overhead pattern shows a similar pattern in the AG kernel.

4.2.2 Application-level Page Fault Overhead. Figure 7 shows
the time-breakdown of each application kernel execution. We di-

vided the overall execution time of a kernel by each operation time.

We analyzed how the DCM’s effectiveness affects the kernel’s over-

all performance. All three application kernels have the following

three phases: (i) FileIO to read files where input data is stored, (ii)

Compute to access the data structure and perform operations, and

(iii) PageFault to process page faults that occur during operations.

In general, a way to increase the performance of an application

kernel is to quickly load data to be processed by the CPU core into

memory. Figure 7 shows that the performance of an application

highly depends on the ratio of PageFault in the application runtime.

In all experiments, the ratio of FileIO to total runtime is consistently

less than 5%. In addition, the ratio of PageFault to total runtime in

the case of local disk swap increases as the local cache size decreases.

In Figure 7(b), PageFault took 1.2 seconds at L50 when running the

GAG kernel on the DCM, which is very short considering that the

total runtime is 83 seconds. On the other hand, disk swap shows

that PageFault accounts for about 20% of the total runtime. The

GAG kernel stores the value corresponding to the key behind FileIO
as a linked list. And when allocating memory to create a node in the

list, if the local cache is full, it is allocated the remote memory space.

When performing an aggregation operation, a page fault occurs if

the page mapped to the value corresponding to the key does not

exist in the local cache. In this case, the higher the ratio where the

memory page corresponding to the values of each key does not

exist in the local cache space, the higher the page fault overhead. As

the ratio of PageFault to an application’s processing time increases,

application performance degradation becomes more severe in disk

swap environments. Disk swap causes context switching when

pages are read from the swap space through slow disk I/O, and the

CPU core is blocked for a long time until the page is updated in the

page table. It is analyzed that the longer the CPU core is blocked,

the higher Compute time increases, so the application performance

decreases rapidly. In contrast, DCM quickly fetches pages from

1314

MFence SAC’23, March 27-March 31, 2023, Tallinn, Estonia

Alone Shared

AG Grep

C
ac

he
 S

pa
ce

 (G
B

)

0
1
2
3
4
5
6

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

SharedAlone

GAG AG

C
ac

he
 S

pa
ce

 (G
B

)

0
1
2
3
4
5
6

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

SharedAlone

Grep GAG

C
ac

he
 S

pa
ce

 (G
B

)

0
1
2
3
4
5
6

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

SharedAlone

Linear Random

C
ac

he
 S

pa
ce

 (G
B

)

0
1
2
3
4
5
6

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

(a) AG & Grep (b) GAG & AG (c) Grep & GAG (d) Linear & Random

Figure 8: Memory space occupancy of each kernel for different test cases.

Alone Shared

AG Grep

G
rep (μs)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

A
G

 (μ
s)

0

5×10−3

0.01

0.015

0.02

0.025

0.03

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

GAG AG

A
G

 (μs)

0

0.01

0.02

0.03

0.04

G
A

G
 (μ

s)

0

0.01

0.02

0.03

0.04

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

Alone Shared SharedAlone

Grep GAG

G
A

G
 (μs)

0

0.01

0.02

0.03

0.04

G
re

p
(μ

s)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

SharedAlone

Li
ne

ar
 (μ

s)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Linear Random

R
andom

 (μs)

0

5

10

15

20

DCM(A) DCM(S) MFence
(gCR3)

MFence
(Hypercall)

(a) AG & Grep (b) GAG & AG (c) Grep & GAG (d) Linear & Random

Figure 9: Cache access latency (μs) of each process/kernel to run a kernel for different test cases.

remote memory via InfiniBand, a high-bandwidth network. Since

this reduces the blocking time of the CPU core, it is seen that the

CPU core performs operations quickly to increase the application

performance.

Similar patterns can be observed in Figure 7(a),(c). Interestingly,

the AG kernel shows a relatively low page fault overhead compared

to other kernels, with PageFault accounting for 13%, 8%, and 7%,

respectively, at L50, L70, and L90. Unlike the GAG kernel, the AG

kernel scans only a single linked list that sequentially stores values

corresponding to one key during aggregation. It does not require

searching for duplicate keys and all mapped linked lists, so page

fault overhead is relatively small. Although PageFault accounts
for a small percentage, the slow disk I/O of local disk swap still

degrades the entire application’s performance.

4.3 Evaluating MFence

In order to verify the effectiveness of MFence, we compare three

implementations as follows:

• DCM(A): DCM where the kernel is running alone. ‘A’ means

‘Alone’

• DCM(S): DCMwhere the kernel is executed in combination with

other kernels, which can cause interference between kernels. ‘S’

means ‘Shared’

• MFence(gCR3): DCM with cache partitioning adopting gCR3

method

• MFence(Hypercall): DCM with cache partitioning adopting

the Hypercall method

We evaluated MFence while run ning two or three kernels con-

currently. We intended a comparison of memory access latency at

the host layer (DCM). However, measuring memory access latency

on every access introduces a measurement overhead. For example,

putting a time-measurement function on every memory access pol-

lutes the kernel’s execution time, significantly increasing latency

and deviating from accurate and fair comparisons. We devised an

estimation method to compare memory access latency times at

the DCM (host layer) as follows: To estimate the memory access

latency, we defined Memory Access Latency as ML, Page Fault as
PF, and Local Memory Hit as MH. We set PF rate, PF latency, and

MH latency as 𝑃𝐹𝑅 , 𝑃𝐹𝐿 , and𝑀𝐻𝐿 , respectively. Since the number

of page faults divided by the total number of memory accesses is

𝑃𝐹𝑅 , ML can be calculated with the equation below.

𝑀𝐿 = (1 − 𝑃𝐹𝑅)·𝑀𝐻𝐿 + 𝑃𝐹𝑅 ·𝑃𝐹𝐿 (1)

𝑃𝐹𝑅 =
𝑃𝐹𝑛𝑢𝑚

𝑇𝑀𝐴𝑛𝑢𝑚

We can measure the access latency and access count of local or

remote memory in the DCM layer. The DCM configuration used has

a block size of 32 KB that comes with a page fault. So, we measured

local or remote memory access latency to handle a page fault for

32KB. In our testbed, they were 11 ns and 32 μs, respectively. And

we counted the total number of memory accesses and the total

number of page faults during each kernel execution.

4.3.1 Running two kernels. In Figure 8 and 9, we show the re-

sults of executing two kernels simultaneously. For the experiments,

the memory footprint of each workload and the total cache size

are set to 8 GB. We limit a single cache partition to 4GB which

is half of the cache size. Figure 8 shows the memory usage for

each case. In all experiments, DCM allocates memory unfairly to

either of the two kernels. On the other hand, for MFence(gCR3)

and MFence(Hypercall), each kernel takes up as much as half of

the local cache. For example, when the Grep and AG kernels are

executed concurrently, memory space occupancy between kernels

is significantly different between them (Refer to Figure 8(a)). The

Grep kernel used about 1.6GB more memory than the AG workload.

Because Grep demands more memory than AG, Grep generates

more page faults per unit of time and takes up more cache space

1315

SAC’23, March 27-March 31, 2023, Tallinn, Estonia
Jinhoon Lee1 , Yeonwoo Jung1 , Suyeon Lee2 , Safdar Jamil1 , Sungyong Park1 , Kwangwon Koh3

Hongyeon Kim3 , Kangho Kim3 , Youngjae Kim1

than AG. On the other hand, in both gCR3 and Hypercall, the local

cache was equally partitioned between AG and Grep.

Unfairly allocated cache occupancy affects the response latency

of a process. Figure 9(a) shows the memory access latency of each

kernel. Comparing DCM(A) and DCM(S), AG’s memory access la-

tency for DCM(S) increased 24% compared to DCM(A). In contrast,

Grep’s memory access latency for DCM(S) increased by 12% com-

pared to DCM(A). The increase in memory access latency of AG

is more significant than that of Grep because, as explained ear-

lier, Grep is allocated much more cache space than AG. On the

other hand, in MFence(gCR3), it is observed that the difference

in memory access latency between AG and Grep is smaller than

that of DCM(S). As expected, this is due to the effect of cache

partitioning by MFence. Similarly, the same observation was ob-

tained with MFence(Hypercall). But comparing MFence(gCR3)

with MFence(Hypercall), overall memory access latency is higher

with MFence(Hypercall) than with MFence(gCR3). This is be-

cause the overhead of the owner identification module is higher in

MFence(Hypercall) than in MFence(gCR3). As explained in Sec-

tion 3.4,MFence(Hypercall) should do polling andHypercall to com-

municate between host and guest. On the other hand,MFence(gCR3)

has less overhead because it can simply identify the owner of the

page by reading the value of the gCR3 register. Similar observa-

tions are made for GAG & AG, Grep & AG, and Linear & Random

workloads.

Table 3: Analysis of performance gain using MFence(gCR3)

and MFence(Hypercall) compared to DCM(S). ‘L’ and ‘R’ de-

note linear and random workloads in PMbench respectively.

Method AG & Grep GAG & AG Grep & GAG L & R

gCR3 +5% +7% +19% -24%

Hypercall -10% -11% +4% -47%

Table 3 shows the performance improvement analysis of MFence

compared to DCM(S). Note that a positive value indicates an in-

crease in performance, and a negative value indicates a decrease

in performance. Since the owner identification module is not free

in terms of performance overhead, we analyze the improvement

of the kernel’s memory access latency by MFence. Therefore, we

calculated the average access latency of co-executing kernels for

DCM(S) andMFence and compared them. In Table 3,MFence(gCR3)

improves memory access latency by -24% to 19% compared to

DCM(S). MFence(gCR3) also shows negative performance gain

(Linear & Randomworkload). This is because PMbench is amemory-

intensive workload. In this memory-intensive workload mix, cache

partitioning is unnecessary because MFence is ineffective. On the

other hand, as expected, the improvement in memory access la-

tency of MFence(Hypercall) is less than that of MFence(gCR3).

The improvement in memory access latency is only -47% to +4%.

Therefore, MFence(gCR3) has higher performance efficiency than

MFence(Hypercall).

4.3.2 Microscopic analysis of cache occupancy. Weperformed

a microscopic analysis of cache sharing between processes. Fig-

ure 10(a) shows the change in cache share of each process on every

page fault when Grep and GAG kernels are running. In DCM(S),

Grep and GAG kernels compete for a shared cache. At first, they

C
ac

he
	O

cc
up

an
cy

	R
at

io
	(%

)

0

20

40

60

80

100

Page	Fault	Number
0 5×105 106 1.5×106 2×106

Grep GAG

C
ac

he
	O

cc
up

an
cy

	R
at

io
	(%

)

0

20

40

60

80

100

Page	Fault	Number
0 5×105 106 1.5×106 2×106

Grep GAG

(a) DCM(S) (b) MFence(gCR3)

Figure 10: Changes in cache occupancy for each process.

AG Grep GAG

C
ac

he
 S

pa
ce

 (G
B

)

0
1
2
3
4
5
6

DCM(S) MFence
(gCR3)

AG Grep GAG

A
vg

. L
at

en
cy

 (µ
s)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

DCM(S) MFence
(gCR3)

(a) Memory Usage (b) Latency

Figure 11: Results when running three kernels.

occupy the cache space evenly, but after that, the Grep kernel takes

up more cache space than the GAG kernel. Overall, the Grep ker-

nel has a higher cache share than the GAG kernel, but sometimes

the GAG kernel tries to steal cache space from the Grep kernel.

Eventually, the cache space contention between them reveals the

dynamic fluctuation of cache share over time. On the other hand,

Figure 10(b) shows the perfect distribution of cache space between

the Grep and GAG kernels in MFence (gCR3). Since the Grep kernel

has a higher memory demand than the GAG kernel, it reaches 50%

of the cache space before the GAG kernel as expected. There is no

dynamic change in cache share, as shown in Figure 10(a).

4.3.3 Running three kernels. In Figure 11, we show the results

of executing three kernels in parallel. For these experiments, the

memory footprint of each workload and the total cache size are

set at 8 GB, while we limit a single cache partition to be 1/3 of the

cache size. In Figure 11, as expected, DCM(S) has an unfair cache

partition between kernels. In DCM(S), Grep occupies more memory

cache than AG and GAG. Figure 11(a) shows that AG uses 3.47GB,

Grep uses 5.78GB, and GAG uses 2.75 GB. However, MFence(gCR3)

strictly limits the cache partition so that each kernel fairly takes

up its cache space. Figure 11(b) shows the memory access latency

after cache partitioning by MFence(gCR3). As expected, Grep in-

creased access latency by returning the improperly acquired cache

space, while AG and GAG were allocated more cache space and

slightly reduced access latency. Finally, we analyzed the overall

performance improvement by MFence(gCR3), just like when we

ran the two kernels earlier. The overall performance improvement

of MFence(gCR3) is about 6% compared to DCM(S).

5 RELATEDWORK

Resource Disaggregation: Recent studies have proposed vari-

ous designs to access remote memory by proposing new network

1316

MFence SAC’23, March 27-March 31, 2023, Tallinn, Estonia

systems [7], adding user-level functions [17], modifying kernel

features [1, 6], and supporting hypervisor-integrated systems for

virtualized environments [2, 13]. Fastswap [1] attempted to restrict

the capacity of a cache (i.e., local memory) to an application using

cgroup. It allocates different sizes of cache per application, following

its scheduling policy to improve the makespan of multiple applica-

tions. However, using cgroup is not applicable when applications

are running on the VM, as the host kernel is not aware of individual

processes on the VM of the guest kernel. It is possible to control

cache size per VM, not per application on VMs. Similarly, Fluid-

Mem [2] also adjusted the cache quota per-VM basis. Still, it did not

control the cache size per process. MFence proposes a mechanism

of cache partitioning to control the amount of cache per application

on a VM.

Unfairness of Shared Cache: FairRide [16] investigates the

problem of fair allocation of cache for multiple users with shared

files. It achieves an isolation cache in which users get better perfor-

mance through blocking. This paper focuses on how users will en-

sure fairness arising from shared files. However, MFence proposes

a mechanism to ensure fairness when processes run concurrently

in a VM environment. In addition, BWLOCK [19] pointed out the

problem of memory bandwidth contention between real-time and

non-real-time applications. BWLOCK observed that due to the high

memory bandwidth required by the CPU core where non-real-time

applications are running, the memory bandwidth allocated to real-

time applications is limited, resulting in application deadlines not

being met. To ensure application deadlines, BWLOCK provides

users with predefined APIs in memory-intensive code sections of

real-time applications to trigger the memory bandwidth of cores

running non-real-time applications. MFence also ensures memory

resources without memory bandwidth throttling at runtime, as

users can partition local memory per application using APIs such

as command tools.

6 CONCLUSION

This paper proposes MFence to solve the problem of unfair mem-

ory occupation of shared cache between processes in a VM-based

distributed cloud memory platform (DCM). MFence provides a

process with an independent partitioned cache area, completely

eliminating cache interference between processes. MFence uses the

page global directory (PGD) address of the process that caused the

page fault in the guest kernel, stored in the gCR3 register, to identify

the process and the partitioned cache area to use. The extensive

evaluation shows that MFence enables fair cache partitioning with

low overhead and results in performance gains. As a representative

example, MFence shows a 14.4% performance improvement for

workloads where the AG and Grep kernels run concurrently while

ensuring fair cache partitioning.

ACKNOWLEDGEMENT

This work was partly supported by the Institute of Information &

communications Technology Planning & Evaluation (IITP) grant

funded by the Korea government (MSIT) (No.2018-0-00503, Re-

searches on next generation memory-centric computing system

architecture), Electronics and Telecommunications Research Insti-

tute (ETRI) grant funded by the Korea government (No.22ZS1300,

Research onHigh Performance Computing Technology to overcome

limitations of AI processing), and National Research Foundation

of Korea (NRF) grant funded by the Korea government (MSIT) (No.

NRF-2021R1A2C2014386).

REFERENCES

[1] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-

hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.

2020. Can Far Memory Improve Job Throughput?. In Proceedings of the 15th
European Conference on Computer Systems (EuroSys ’20). 1–16.

[2] Blake Caldwell, Sepideh Goodarzy, Sangtae Ha, Richard Han, Eric Keller, Eric

Rozner, and Youngbin Im. 2020. FluidMem: Full, Flexible, and Fast Memory Disag-

gregation for the Cloud. In Proceedings of the IEEE 40th International Conference
on Distributed Computing Systems (ICDCS ’20). 665–677.

[3] Intel corporation. 2015. Intel® SSD 750 Series Product Specifica-

tion. https://www.intel.com/content/dam/www/public/us/en/documents/

product-specifications/ssd-750-spec.pdf

[4] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,

Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing

DRAM Footprint with NVM in Facebook. In Proceedings of the 13th EuroSys
Conference (EuroSys ’18). 1–13.

[5] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.

Direct Access, High-Performance Memory Disaggregation with DirectCXL. In

Proceedings of the USENIX Annual Technical Conference (ATC ’22). 287–294.
[6] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.

Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In Proceedings of
the 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’17). 649–667.

[7] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. 2022.

Clio: A Hardware-Software Co-Designed Disaggregated Memory System. In

Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’22). 417–433.

[8] Munira Hussain. 2018. Need for Speed : Comparing FDR and EDR InfiniBand.
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_

ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-

us.pdf

[9] Yang Jisoo and Seymour Julian. 2018. Pmbench: A Micro-Benchmark for Profiling

Paging Performance on a System with Low-Latency SSDs. In Proceedings of the
Information Technology New Generations (ITNG ’18). 627–633.

[10] Awais Khan, Attique Muhammad, Youngjae Kim, Sungyong Park, and Byungchul

Tak. 2018. EDGESTORE: A Single Namespace and Resource-Aware Federation

File System for Edge Servers. In Proceedings of the IEEE International Conference
on Edge Computing (EDGE ’18). 101–108.

[11] Awais Khan, Hyogi Sim, Sudharshan S Vazhkudai, and Youngjae Kim. 2021.

Mosiqs: Persistent Memory Object Storage with Metadata Indexing and Querying

for Scientific computing. IEEE Access 9 (2021), 85217–85231.
[12] Awais Khan, Hyogi Sim, Sudharshan S Vazhkudai, Jinsuk Ma, Myeong-Hoon

Oh, and Youngjae Kim. 2020. Persistent Memory Object Storage and Indexing

for Scientific Computing. In Proceedings of the IEEE/ACM Workshop on Memory
Centric High Performance Computing (MCHPC ’20). IEEE, 1–9.

[13] Kwangwon Koh, Kangho Kim, Seunghyub Jeon, and Jaehyuk Huh. 2019. Disag-

gregated Cloud Memory with Elastic Block Management. IEEE Trans. Comput.
68, 1 (2019), 39–52.

[14] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw

Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,

Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.

2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Proceed-
ings of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19). 317–330.

[15] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun Bae, and Yanzhao Wu. 2019.

Memory Disaggregation: Research Problems and Opportunities. In Proceedings of
the IEEE 39th International Conference on Distributed Computing Systems (ICDCS
’21). 1664–1673.

[16] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. 2016. FairRide:

Near-Optimal, Fair Cache Sharing. In Proceedings of the 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’16). 393–406.

[17] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020.

AIFM: High-Performance, Application-Integrated Far Memory. In Proceedings of
of the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’20). 315–332.

[18] Jun Xiao, Yixian Shen, and Andy D. Pimentel. 2022. Cache Interference-Aware

Task Partitioning for Non-Preemptive Real-Time Multi-Core Systems. ACM
Transactions on Embedded Computing Systems, 21, 3 (2022), 1–28.

[19] Heechul Yun, Waqar Ali, Santosh Gondi, and Siddhartha Biswas. 2017. BWLOCK:

A Dynamic Memory Access Control Framework for Soft Real-Time Applications

on Multicore Platforms. IEEE Trans. Comput. 66, 7 (2017), 1247–1252.

1317

https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryList_V1
 qi2base

