
KV-CSD: A Hardware-Accelerated Key-Value Store

for Data-Intensive Applications

Inhyuk Park∗, Qing Zheng†, Dominic Manno†, Soonyeal Yang∗, Jason Lee†, David Bonnie†,

Bradley Settlemyer‡, Youngjae Kim§, Woosuk Chung∗, Gary Grider†

∗SK hynix, †Los Alamos National Laboratory, ‡NVIDIA, §Sogang University

{inhyuk.park, soonyeal.yang, woosuk.chung}@sk.com, {bsettlemyer}@nvidia.com, {youkim}@sogang.ac.kr,

{qzheng, dmanno, jasonlee, dbonnie, ggrider}@lanl.gov

Abstract—Popular software key-value stores such as LevelDB
and RocksDB are often tailored for efficient writing. Yet, they
tend to also perform well on read operations. This is because
while data is initially stored in a format that favors writes, it is
later transformed by the DB in the background into a format that
better accommodates reads. Write-optimized key-value stores can
still block writes. This happens when those background workers
cannot keep up with the foreground insertion workload.

This paper advocates for a hardware-accelerated key-value
store, enabling performance-critical operations, like background
data reorganization and queries, to execute directly on storage
instead of a host as existing key-value stores do. This better hides
background work latency, prevents it from blocking foreground
writes, and improves overall I/O efficiency. Our prototype, called
KV-CSD, is a key-value based computational storage device
consisting of an NVMe SSD and a System-on-a-Chip (SoC) that
implements an ordered key-value store atop the SSD. Through
offloaded processing, KV-CSD streamlines data insertion, reduces
host-device data movement for both background data reorgani-
zation and query processing, and shows up to 10.6× lower write
times and up to 7.4× faster queries compared to the current state-
of-the-art software key-value stores on a real scientific dataset.

I. INTRODUCTION

Demands for storage performance continue to grow due

to rapidly increasing client performance, data size, and data-

intensive applications such as simulation checkpointing, ma-

chine learning training, and large-scale data analytics [1–3].

To keep up with these demands, many recently deployed HPC

systems — from Los Alamos’ Trinity [4] supercomputer in

2016 to Oak Ridge’s Frontier [5] and NERSC’s Perlmutter [6]

supercomputers in 2022 — have employed flash-based storage

tiers to provide performance that matches the performance of

their compute tiers. In these flash-accelerated systems, storage

remains as block devices and applications continue to access

storage using filesystems [7–10]. Sustained high bandwidth

enabled by flash allows applications to quickly transfer a large

amount of data between compute and storage nodes, which

benefits applications such as simulation checkpointing [11,

12] that read and write datasets in their entirety (as opposed

to selective reads) and do not require data to be converted

to a different format for efficient retrieval at a later point in

time [13]. Nevertheless, applications that do require a format

conversion — either in the form of resorting data or building

auxiliary indexes alongside it — tend to still experience long

processing delays. This is especially the case when high

�������	
�

�

��������������

�	�

�����������
��	��

���� ���� ���

���
���

Fig. 1: Overview of a KV-CSD Computational Storage Device

volumes of small scientific data records previously written by a

massively parallel scientific simulation are subsequently read

for interactive data analytics with potentially very selective

queries [14–16]. A scientist must either patiently wait for data

to be converted into the right format or risk executing a query

that reads back an excessive amount of data, leading to a very

long run time.

To speed up applications with potentially highly selective

data access patterns, embedded key-value stores such as Lev-

elDB [17] and RocksDB [18, 19] have been increasingly

explored in scenarios ranging from filesystem metadata man-

agement [20–23], block data management [24, 25], to large-

scale data analytics [26–28]. By employing Log-Structured

Merge (LSM)-Tree based data structures [29], these key-value

stores achieve high data insertion speeds and rapid point

and range query performance over primary keys. They do so

by first writing data into logs and then sorting them in the

background using a process known as compaction. Recently,

we have also seen techniques that leverage LSM-based key-

value stores for secondary indexes, allowing for efficiently

answering queries with predicates that can span multiple data

dimensions [30–33].

Unfortunately, even though LSM-based key-value stores

have been increasingly deployed and can effectively transform

data to read-optimized formats for rapid queries, they are still

limited in their capacity to process data efficiently. First, an

embedded key-value store runs inside an application process

and depends solely on the host’s compute resources to carry

out all operations. This reliance constrains the store’s ability to

hide background work latency through asynchronous process-

ing. As a result, in cases where the background compaction

process of the key-value store becomes a bottleneck and fails

to keep up with a foreground insertion application, the store

may be unable to hide it — the insertion application can

still experience long I/O delays and even be unable to make

forward progress [34]. At the same time, with filesystems

132

2023 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/23/$31.00 ©2023 IEEE
DOI 10.1109/CLUSTER52292.2023.00019

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

79
-8

-3
50

3-
07

92
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
LU

ST
ER

52
29

2.
20

23
.0

00
19

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

continuing to underpin modern data accesses for most HPC

applications and workflows, an embedded key-value store is

therefore also limited by the I/O interface and performance of

the underlying filesystem or filesystems to deliver sufficient

performance, leading to inefficiencies such as reduced storage

media bandwidth utilization and read amplification, where

more data than is needed by the application is transferred from

storage to the application, slowing down reads and increasing

query latency [35].

To better support highly selective data access patterns for

HPC applications, this paper makes a case for a hardware-

accelerated key-value store that overcomes the limitations of

its software counterparts. As Figure 1 shows, our prototype,

called KV-CSD, is a key-value based computational storage

device [36] consisting of an NVMe SSD and a System-on-a-

Chip (SoC) that implements an ordered key-value store on

top of the SSD. User applications communicate with KV-

CSD through a lightweight client library that exposes a key-

value interface similar to that of a software key-value store.

KV-CSD supports bulk inserts, bulk deletes, point and range

queries over primary keys, and point and range queries over

user-defined secondary index keys. All key-value operations

and background tasks are handled primarily by the KV-CSD

device, which is not limited by the host to deliver performance.

Compared with software-based key-value stores, KV-CSD

possesses three unique advantages. First, by not relying on host

compute resources to run potentially expensive background

operations such as compaction, KV-CSD allows these expen-

sive operations to be deferred and processed asynchronously in

the device, hiding their latency from applications and prevent-

ing bottlenecks such as write stalls [34], where an application’s

foreground insertion workload cannot make progress due to

pending background operations. Second, KV-CSD offers key-

value based storage directly from a device, as opposed to being

built on top of a host filesystem. This arrangement allows for

directly translating high-level key-value operations, like GETs

and PUTs, into low-level storage commands, such as NVMe

read and write requests. By removing filesystem and the OS

block layer code from the data processing path, KV-CSD

shields applications from potential significant performance

loss as data travels through these layers as prior work shows

[24, 37]. Finally, by directly implementing key-value storage

management in device, KV-CSD provides opportunities to

leverage low-level storage interfaces, such as Zoned Names-

pace [38, 39], to optimize performance whereas a software

key-value store must rely on the underlying filesystem and the

operating system to adopt these optimizations accordingly.

To demonstrate these benefits, KV-CSD directly implements

an LSM-Tree based key-value store atop an SSD using an SoC

[40] that has 4 ARM CPU cores, 8GB RAM, and a Ubuntu

OS. Applications send key-value operations to KV-CSD using

direct memory access via PCIe through a lightweight client

library. KV-CSD turns them into low-level NVMe requests

to the underlying SSD. To minimize software overhead, KV-

CSD’s on-SoC key-value store is conveniently developed as

a custom userspace block device driver using Intel’s Storage

Performance Development Kit (SPDK) [41], as Figure 3

shows. Because the key-value store itself is a device driver,

it directly communicates with the underlying SSD through

NVMe, completely bypassing the SoC OS kernel and its

overhead.

Deferred Compaction: Prior work shows that data written

by HPC applications such as simulation is often not accessed

until analytics are performed. This has led to techniques

such as deep write buffering and delayed filesystem metadata

synchronization [11, 20, 22, 42] that drastically improve

an application’s write performance. KV-CSD hence similarly

proposes deferred compaction, where application key-value

pairs are first written as unordered log entries in the database.

Applications subsequently invoke compaction to convert them

into indexed, ordered data records for efficient queries. Data

conversion is done asynchronously by the DB device — an

application’s foreground workload is not impacted.

Key-Value over Zones: Modern SSDs often exhibit reduced

performance and long tail latency when used SSD blocks

are garbage collected for incoming writes [38]. To address

this bottleneck, Zoned Namespaces [39] have been recently

introduced, allowing applications to explicitly manage SSD

garbage collection for more predictable I/O performance. To

convey this capability up to applications, KV-CSD introduces

keyspaces. Applications dynamically create keyspaces for their

datasets. Internally, KV-CSD will map these keyspaces to

different SSD zones to streamline storage management and to

better leverage available SSD bandwidth. Essentially, KV-CSD

can be viewed as converting a zone-based NVMe block SSD

into a key-value based active device featuring offloaded search

and compaction functions, as we will show in Section IV.

Primary and Secondary Indexes: Finally, to enable rich

query types, KV-CSD supports both point and range queries

over primary and secondary index keys. When an application

invokes compaction on a keyspace, KV-CSD sorts its data

on keys, creating the primary index. Secondary indexes are

created by applications specifying the byte range and the type

of a certain part of value to serve as the secondary index keys.

For example, an application can request creating a secondary

index on the last 4 bytes of the values and have KV-CSD treat

them as 32-bit integers.

Our experiments compare KV-CSD with RocksDB [18] — a

popular software key-value store developed by Meta based on

Google’s LevelDB codebase [17]. While RocksDB is already

popular due to its fast data insertion rates and swift queries,

KV-CSD is able to outperform it by offering up to 10.6×

lower write times and up to 7.4× faster queries on an actual

scientific dataset. As we will discuss, KV-CSD achieves this by

offloading performance critical tasks such as compaction and

queries to storage, resulting in more effective latency hiding,

less data movement, and more efficient data management.

The rest of this paper is structured as follows. Sections

II and III describe the motivation and rationale behind our

work. Sections IV and V detail our design. Section VI reports

experiment results. Section VII discusses related work. Finally,

Section VIII concludes.

133

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

II. MOTIVATION

Three factors motivate our work: (1) the growing need

for new ways of accelerating highly selective data inquiries

that minimize data movement, (2) the rising overhead of host

software compared to next-generation performance tier flash

devices, and (3) the promise of a hardware-accelerated key-

value storage tier as computational storage is more practical

than it was 25 years ago while new storage interfaces such as

NVMe allow for innovation.

Highly Selective Data Retrieval: Scientific applications

often generate a large amount of data. But during analytics,

a scientist may be interested in only a small portion of a

given dataset, leading to query patterns that can be highly

selective and do not require reading back all data. For example,

a scientist may just need to track the state of a few high energy

particles along time or the very front of a shock wave traveling

through a material [14, 15]. In these examples, the amount

of data that needs looking at is only a small part of a large

dataset, and only this small amount of data needs reading back.

As future platforms enable larger scale applications and data

sizes, the ratio between interesting data and overall data may

further reduce, leading to potentially even more selective data

inquires.

With searching for interesting data becoming increasingly

selective, techniques that enable streaming back only neces-

sary data becomes more and more important. This is because

scientific applications such as simulations typically do not

have the ability to optimize their data output (e.g.: sorting

or building auxiliary indexes) for subsequent searches [13].

Instead, their primary goal when outputting is to output as

fast as possible so that they can minimize their time spent

on storage and maximize time spent on computation [3]. In

the absence of a search optimized format on storage, a highly

selective query may be unable to quickly locate the data being

sought and therefore may have to read back all data, resulting

in excessively long query times.

One way to speed up highly selective data inquiries is to pre-

process the data before queries occur [15, 43, 44]. This allows

data to be transformed into a query optimized format before it

is queried. One problem of this approach is the large amount of

I/O involved in transforming the data, which typically requires

a full dataset read followed by a full dataset write. A user may

have to wait an extended amount of time before data can be

transformed to a desired format.

We have seen recently developed techniques that dynam-

ically transform data to a read-optimized format as an ap-

plication writes it to storage. For example, ADIOS [14, 45]

allows redirecting an application’s output to a separate set of

compute nodes, where it asynchronously transforms data to a

read-optimized format before writing it to storage. Techniques

also exist that allow for data to be transformed potentially

without additional compute nodes. One example is DeltaFS

[46], which uses only idle CPU cycles found on job compute

nodes to process data.

Unfortunately, even with these novel techniques, bottlenecks

still exist. For example, ADIOS tends to be less useful when

an entire computer is used to run a single large simulation such

that no compute node will be left for processing data in situ.

Similarly, while DeltaFS does not require additional compute

nodes, it may only be able to index data on one dimension due

to limited idle CPU resources on job compute nodes, leaving

multidimensional queries still unaccelerated.

Computational storage provides new ways of addressing ex-

isting solution limitations. A hardware-accelerated key-value

store can act upon data at rest. It does not need to transfer

data to compute nodes or rely on their resources to scale

performance.

Host Software Overhead: One promising development

in addressing the I/O demands and performance needs of

emerging scientific data analytics workloads is the enhanced

performance of modern solid-state drives. Presently, a single

high-performance flash SSD can achieve over 1 million small

random read operations per second and offer multiple giga-

bytes per second of throughput [47–49]. Moreover, the NVMe

transport, which is responsible for managing and accessing

these drives, is equally adept at maximizing the potential of

these high-speed storage devices.

However, even though high-speed storage solutions are

becoming increasingly available at the device level, it remains

crucial for host software, especially parallel filesystems, to

effectively harness and present this performance to applica-

tions. Unfortunately, today’s parallel filesystems have been

increasingly unable to efficiently translate device performance

increases to application performance increases [50]. The issue

arises from the fact that many popular parallel filesystems

today such as Lustre [51] and GPFS [52] were originally

designed for hard disk drives, which offer significantly lower

performance compared to flash-based storage devices like

SSDs. Consequently, these systems were often designed with

the premise of a virtually infinitely fast host compute system,

resulting in deep and complex software stacks that can be

too cumbersome and slow for today’s performance tier flash

devices. This leads to suboptimal utilization of available

storage media bandwidth, as demonstrated in recent studies

[24, 37, 53].

As filesystems are already unable to fully exploit the un-

derlying device performance, layering a key-value abstraction

— or anything else — on top of them only exacerbates this

bottleneck. This stranded device performance is an important

reason why we believe an embedded software key-value store

can be insufficient. By contrast, directly providing storage

services from an underlying device simplifies storage clients,

reduces software layers, and allows for more fully utilizing

available storage media performance.

Towards Hardware-Accelerated Key-Value Storage: To

break I/O bottlenecks, computational storage architectures —

in which smart devices or NICs are employed for near-data

computing — become attractive. There are three major forms

of computational storage: computational storage drives (CSDs)

where one accelerator is attached to one storage drive (the form

that KV-CSD takes), computational storage arrays (CSAs)

134

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

������ �������	�����
����� �
� �����
� ��

���

�
����
��!�

����� ������

��
����

��� ��� ��� ���

Fig. 2: KV-CSD Envisioned Next-Gen HPC Platform

where one accelerator is attached to many storage drives, and

computational storage processors (CSPs) where the accelerator

shares one or many storage drives with the host [36].

While HPC has mainly relied on host software to provide

I/O services to applications, computational storage opens new

ways of providing these services for improved performance.

This is because computational storage allows processing to

take place near data to minimize data movement, and can

improve I/O efficiency by lowering the number of software

layers needed due to hardware specialization.

Computational storage in the form of a hardware-

accelerated key-value store can be particularly interesting

because the key-value interface provides sufficient knowledge

of data at the individual device level without having to resort

to external metadata while the costly background compaction

operations of the key-value store become a natural candidate

for offloaded processing.

While we expect POSIX to remain the primary way of

accessing storage, we envision various programming models

and storage interfaces in future HPC platforms, as Figure 2

shows. Specifically, an analytics-intensive application may

opt for a key-value (KV) based interface — rather than

POSIX — for improved selective data retrieval performance.

NVMe-over-fabric (NVMeOF) based flash enclosures, a recent

innovation in data center storage, make it possible to efficiently

share storage among compute nodes and parallel filesystem

servers. NVMe namespaces [54] further allow for dynamically

configuring storage enclaves for a given storage service. For

example, an HPC site could devote 90% of its storage to

serve parallel filesystems while the remaining 10% run as

key-value stores. While our current prototype is a local PCIe

device, nothing fundamental prevents us from extending it to

NVMeOF for remote access.

III. ENABLING TECHNOLOGIES

Five overriding factors make developing efficient hardware-

accelerated key-value stores such as KV-CSD possible.

LSM-Trees: leverage sorting to speed up queries. This

approach differs from bitmap-based indexes — such as FastBit

that are widely used in HPC communities [14, 15, 44] in that

it does not require a potentially large amount of memory to

build an index. While bitmap indexes can ultimately be very

compact, their intermediate form during index construction can

consume significant amounts of memory [55]. As a result,

they may not be well suited to embedded computational stor-

age environments. LSM-Trees enable a reduction in memory

footprint at the cost of increased I/O time, as a consequence

of performing multiple rounds of merge sorts. However, this

overhead can be conveniently hidden through asynchronous

processing within a computational storage device, like KV-

CSD.

NVMe: enables the parallelism needed to fully utilize

today’s high-speed storage devices. Additionally, its command

set specifications allow for extensions to accommodate new

storage protocols such as key-value, making continuous inno-

vation possible. While our current KV-CSD prototype requires

a custom key-value client, internally it uses the standard

NVMe key-value command set [56] for communication, along

with KV-CSD’s own extensions for commands not currently

in the standard such as compaction and secondary index

operations.

Zoned Namespace (ZNS): based SSDs use zones — as

opposed to pages — as the basic unit of data management,

each consisting of multiple NAND erase blocks. To improve

performance, ZNS only permits sequential writes to zones,

eliminating the need for in-device garbage collection at the

cost of changes to applications, who become responsible for

data placement and free-space reclamation over zones. ZNS

plays a key role in simplifying KV-CSD’s internal storage

management and reducing garbage collection overheads when

keyspaces created by applications are deleted, as prior work

also finds [38].

Userspace Drivers: Recent advancements in userspace

block device drivers, exemplified by Intel’s SPDK effort

[41], have facilitated the development of high-performance

storage applications that feature direct access from userspace

to high-speed storage devices such as SSDs. This direct

access bypasses the operating system kernel, allowing for fully

leveraging the speed and I/O capabilities of the underlying

device, leading to faster and more efficient storage access with

minimum software overhead. By utilizing this technology, KV-

CSD is able to efficiently implement its SoC-SSD communi-

cation, preventing unnecessary bottlenecks.

Efficient Microprocessors: The commoditization of the

smartphone market has led to a significant decrease in the

cost of embedded multi-core 64-bit processors, such as ARM,

and a decrease in their power consumption. Additionally, the

increase in storage density has made it more economical to

incorporate additional computing resources within or near a

storage device. These developments have made computational

storage much more practical and cost-effective than it was 25

years ago when researchers first proposed it [57–59], making

developing KV-CSD feasible.

IV. SYSTEM OVERVIEW

KV-CSD is a computational storage device consisting of an

NVMe ZNS SSD and a Linux-based SoC that implements an

LSM-Tree based key-value store on top of the SSD in the form

of a userspace block device driver using Intel SPDK.

As Figure 3 shows, this approach differs from mod-

ern software-based key-value stores such as LevelDB and

RocksDB in that the key-value service is provided by the

135

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

����

		�

�

�������

������������

����������

����������

����������	����
����������������	
�����

(a) Software Key-Value Store

����
�����������

�	
����	 ���	��

���
����

�	
����	�����	
�	
����	 �����	�

���	 �����	�

�������

(b) KV-CSD

Fig. 3: KV-CSD vs Traditional Software-Based Key-Value Stores

storage device rather than by code that runs inside an applica-

tion above a filesystem. While KV-CSD also requires a client

library, its primary job is to pack application function calls

into requests that are sent to the underlying device, where the

actual key-value based storage processing occurs.

For applications that cannot easily switch from POSIX to

key-value in order to use KV-CSD, a lightweight shim layer

may be used to translate file I/O into key-value operations as

prior work such as TableFS [60] and DeltaFS [16] does.

KV-CSD’s on-SoC key-value store is made up of a keyspace

manager and a zone manager. Collectively, they are respon-

sible for mapping and translating high-level application key-

value operations into low-level NVMe read and write requests

to the underlying ZNS SSD, as Figure 4 illustrates.

Keyspace Manager: In KV-CSD, applications store and

manage their data through keyspaces. Keyspaces are containers

of key-value pairs. Each is assigned a unique name specified

by the application at the keyspace creation time. Keys within a

keyspace must be unique while across keyspaces keys can be

reused without causing conflicts. Once a keyspace is created,

it can then be opened it for insertion, compaction, secondary

index construction, and query operations.

Compared with managing all keys in one global keyspace,

enabling separated keyspaces provides three key benefits. First,

it prevents unrelated applications from having to frequently

synchronize with each other in order to name their keys differ-

ently to avoid potential name conflicts. Second, it allows each

keyspace to be compacted and indexed independently, and to

have separate data formats and secondary index configurations.

Finally, it streamlines KV-CSD’s inner storage management by

allowing for mapping different keyspaces to different zones.

This prevents leaving “holes” in zones when created keyspaces

are deleted, simplifying KV-CSD’s internal garbage collection

process, leading to more consistent I/O performance [38].

Each keyspace in KV-CSD can exist in one of the fol-

lowing four states: EMPTY, WRITABLE, COMPACTING, and

COMPACTED. A newly created keyspace starts EMPTY. It

reaches the WRITABLE state when an application opens it for

writes for the first time. A keyspace enters the COMPACTING

state the moment compaction is invoked upon it. This will

prevent the keyspace from accepting any new writes, rendering

it readonly. Once compaction is done, a keyspace reaches the

�����

��������
	�
����

�
�
	�
����

�������� ��������

���� ���� ��	
 ��	
 ����	�������

��
��
��

��
��

��
�

�����	
���������
������
�����

���������	�
 ���������	�
 ���������	�
 ���������	�
 ���������	�

Fig. 4: Overview of KV-CSD’s On-SoC Components

COMPACTED state. Only keyspaces in this state are queryable.

Additionally, one or more secondary indexes can be added to a

keyspace when it is in the COMPACTED state. An application

may delete a keyspace at any state, though deletion may be

deferred due to on-going compaction or index operations.

The keyspace manager keeps track of the state and other

metadata information (such as the number of key-value pairs,

the minimum and the maximum keys, and the zone mapping

information) of all live keyspaces. It does so by maintaining

an in-memory keyspace table backed by a metadata zone in

the underlying ZNS SSD for data persistence.

Zone Manager: is responsible for (1) allocating and deal-

locating zones as requested by the keyspace manager, and (2)

grouping zones into clusters to enable parallel I/O across zones

as Figure 4 depicts.

Zones are a logical subdivision of the available storage

space on a ZNS SSD. In these SSDs, the storage space is

exposed by the SSD firmware as an array of equal-sized zones,

each with its own write pointer. Since data can only be written

sequentially within a zone, the write pointer indicates the next

allowable write position in the zone. It advances as writes are

performed. When data in a zone is no longer needed, a reset

operation can be performed on the zone, allowing its storage

space to be reclaimed and its write pointer rewound.

The zone manager keeps track of all available zones and

performs zone allocation and deallocation as needs arise. As

Figure 4 shows, based on their usage there are five types of

zones: KLOG, VLOG, PIDX, SIDX, and SORTED_VALUES.

Keyspaces in the WRITABLE state use only KLOG and VLOG

zones whereas keyspaces in the INDEXED state use only

PIDX, SIDX, and SORTED_VALUES zones, as Section V will

further explain.

Rather than allocating zones on a per-zone basis, KV-CSD

allocates zones in groups that we call zone clusters. This

enables striping I/O across multiple zones to better leverage

available SSD bandwidth to improve overall I/O performance.

Crucially, this I/O parallelism is enabled even when an appli-

cation opens a single keyspace for read and write operations.

When multiple application process threads simultaneously

write to KV-CSD, their writes may share some subset of

SSD internal I/O channels even when they each write to a

different keyspace. This leads to channel conflicts and reduced

overall write throughput. To alleviate this bottleneck, KV-

CSD associates a random number with each zone cluster to

determine which zone to perform the next write within a zone

136

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

	������
��

��������

	�
 ����

	�
 ����
	�
 ����

	�
 ����

�

������
�

	���������������� �����������������

� �

������

��� ���	�

�
���	���� �
���	����
����

�	�

Fig. 5: Description of the Write Phase

cluster. This allows zone writes to be randomly distributed

across all available I/O channels of an SSD, minimizing

channel conflicts and maximizing SSD bandwidth utilization.

V. OPERATIONAL FLOW

KV-CSD supports insertion, deletion, and point and range

queries over both primary and secondary index keys. This is

done by applications dynamically creating a keyspace, insert-

ing keys into it, invoking compaction, configuring secondary

indexes per workload needs, and then performing queries. An

application deletes a keyspace when it is no longer needed.

The ordered key-value store abstraction provided by KV-

CSD is designed to match the workflow of a typical

simulation-based science pipeline consisting of a simulation

phase and a post-analysis phase. Compared with popular

software key-value stores such as RocksDB and LevelDB,

KV-CSD enables more optimized data processing flow for

scientific applications at the cost of being less flexible and

more restrictive in the calling sequence of supported key-value

operations. The LSM-Tree realized by KV-CSD can be viewed

as a minimal, stripped-down version of its more feature-rich

counterparts, and does not necessarily work for workloads that

do not resemble a scientific simulation pipeline.

Data Insertion: Applications insert data into KV-CSD by

first creating a keyspace and then writing data into it. Inserted

data is first buffered at KV-CSD’s SoC DRAM. When the

DRAM buffer is full (192KB for the current prototype), it is

then flushed to the SSD zone clusters that are mapped to the

keyspace. KV-CSD stores keys and values separately: values

are written to VLOG zone clusters while keys, along with point-

ers to the values, are written to KLOG zone clusters, as Figure 5

shows. Storing keys and values separately allows for sorting

them in two separate steps (discussed later), reducing overall

subsequent keyspace compaction overhead. If no zone clusters

have been mapped to a keyspace, they will be dynamically

allocated and mapped.

To minimize communication overhead, KV-CSD supports

both regular PUT and bulk PUT operations. While a regular

PUT operation only inserts a single key-value pair into a

keyspace, bulk PUTs allows for inserting many key-value pairs

using a single command to hide insertion latency, improving

overall write throughput.

Compaction: When all data has been written to a keyspace,

an application invokes compaction to have KV-CSD sort the

keyspace, producing the primary index. Sorting a keyspace

is done in two steps. First, KV-CSD sorts the keys. Then,

KV-CSD uses the sorted keys to sort the values. Sorting is

done by running multiple rounds of merge sorts, depending

on available SoC DRAM space. Intermediate sorting results

are stored in dynamically allocated zone clusters, which are

released upon completion of the sort. Once a keysapce is

sorted, its original unsorted data, stored in VLOG and KLOG

zone clusters, is deleted and replaced with the newly formed

SORTED_VALUES and PIDX zone clusters.The former store

sorted values. The latter store sorted keys along with pointers

to the values. Both store data as a series of 4KB data blocks.

A small sketch of the PIDX data, consisting of a pivot primary

index key and a block pointer for every constituent PIDX data

block, is additionally built and stored as keyspace metadata in

the keyspace manager’s in-memory keyspace table. It serves

as the starting point for all primary index queries — both point

and range queries — against the keyspace.

Secondary Index Construction: Once the primary index

has been built, an application may optionally build one or

more secondary indexes according to workload needs. Unlike

primary indexes, building a secondary index requires applica-

tions to specify the byte range and the type of a certain part

of value to serve as the secondary index keys, as well as the

name of the secondary index for future references.

Once a secondary index is configured, building it is a

two-step process. First, KV-CSD performs a full scan of the

keyspace data to extract all secondary index keys from the

values, along with their associated primary index keys. This

is done by reading back data from the SORTED_VALUES and

PIDX zone clusters, extracting secondary index keys according

to application-supplied configuration, and then writing them

into temporarily allocated zone clusters as unordered “<sec-

ondary index key, primary index key>” pairs. Next, KV-CSD

sorts these pairs in a manner similar to what it does for sorting

the primary index keys, producing the secondary index stored

in SIDX zone clusters.

Similar to the primary index case, a small sketch of the

SIDX data, consisting of a pivot secondary index key and a

block pointer for every constituent SIDX data block, is built

and stored as additional keyspace metadata in the keyspace

manager’s in-memory keyspace table. It serves as the starting

point for all point and range queries against this particular

secondary index.

While our current design builds the primary index and each

secondary index as separated operations, in future we expect

to run these index construction operations in one single step

to prevent from having to repeatedly reading back keyspace

data into SoC DRAM, even though we can hide their latency

through asynchronous processing in a computational storage

device. One cost of consolidating all index construction into

a single step is the increased SoC DRAM usage. We expect

KV-CSD to resort back to separated index construction when

DRAM resources become a bottleneck.

Query Processing: Once all indexes are constructed, a

keyspace is then ready for queries. Leveraging fully sorted

137

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: KV-CSD in real world.

data in PIDX, SIDX, and SORTED_VALUES zone clus-

ters, KV-CSD is able to efficiently answer point and range

queries over both primary and secondary index keys. To

handle a query, KV-CSD first identifies the keyspace from the

keyspace manager’s in-memory keyspace table. It then uses the

keyspace’s metadata to locate all related primary or secondary

index data blocks on the SSD, and use them to process the

incoming query. Because query is entirely processed in a

computational storage device, only query results need to be

transferred back to the application. This minimizes host-device

data communication, reducing query latency especially when

query selectivity is high.

Keyspace Deletion: KV-CSD allows applications to delete

keyspaces that are no longer needed. Deleting a keyspace

discards all data and metadata associated with it, and frees

all SSD zones that are mapped to the keyspace, allowing their

space to be reclaimed.

VI. EVALUATION

We implemented a prototype of KV-CSD using C and SoC

hardware available from market, as illustrated in Figure 6. Our

implementation consists of a client component and a server

component. The client component is a lightweight userspace

device driver written in C that runs inside an application

process on a host. It translates high-level key-value operations

invoked by the host to low-level I/O requests sent to the KV-

CSD SoC, which acts as a “server”. Both the translation and

sending of the requests take place in userspace and completely

bypass the host OS kernel. Our implementation uses efficient

DMA methods to transfer data. This further reduces the

amount of processing needed on host to execute a key-value

operation.

TABLE I: Hardware Specification

Host KV-CSD CSD

CPU 32 AMD EPYC cores 4 ARM Cortex A53 cores

RAM 512GB DDR4 8GB DDR4

OS Ubuntu 18.04 Ubuntu 16.04

Storage KV-CSD CSD 15TB NVMe ZNS SSD

The server component of KV-CSD is the SoC itself. We

use a Fidus Sidewinder-100 (SW-100) development board [40]

that carries an Xilinx Zynq UltraScale+ computing platform

[61] with a quad-core ARM Cortex A53 processor and 8GB

memory. An external E1.L NVMe ZNS SSD connects to the

board using four PCIe Gen3 lanes. We had the board run a

Ubuntu OS with its image backed by an embedded M.2 SSD

that we installed on the board. Our KV-CSD software runs

atop the Ubuntu OS. As discussed earlier, it is developed as a

userspace block device driver using Intel’s SPDK framework

[41] that implements a simplified version of an LSM-Tree. It

packs small application key-value pairs into large indexed data

blocks stored on the ZNS SSD. By implementing an LSM-

Tree near data, KV-CSD greatly reduces data movement during

a query phase while allowing costly LSM-Tree compaction

operations to run asynchronously in the device without relying

on host compute resources and without potentially slowing

down foreground application workloads.

Like RocksDB and others, KV-CSD uses write-ahead-

logging to back in-memory data and supports explicit “fsync”.

We expect production applications to frequently disable write-

ahead-logging though because many use checkpointing-restart

for failure recovery making individual DB-level logging often

redundant or overkill.

A. Experimental Setup

All of our experiments were done on an AMD host with

one of our prototype KV-CSD devices installed on it. As

Table I shows, our host runs a Ubuntu OS and has 32 AMD

EPYC CPU cores, 512GB memory, and a dedicated OS drive.

Our prototype KV-CSD computational storage device (CSD)

connects to the host using 16 PCIe Gen3 lanes.

Our evaluation consists of both micro and macro bench-

marks. In micro benchmarks, focuses on two basic DB oper-

ations — PUTs and GETs — which we utilize to highlight

three key advantages of computational storage: enhanced I/O

performance, reduced data movement, and reduced reliance

on host compute resources. We test cases in which multiple

application process threads share a single keyspace for reads

and writes and cases in which multiple process threads spread

keys across multiple keyspaces for more scalable performance.

In macro benchmarks, we use a real-world scientific dataset

derived from VPIC [62] to showcase the potential of KV-

CSD in expediting post-hoc data analytics when large amounts

of data is inserted during simulation I/O and subsequently

analyzed for insights with potentially highly selective queries.

VPIC is a general-purpose, particle-in-cell simulation code

widely used for modeling kinetic plasmas in one, two, or three

spatial dimensions [13].

In both micro and macro benchmarks, we compare KV-CSD

with RocksDB [18], a widely-used key-value store created

by Meta, which we consider to represent the current state-

of-the-art. RocksDB employs LSM-Trees for managing user

data and supports both point and range queries. However,

unlike KV-CSD, RocksDB operates on a POSIX filesystem

138

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

(a) Put time (b) I/O statistics

Fig. 7: Time to insert 32M keys into a single keyspace using different
amount of host compute resources.

and depends on host computing resources to carry out all

database operations, including background compaction.

Due to physical space limitations, we were only able to

mount a single KV-CSD device onto our host machine at

present. We anticipate the ability to mount additional devices

once hardware boxes that provide sufficient space to accom-

modate E1.L drives become available. Fortunately, even with a

single device, we were able to demonstrate substantial perfor-

mance enhancements compared to purely software-managed

key-value stores.

B. Micro Benchmarks

Current state-of-the-art key-value stores such as RocksDB

are often host-based software that runs on top of a filesys-

tem. Application data is turned into indexed, ordered table

files entirely through host processing, which often results in

significant data movement and subsequent slowing down of

applications. With KV-CSD, we show that key-value stores

scale better when they are offloaded for a computational

storage based implementation which is closer to the data and

capable of processing it more efficiently.

To demonstrate this, our first set of experiments compare

KV-CSD with RocksDB and focus on their write performance.

PUT Performance: We start by examining a case where

a scaling number of application process threads write data to

a shared keyspace. To run it, we developed a multi-threaded

program able to generate synthetic workloads according to a

given configuration. A modular design was used such that the

same code can run over both DB implementations. We ran

this program using 1 to 32 threads. A total of 32M random

key-value pairs are inserted in each run. We use 16B keys and

32B values.

For each KV-CSD run, we reset the device and insert keys

into a newly-created keyspace. We use KV-CSD’s bulk put

interface to insert keys. Each bulk put message is 128KB.

This 128KB space contains keys, values, and their respective

sizes. For 16B keys and 32B values, each message carries up

to 2570 key-value pairs and is 7x faster than regular puts.

Once all keys are inserted, we invoke KV-CSD’s background

compaction process and exit — KV-CSD will run compaction

asynchronously in the device for us. We report time to insert

all keys. For each RocksDB run, we create a new DB instance

on top of a newly-formatted ext4 and then insert keys into

the DB. RocksDB runs background compaction as keys are

Fig. 8: Time to insert 32M keys with different value sizes into a
single keyspace.

Fig. 9: RocksDB vs KV-CSD insertion time as keyspace count and
data size increase.

inserted and may not be able to complete compaction when

all keys are inserted. When this happens, our test program

will wait until all compaction work concludes before exiting

the program. We report time to insert all keys which includes

additional wait time due to RocksDB compaction.

To control host resource usage, we assigned each test thread

to a specific CPU core for both KV-CSD and RocksDB runs.

RocksDB creates two worker threads per DB instance to

run background compaction tasks. We allow these threads to

operate on any CPU core that had a test thread pinned on it.

Figure 7a shows the result. Because RocksDB is an em-

bedded software key-value store, it relies on host compute

resources to carry out all operations including compaction. As

a result, a RocksDB user has to experience both write time

and compaction time whereas a KV-CSD user only needs to

experience write time, with compaction deferred and offloaded

to the underlying device.

While RocksDB requires 32 dedicated host CPU cores to

maximize performance, KV-CSD really only needs 2 CPU

cores to reach peak performance, as it is the device that

implements the DB rather than the host. At 32 CPU cores,

KV-CSD is 4.2× faster than RocksDB. At two cores, KV-

CSD is 7.9× faster.

Figure 7b reports the underlying I/O statistics. RocksDB

runs compaction as data is inserted to dynamically transform

it to a read-optimized format. This requires RocksDB to con-

stantly read data from storage, re-sort it in memory, and write

the results back to storage. Consequently, all RocksDB runs

are marked by a multifold increase in storage I/O, resulting in

longer I/O wait times as Figure 7a shows. In contrast, KV-CSD

postpones compaction and processes it asynchronously in

the device, reducing I/O overhead during insertion and

streamlining writes.

Larger Values: Figure 8 shows a case where keys are

inserted with different value sizes from 32B to 4KB. For

RocksDB runs, we use 32 host CPU cores for maximum

139

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

performance. For KV-CSD runs, we show results of using both

2 and 32 host CPU cores.

As value size increases, RocksDB becomes increasingly

bottlenecked on data movement due to compaction. At 4KB

values, KV-CSD using 32 host CPU cores is 10× faster than

RocksDB. In fact, even limited to 2 host CPU cores, KV-CSD

is still 8.9× faster than RocksDB using 32 cores, thanks to

offloaded processing.

Multi-Keyspaces: Figure 9 investigates a case where multi-

ple application threads each insert data into its own keyspace

rather than sharing a global keyspace.

We run 1 to 32 threads. Each inserts 32M keys into a

per-thread keyspace. For RocksDB runs, each thread inserts

keys into a per-thread RocksDB instance created atop a shared

ext4. We use 16B keys and 32B values. The biggest run uses

32 threads, creates 32 keyspaces or RocksDB instances, and

inserts 1 billion keys.

To better quantify KV-CSD’s performance improvements in

comparison to the current state-of-the-art, we run RocksDB

in three different modes: 1) default automatic compaction,

2) deferred compaction where compaction is manually held

until after all keys are inserted, and 3) no compaction where

compaction is disabled. Running RocksDB in three differ-

ent modes helps us demonstrate the benefits of deferred

compaction. For KV-CSD, we focus on deferred compaction

because eager compaction tends only to do a disservice to

scientific applications.

Result shows that KV-CSD scales well as keyspace and

data size increases whereas RocksDB becomes increasingly

bottlenecked on data movement. At 32 keyspaces, KV-CSD

is 7.8×, 6.1×, and 2.9× faster than RocksDB with default

automatic compaction, with deferred compaction, and with

no compaction respectively. For RocksDB, deferred com-

paction improves performance because compaction is done in

a single pass at the end of an insertion job, reducing total

data movement. Turning off compaction prevents unnecessary

data transfer, but comes with the trade-off of substantially

lengthening the time required for future queries. By offload-

ing most of the insertion processing to the device, KV-

CSD minimizes host processing, resulting in faster write

speeds compared to RocksDB, even when the latter has

background compaction disabled. Moreover, by employing

a deferred and asynchronous compaction process, KV-CSD

enables rapid insertion rates without slowing down reads.

KV-CSD is faster due in part also to fewer software layers.

To quantify this, we plan to add a run as future work where a

modified RocksDB uses SPDK to communicate with storage

such that RocksDB also benefits from a reduction of layers.

ZNS shows advantage when SSD space is heavily utilized

making SSD-level garbage collection a performance bottle-

neck. While KV-CSD leverages ZNS to streamline storage

space allocation and deallocation, we expect the ZNS effect

to be insubstantial in these experiments because SSD space

was only lightly utilized and because of a lack of overwrite

operations. KV-CSD was faster due mostly to asynchronous

(a) Query time (b) I/O statistics

Fig. 10: Performance of random GET operations.

compaction processing by a computational storage device,

which was a key advantage of KV-CSD.

GET performance: Figure 10 shows the performance when

data inserted in Figure 9 is subsequently queried using random

GET operations. We run GETs following a case where there

are 32 keyspaces, 32M keys per keyspace, and a total of

1 billion keys. We run 32 query threads, each targeting a

different keyspace. KV-CSD does not cache data in host or

device memory. For RocksDB runs, we clean OS page cache

at the beginning of each run.

Figure 10a reports the time it takes for the query program to

finish 32K to 320K queries while 10b shows the background

I/O statistics. Through offloading queries to device, KV-

CSD transfers only results back to clients, minimizing data

movement and accelerating queries. RocksDB exhibits high

read inflation due to being a software key-value store running

atop a filesystem — it must read back a significant amount of

database file blocks before being able to process a query.

Results show that KV-CSD is up to 1.3× faster than

RocksDB, even though both demonstrate extremely fast query

performance thanks to compaction which reorganizes data into

a read-optimized format. RocksDB query time improves as

more keys are queried due to aggressive client-side caching.

Nevertheless, we expect caching to be less effective in produc-

tion environments due to their higher data-size-to-memory-size

ratios. Similarly, we expect read inflation to be considerably

more punishing in production environments due to remote

storage and bottlenecks in networks.

C. Macro Benchmarks

To demonstrate KV-CSD’s potential in speeding up large-

scale scientific data analytics in comparison to the current

state-of-the-art software-based key-value stores, our macro

benchmark examines a case where a real-world scientific

dataset is converted to key-value pairs and then queried based

on a secondary index key.

Our sample dataset is a partial VPIC simulation [62] dump

consisting of 256M particles in the form of 16 binary files.

Each VPIC particle is 48 bytes, consisting of a 16B particle ID

and a 32B payload made up of 8 numeric attributes with one

of them being the kinetic energy that we used for secondary

index construction and queries.

We divide our experiment into a write phase and a query

phase. In the write phase, we use a custom loader program

140

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

to read VPIC particles from files and then insert them into a

key-value store. Particles are written as one key-value pair per

particle. We use particle IDs as keys and the rest as values.

We run 16 threads to insert data concurrently. Each thread is

responsible for loading one of the 16 available particle files

and will write particles into a per-thread keyspace, creating a

total of 16 keyspaces.

For KV-CSD runs, our loader program relies on the un-

derlying device to run both compaction and secondary index

construction. We report insertion time, compaction time, as

well as secondary index construction time. For RocksDB runs,

compactions are run by RocksDB as data is inserted. To

create a secondary index on particle energies for subsequent

queries, our loader program inserts auxiliary key-value pairs

as it writes primary key-value pairs to the DB. These auxiliary

key-value pairs use particle energies as keys and particle IDs

as values. To search for particles with certain energy levels

(e.g.: energy > 1.2), a reader program first queries against the

auxiliary index keys, and then uses the returned particle IDs

to run a secondary query on the primary key to read back

the full particle. To distinguish auxiliary keys from primary

keys, a small 1B prefix is prepended to each key. Automatic

compactions run by RocksDB sort both auxiliary index keys

and primary index keys, allowing for efficient queries on both

dimensions. We report data insertion time as well as additional

wait time due to RocksDB compaction, which — differs from

the KV-CSD case — covers both indexes.

In the query phase, we use a multi-threaded reader program

to run queries against both KV-CSD and RocksDB. We run

16 query threads, each targeting a different keyspace. We use

different energy thresholds to drive different query selectivity

levels. Our most selective query hits only 0.1% particles. Our

least selective query hits as many as 20% particles. For KV-

CSD runs, the device handles all queries and directly streams

back all matching particles. For RocksDB runs, queries are

run as a two-step process that involves querying two types

of indexes. KV-CSD does not cache data. We clean OS page

cache at the beginning of each RocksDB run.

Figure 11 shows the result for the write phase. While it

takes KV-CSD and RocksDB about the same amount of

time to finish writing, compaction, and indexing, KV-CSD

is able to run compaction and indexing asynchronously in

the device without needing the host application to wait

for it. This makes KV-CSD effectively 10.6× faster than

RocksDB in this particular experiment with its 66s effective

write time compared to RocksDB’s 704s effective write time.

In real world environments, simulations usually spend 85%

time computing and 15% time writing. When write frequency

increases significantly, KV-CSD may be unable to finish

compaction before the next dump occurs. We expect produc-

tion computational storage devices though to feature more

optimized hardware such as FPGA such that it can process

data much more quickly to accommodate extremer cases.

Figure 12 shows the results for the query phase. Through

sorting and building secondary data indexes, both KV-CSD

and RocksDB are able to efficiently handle queries over a

���

��

��� ���

�

	��

��� ���

�

���

���

���

���

	���

����� ������

��

���
��

��
�

���� ���� ���!"����� �����#" $���#�%������ ������ &��"'

Fig. 11: Breakdown of KV-CSD and RocksDB insertion time.

� � � �� ��
��

��

��

	
� 	
� �
� �
� �
�
��

��

��

	

�	

�	

�	

�	

�		

��	

	
� 	
� 	
� � � � �	 �	

�
��

�(
��
��
��

�(
��
��

����(�����������(

��� �!" #$%&�!

Fig. 12: KV-CSD vs RocksDB secondary index query time.

non-primary data attribute. KV-CSD shows up to 7.4× faster

query performance compared to RocksDB due to offloaded

processing which reduces not only the amount of data that

needs reading back to host for query handling, but also the

number of queries that the application needs to execute for

a search. While KV-CSD directly handles a secondary index

query, a RocksDB user has to query primary and secondary

indexes separately. KV-CSD’s query speedup drops as query

selectivity reduces — from 7.4× in the 0.1% run to 1.3×

in the 20% run — due to RocksDB client side caching which

benefits queries that are less selective (queries that return more

data). Because KV-CSD does not cache data, its query latency

is always linear to the total number of particles returned.

Because we expect caching to be less effective in produc-

tion environments due to their high data-size-to-memory-size

ratios, and read inflation to be considerably more punishing,

we anticipate KV-CSD, which minimizes data movement to

accelerate queries, to outperform RocksDB, which employs

client-side caching for query optimization, especially for situ-

ations involving highly selective data inquiries.

VII. RELATED WORK

Computational storage is a technique that reduces data

movements between compute hosts and storage by bridging

computation to the storage systems. This computation of-

floading approach offers several benefits, including reduced

bandwidth requirements, lower latency, and energy-efficient

computing. Previous studies on computational storage [63–

78] have demonstrated its promise, and commercially avail-

able computational storage systems such as SmartSSD [64],

ScaleFlux [78], Newport CSD [65, 74], Kinetic [79], and

Catalina [74] have flourished over the past decade.

Several previous studies have proposed the design and

implementation of Key-Value Store inside SSDs to acceler-

ate the processing speed of key-value point queries, such

as Put and Get operations using primary keys [80–86]. In

particular, iLSM-SSD [82], Iso-KVSSD [83], and PinK [81]

adopted LSM tree-based index structures, whereas KAML [80]

141

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

uses a hash-based index data structure for their internal in-

dex implementation. Both iLSM-SSD [82], Iso-KVSSD [83],

and PinK [81] adopted key-value separation techniques to

overcome internal memory space constraints. Furthermore,

PinK [81] manages to minimize tail latency by pinning low-

level SSTables at DRAM.

Previously proposed key-value SSDs have been optimized

for handling point queries based on primary keys, and are

often not well-suited for HPC workloads due to their com-

paction overhead or hash-based collision issues when writing

data. In comparison, KV-CSD has been carefully designed to

cater specifically to HPC applications, and offers optimized

search query services by using secondary attributes as a

secondary key, enhancing scientific discovery services in HPC.

In addition to KV-CSD, there are also hybrid approaches

where secondary indexes are built by host on top of a hash

based KVSSD [87, 88]. Finally, two recent surveys provide a

comprehensive overview of various software-based LSM-Tree

key-value store techniques and designs [89, 90].

VIII. CONCLUSION

Rising data sizes and client performance expectations are

driving an increasing demand for high-performance storage.

Concurrently, the expansion of data is leading to a proliferation

of highly selective data inquiry workloads across various

scientific computing areas. With the performance of these

intensive storage workloads becoming increasingly hampered

by the overheads and limitations of host software, advance-

ments in computational storage technology present a unique

opportunity to overcome these challenges.

KV-CSD is a hardware-accelerated, key-value based compu-

tational storage device. It is designed to reduce the burden on

host compute resources and enable highly efficient data queries

of key-value records by providing both primary and secondary

indexes for scientific applications. To support the proposed

hardware-accelerated key-value store, KV-CSD implements a

simplified LSM-Tree that allows for deferred compaction thus

completing write operations before the expensive indexing

process begins. This improves overall performance by en-

abling specialized processing of both writing and indexing

data. When using real-world scientific application data to

compare these methods with the current state-of-the-art, KV-

CSD achieves ten times greater put performance and provides

seven times speedup in query time. These techniques not only

reduce the resources required by the host, but most importantly

they decrease the amount of data being read and written out

of the storage system.

KV-CSD is defined by three major features that accelerate

data-intensive scientific applications. First, a hardware archi-

tecture that leverages computational storage and a ZNS SSD

leading to an efficient solution that enables processing near

storage while also removing bottlenecks due to expensive

software layers. Second, index creation is optimized to occur

asynchronously therefore providing optimal write performance

without removing index capability or reducing index quality.

Finally, KV-CSD provides secondary index construction to

further minimize the amount of data retrieved thus improving

performance for highly-selective queries.

ACKNOWLEDGMENT

We thank the anonymous reviewers of our paper for their

invaluable comments on improving the paper. This manuscript

has been approved for unlimited release and has been assigned

LA-UR-23-25314. This work has been authored by employees

of Triad National Security, LLC which operates Los Alamos

National Lab with the U.S. Department of Energy/National

Nuclear Security Administration.

REFERENCES

[1] J. Bent, B. Settlemyer, and G. Grider, “Serving data to the lunatic
fringe: The evolution of HPC storage,” USENIX ;login:, vol. 41, no. 2,
Jun. 2016.

[2] J. Lofstead and R. Ross, “Insights for exascale IO apis from building
a petascale IO api,” in Proceedings of the 2013 International Con-

ference on High Performance Computing, Networking, Storage, and

Analysis (SC 13), 2013, 87:1–87:12. DOI: 10.1145/2503210.2503238.
[3] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,

“I/O performance challenges at leadership scale,” in Proceedings of

the 2009 International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC 09), 2009, 40:1–40:12. DOI:
10.1145/1654059.1654100.

[4] Trinity, https://www.lanl.gov/projects/trinity/, 2017.
[5] Frontier, https://www.olcf.ornl.gov/frontier/, 2021.
[6] Perlmutter, https://www.nersc.gov/systems/perlmutter/, 2021.
[7] G. K. Lockwood, K. Lozinskiy, L. Gerhardt, R. Cheema, D. Hazen,

and N. J. Wright, “Designing an all-flash lustre file system for the
2020 nersc perlmutter system,” in Proceedings of the 2022 Cray

User Group (CUG 2022), https : / / cug . org / proceedings / cug2019 _
proceedings/includes/files/pap131s2-file1.pdf, 2022.

[8] G. K. Lockwood, A. Chiusole, L. Gerhardt, K. Lozinskiy, D. Paul,
and N. J. Wright, “Architecture and performance of perlmutter’s 35
pb clusterstor e1000 all-flash file system,” in Proceedings of the 2021

Cray User Group (CUG 2021), https://cug.org/proceedings/cug2021_
proceedings/includes/files/pap120s2-file1.pdf, 2021.

[9] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J. Wright,
“Architecture and design of cray datawarp,” in Proceedings of the

2016 Cray User Group (CUG 2016), https: / /cug.org/proceedings/
cug2016_proceedings/includes/files/pap105s2-file1.pdf, 2016.

[10] Unify: Distributed burst buffer file system, https://computing.llnl.gov/
projects/unify, 2019.

[11] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J.
Nunez, M. Polte, and M. Wingate, “PLFS: A checkpoint filesystem
for parallel applications,” in Proceedings of the 2009 International

Conference for High Performance Computing, Networking, Storage,

and Analysis (SC 09), 2009, 21:1–21:12. DOI: 10 . 1145 / 1654059 .
1654081.

[12] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the Role of Burst Buffers in Leadership-
Class Storage Systems,” in Proceedings of the 2012 International

Conference on Massive Storage Systems and Technologies (MSST 12),
2012, pp. 1–11. DOI: 10.1109/MSST.2012.6232369.

[13] LANL, NERSC, SNL, Crossroads workflows, https://www.lanl.gov/
projects/crossroads/__internal/__blocks/xroads- workflows.pdf, Jul.
2018.

[14] J. Gu, S. Klasky, N. Podhorszki, J. Qiang, and K. Wu, “Querying large
scientific data sets with adaptable io system adios,” in Supercomputing

Frontiers, R. Yokota and W. Wu, Eds., Cham: Springer International
Publishing, 2018, pp. 51–69.

[15] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin,
A. Shoshani, A. Uselton, and K. Wu, “Parallel I/O, analysis, and
visualization of a trillion particle simulation,” in Proceedings of the

2012 International Conference on High Performance Computing,

Networking, Storage, and Analysis (SC 12), 2012, 59:1–59:12. DOI:
10.1109/SC.2012.92.

142

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

[16] Q. Zheng, C. D. Cranor, D. Guo, G. R. Ganger, G. Amvrosiadis,
G. A. Gibson, B. W. Settlemyer, G. Grider, and F. Guo, “Scaling
embedded in-situ indexing with DeltaFS,” in Proceedings of the

2018 International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC 18), 2018, 3:1–3:15. DOI:
10.1109/SC.2018.00006.

[17] Leveldb, https://github.com/google/leveldb, 2014.
[18] Rocksdb, https://rocksdb.org/, 2014.
[19] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “Rocksdb: Evolution

of development priorities in a key-value store serving large-scale
applications,” ACM Trans. Storage, vol. 17, no. 4, 2021. DOI: 10 .
1145/3483840.

[20] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling
file system metadata performance with stateless caching and bulk
insertion,” in Proceedings of the 2014 International Conference for

High Performance Computing, Networking, Storage, and Analysis (SC

14), 2014, pp. 237–248. DOI: 10.1109/SC.2014.25.
[21] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, “LocoFS: A loosely-coupled

metadata service for distributed file systems,” in Proceedings of the

2017 International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC 17), 2017, 4:1–4:12. DOI:
10.1145/3126908.3126928.

[22] Q. Zheng, C. D. Cranor, G. R. Ganger, G. A. Gibson, G. Amvrosiadis,
B. W. Settlemyer, and G. A. Grider, “Deltafs: A scalable no-ground-
truth filesystem for massively-parallel computing,” in Proceedings of

the 2021 International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC 21), 2021. DOI: 10 . 1145 /
3458817.3476148.

[23] W. Lv, Y. Lu, Y. Zhang, P. Duan, and J. Shu, “InfiniFS: An
efficient metadata service for Large-Scale distributed filesystems,” in
Proceedings of the 20th USENIX Conference on File and Storage

Technologies (FAST 22), Feb. 2022, pp. 313–328.
[24] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and

G. Amvrosiadis, “The case for custom storage backends in distributed
storage systems,” ACM Trans. Storage, vol. 16, no. 2, 2020. DOI:
10.1145/3386362.

[25] D.-Y. Lee, K. Jeong, S.-H. Han, J.-S. Kim, J.-Y. Hwang, and S. Cho,
“Understanding write behaviors of storage backends in ceph object
store,” in Proceedings of the 2017 IEEE International Conference on

Massive Storage Systems and Technology (MSST 17), vol. 10, 2017.
[26] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J.

Carey, M. Dreseler, and C. Li, “Storage management in asterixdb,”
Proc. VLDB Endow., vol. 7, no. 10, 841–852, 2014. DOI: 10.14778/
2732951.2732958.

[27] Y. Matsunobu, S. Dong, and H. Lee, “Myrocks: Lsm-tree database
storage engine serving facebook’s social graph,” Proc. VLDB Endow.,
vol. 13, no. 12, 3217–3230, 2020. DOI: 10.14778/3415478.3415546.

[28] P. Desai and K. Leong, Rockset concepts, design, and architecture,
https : / / rockset . com / Rockset _ Concepts _ Design _ Architecture . pdf,
2022.

[29] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The Log-structured
Merge-tree (LSM-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385, Jun.
1996. DOI: 10.1007/s002360050048.

[30] M. A. Qader, S. Cheng, and V. Hristidis, “A comparative study
of secondary indexing techniques in lsm-based nosql databases,” in
Proceedings of the 2018 International Conference on Management of

Data (SIGMOD 18), 2018, 551–566. DOI: 10.1145/3183713.3196900.
[31] C. Luo and M. J. Carey, “Efficient data ingestion and query processing

for lsm-based storage systems,” Proc. VLDB Endow., vol. 12, no. 5,
531–543, 2019. DOI: 10.14778/3303753.3303759.

[32] C. Tang, J. Wan, Z. Tan, and G. Li, “Accelerating range queries of
primary and secondary indices for key-value separation,” in Proceed-

ings of the 13th Symposium on Cloud Computing (SoCC 22), 2022,
226–239. DOI: 10.1145/3542929.3563479.

[33] J. V. D’silva, R. Ruiz-Carrillo, C. Yu, M. Y. Ahmad, and B. Kemme,
“Secondary indexing techniques for key-value stores: Two rings to
rule them all,” in International Workshop On Design, Optimization,

Languages and Analytical Processing of Big Data (DOLAP), 2017.
[34] C. Luo and M. J. Carey, “On performance stability in lsm-based

storage systems,” Proc. VLDB Endow., vol. 13, no. 4, 449–462, 2019.
DOI: 10.14778/3372716.3372719.

[35] F. Mei, Q. Cao, H. Jiang, and L. T. Tintri, “Lsm-tree managed
storage for large-scale key-value store,” in Proceedings of the 2017

Symposium on Cloud Computing (SoCC 17), 2017, 142–156. DOI:
10.1145/3127479.3127486.

[36] Computational storage architecture and programming model v1.0,
https : / / www . snia . org / sites / default / files / technical - work /
computational / release /SNIA- Computational - Storage- Architecture-
and-Programming-Model-1.0.pdf, 2022.

[37] Y. Kang, R. Pitchumani, P. Mishra, Y.-s. Kee, F. Londono, S. Oh,
J. Lee, and D. D. G. Lee, “Towards building a high-performance,
scale-in key-value storage system,” in Proceedings of the 12th ACM

International Conference on Systems and Storage (SYSTOR 19), 2019,
144–154. DOI: 10.1145/3319647.3325831.

[38] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh, D. L. Moal, G. R.
Ganger, and G. Amvrosiadis, “ZNS: Avoiding the block interface tax
for flash-based SSDs,” in Proceedings of the 2021 USENIX Annual

Technical Conference (USENIX ATC 21), Jul. 2021, pp. 689–703.
[39] Nvm express zoned namespace command set specification, https :

/ / nvmexpress . org / wp - content / uploads / NVM - Express - Zoned -
Namespace-Command-Set-Specification-1.1c-2022.10.03-Ratified.
pdf, 2022.

[40] Sidewinder-100 pcie nvme storage controller, https://fidus.com/wp-
content/uploads/2019/01/Sidewinder_Data_Sheet.pdf, 2019.

[41] Storage performance development kit, https://spdk.io/, 2015.
[42] Y. Liu, Y. Lu, Z. Chen, and M. Zhao, “Pacon: Improving scalability

and efficiency of metadata service through partial consistency,” in
Proceedings of the 2020 IEEE International Symposium on Parallel

and Distributed Processing (IPDPS 20), 2020, pp. 986–996. DOI:
10.1109/IPDPS47924.2020.00105.

[43] B. Dong, S. Byna, and K. Wu, “Sds-sort: Scalable dynamic skew-
aware parallel sorting,” in Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and Distributed Computing

(HPDC 16), 2016, 57–68. DOI: 10.1145/2907294.2907300.
[44] J. Chou, M. Howison, B. Austin, K. Wu, J. Qiang, E. W. Bethel,

A. Shoshani, O. Rübel, Prabhat, and R. D. Ryne, “Parallel index
and query for large scale data analysis,” in Proceedings of the

2011 International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC 11), 2011, 30:1–30:11. DOI:
10.1145/2063384.2063424.

[45] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N.
Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello ADIOS: The challenges and lessons of developing leadership
class I/O frameworks,” Concurr. Comput. : Pract. Exper., vol. 26,
no. 7, pp. 1453–1473, May 2014. DOI: 10.1002/cpe.3125.

[46] Q. Zheng, C. D. Cranor, A. Jain, G. R. Ganger, G. A. Gibson,
G. Amvrosiadis, B. W. Settlemyer, and G. Grider, “Streaming data
reorganization at scale with deltafs indexed massive directories,” ACM

Trans. Storage, vol. 16, no. 4, Sep. 2020. DOI: 10.1145/3415581.
[47] Pe8000 series - sk hynix ssd, https://product.skhynix.com/products/

ssd/essd/pe8000.go, 2022.
[48] Kioxia enterprise ssd data sheet, https://americas.kioxia.com/content/

dam / kioxia / shared / business / ssd / enterprise - ssd / asset / datasheet /
EnterpriseSSD_DataSheet_E.pdf, 2022.

[49] Samsung develops high-performance pcie 5.0 ssd for enterprise

servers, https : / / semiconductor . samsung . com / newsroom / news /
samsung- develops- high- performance- pcie- 5- 0- ssd- for- enterprise-
servers/, 2021.

[50] B. Settlemyer, G. Amvrosiadis, P. Carns, and R. Ross, “It’s time to talk
about hpc storage: Perspectives on the past and future,” Computing

in Science & Engineering, vol. 23, no. 6, pp. 63–68, 2021. DOI:
10.1109/MCSE.2021.3117353.

[51] P. Schwan, “Lustre: Building a file system for 1000-node clusters,”
in Proceedings of the 2003 Linux Symposium, 2003, pp. 380–386.

[52] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proceedings of the 1st USENIX

Conference on File and Storage Technologies (FAST 02), 2002,
pp. 231–244.

[53] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “File systems unfit as distributed storage backends:
Lessons from 10 years of ceph evolution,” in Proceedings of the 27th

ACM Symposium on Operating Systems Principles (SOSP 19), 2019,
353–369. DOI: 10.1145/3341301.3359656.

[54] Nvm express base specification, https://nvmexpress.org/wp-content/
uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.
pdf, 2022.

143

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

[55] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Trans. Database Syst., vol. 31, no. 1,
pp. 1–38, Mar. 2006. DOI: 10.1145/1132863.1132864.

[56] Nvm express key value command set specification, https://nvmexpress.
org/wp-content/uploads/NVM-Express-Key-Value-Command-Set-
Specification-1.0c-2022.10.03-Ratified-1.pdf, 2022.

[57] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming
model, algorithms and evaluation,” SIGOPS Oper. Syst. Rev., vol. 32,
no. 5, 81–91, Oct. 1998. DOI: 10.1145/384265.291026.

[58] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for
intelligent disks (idisks),” SIGMOD Rec., vol. 27, no. 3, 42–52, Sep.
1998. DOI: 10.1145/290593.290602.

[59] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for
large-scale data mining and multimedia,” in Proceedings of the 24rd

International Conference on Very Large Data Bases (VLDB 98), 1998,
62–73.

[60] K. Ren and G. Gibson, “TABLEFS: Enhancing metadata efficiency
in the local file system,” in Proceedings of the 2013 USENIX Annual

Technical Conference (USENIX ATC 13), 2013, pp. 145–156.
[61] G. Steiner and B. Philofsky, Managing power and performance with

the zynq ultrascale+ mpsoc, https : / /docs .xilinx .com/v /u /en- US/
wp482-zu-pwr-perf, 2016.

[62] Vpic, https://github.com/lanl/vpic, 2008.
[63] Eideticom, Noload computational storage processor, https : / /www.

eideticom.com/media/attachments/2020/06/03/noload-compression-
zfs.pdf, 2020.

[64] Samsung Electronics, Samsung Electronics Develops Second-

Generation SmartSSD Computational Storage Drive With Upgraded

Processing Functionality, 2022. [Online]. Available: https : / / news .
samsung.com/global/.

[65] J. Do, V. C. Ferreira, H. Bobarshad, M. Torabzadehkashi, S. Rezaei,
A. Heydarigorji, D. Souza, B. F. Goldstein, L. Santiago, M. S. Kim,
P. M. V. Lima, F. M. G. França, and V. Alves, “Cost-Effective,
Energy-Efficient, and Scalable Storage Computing for Large-Scale
AI Applications,” ACM Trans. Storage, vol. 16, no. 4, 2020. DOI:
10.1145/3415580.

[66] A. HeydariGorji, M. Torabzadehkashi, S. Rezaei, H. Bobarshad,
V. Alves, and P. H. Chou, In-storage Processing of I/O Intensive

Applications on Computational Storage Drives, 2021. eprint: arXiv:
2112.12415. [Online]. Available: https://arxiv.org/abs/2112.12415.

[67] A. HeydariGorji, S. Rezaei, M. Torabzadehkashi, H. Bobarshad, V.
Alves, and P. H. Chou, “HyperTune: Dynamic Hyperparameter Tun-
ing for Efficient Distribution of DNN Training over Heterogeneous
Systems,” in Proceedings of the 39th International Conference on

Computer-Aided Design, ser. ICCAD ’20, Virtual Event, USA, 2020.
[68] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers,

and Y. Solihin, “Active flash: Towards Energy-Efficient, In-Situ data
analytics on Extreme-Scale machines,” in Proceedings of the 11th

USENIX Conference on File and Storage Technologies, ser. FAST
’13’, Feb. 2013, pp. 119–132.

[69] C. Lukken and A. Trivedi, “Past, Present and Future of Computational
Storage: A Survey,” CoRR, vol. abs/2112.09691, 2021. arXiv: 2112.
09691.

[70] A. Barbalace and J. Do, “Computational storage: Where are we
today?” In CIDR, 2021.

[71] A. Barbalace, M. Decky, J. Picorel, and P. Bhatotia, “BlockNDP:
Block-Storage Near Data Processing,” in Proceedings of the 21st In-

ternational Middleware Conference Industrial Track, ser. Middleware
’20, Delft, Netherlands, 2020, 8–15.

[72] C. Lukken, G. Frascaria, and A. Trivedi, “ZCSD: a Computational
Storage Device over Zoned Namespaces (ZNS) SSDs,” arXiv preprint

arXiv:2112.00142, 2021.
[73] G. Frascaria, “E2bpf: An evaluation of in-kernel data processing with

ebpf,” Ph.D. dissertation, Universiteit van Amsterdam, 2021.
[74] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad, V.

Alves, and N. Bagherzadeh, “Catalina: In-Storage Processing Ac-
celeration for Scalable Big Data Analytics,” in Proceedings of the

27th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing, ser. PDP ’19, 2019, pp. 430–437. DOI:
10.1109/EMPDP.2019.8671589.

[75] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
Framework for Near-Data Processing of Big Data Workloads,” in
Proceedings of the ACM/IEEE 43rd Annual International Symposium

on Computer Architecture, ser. ISCA ’16, 2016, pp. 153–165. DOI:
10.1109/ISCA.2016.23.

[76] S. Salamat, A. Haj Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki,
and T. Rosing, “NASCENT: Near-Storage Acceleration of Database
Sort on SmartSSD,” in Proceedings of the ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21,
Virtual Event, USA, 2021, 262–272.

[77] S. Salamat, H. Zhang, Y. S. Ki, and T. Rosing, “NASCENT2: Generic
Near-Storage Sort Accelerator for Data Analytics on SmartSSD,”
ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 2, 2022.

[78] Scaleflux Inc, Scaleflux, "http://www.scaleflux.com/", 2022.
[79] Seagate, Kinetic HDD, "https://www.seagate.com/support/enterprise-

servers-storage/nearline-storage/kinetic-hdd/", 2022.
[80] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML:

A Flexible, High-Performance Key-Value SSD,” in Proceedings of

the IEEE International Symposium on High Performance Computer

Architecture (HPCA), IEEE, 2017, pp. 373–384.
[81] J. Im, J. Bae, C. Chung, Arvind, and S. Lee, “PinK: High-speed

In-storage Key-value Store with Bounded Tails,” in Proceedings of

the USENIX Annual Technical Conference (ATC), USENIX, 2020,
pp. 173–187.

[82] C.-G. Lee, H. Kang, D. Park, S. Park, Y. Kim, J. Noh, W. Chung,
and K. Park, “iLSM-SSD: An Intelligent LSM-Tree Based Key-Value
SSD for Data Analytics,” in Proceedings of the 27th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), IEEE, 2019, pp. 384–395.
[83] D. Min and Y. Kim, “Isolating Namespace and Performance in Key-

Value SSDs for Multi-tenant Environments,” in Proceedings of the

13th USENIX Workshop on Hot Topics in Storage and File Systems,
ser. HotStorage ’21, 2023.

[84] J. Bhimani, J. Yang, N. Mi, C. Choi, and M. Saha, “Fine-grained
Control of Concurrency within KV-SSDs,” in Proceedings of the 14th

ACM International System and Storage Conference (SYSTOR), ACM,
2021, pp. 1–12.

[85] S.-M. Wu, K.-H. Lin, and L.-P. Chang, “KVSSD: Close Integration
of LSM Trees and Flash Translation Layer for Write-efficient KV
Store,” in Proceedings of the Design, Automation & Test in Europe

Conference & Exhibition (DATE), IEEE, 2018, pp. 563–568.
[86] Samsung smart ssd, https://samsungatfirst.com/smartssd-ocp/, 2018.
[87] C. Duffy, J. Shim, S.-H. Kim, and J.-S. Kim, “Dotori: A key-value

ssd based kv store,” Proc. VLDB Endow., vol. 16, no. 6, 1560–1572,
2023. DOI: 10.14778/3583140.3583167. [Online]. Available: https:
//doi.org/10.14778/3583140.3583167.

[88] M. Qin, Q. Zheng, J. Lee, B. Settlemyer, F. Wen, N. Reddy, and P.
Gratz, “Kvrangedb: Range queries for a hash-based key-value device,”
ACM Trans. Storage, 2023, Just Accepted. DOI: 10.1145/3582013.

[89] S. Sarkar and M. Athanassoulis, “Dissecting, designing, and optimiz-
ing lsm-based data stores,” in Proceedings of the 2022 International

Conference on Management of Data, ser. SIGMOD ’22, Philadelphia,
PA, USA: Association for Computing Machinery, 2022, 2489–2497.
DOI: 10.1145/3514221.3522563. [Online]. Available: https://doi.org/
10.1145/3514221.3522563.

[90] C. Luo and M. J. Carey, “Lsm-based storage techniques: A survey,”
The VLDB Journal, vol. 29, pp. 393–418, 2018. [Online]. Available:
https://doi.org/10.1007/s00778-019-00555-y.

144

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:09:28 UTC from IEEE Xplore. Restrictions apply.

