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ABSTRACT
While the state-of-the-art runtime zone-reset algorithm of
the ZenFS in RocksDB is optimized for the performance of
Zone Namespace (ZNS) SSDs, it does not take into account
the lifetime constraint of ZNS SSDs. To address this issue,
we present FAR, a Free-space Adaptive Runtime Zone-Reset
algorithm for ZenFS, which dynamically adjusts the frequency
of runtime zone-reset calls based on the available free-space
in the ZNS SSD.We developed FARwith the ZenFS of RocksDB
using a ZNS SSD prototype based on the Cosmos+OpenSSD
platform and compared it with the state-of-the-art runtime
zone-reset algorithm used in ZenFS. Our extensive evalua-
tions demonstrate that FAR improves the lifetime of ZNS
SSD by 2× without compromising performance.
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1 INTRODUCTION
ZNS SSDs [6, 10] use a “zone” that enforces sequential
writes and disallows overwrites. [4, 5, 14, 16, 27]. This re-
moves the need for in-device Garbage Collection (GC) in
the Flash Translation Layer (FTL), enhancing I/O perfor-
mance [6, 14, 16, 20, 27]. However, when free-space is
needed in the ZNS SSD, applications that access ZNS SSDs
must perform Zone Cleaning (ZC) [7, 14, 22, 23].During ZC,
a victim zone is selected for erasure and the valid data in the
victim zone is safely moved to a free zone, after which the
victim zone is erased [7, 26]. This movement of valid data
creates write amplification (WA) problems. [17]

Meanwhile, Log-StructuredMerge-tree (LSM-tree)-based
Key-value stores such as RocksDB [12] and LevelDB [13] are
typical applications suitable for ZNS SSDs because they only
allow sequential writing through append-only [5, 24, 28].
However, to use ZNS SSDs, such key-value stores require
middleware to manage stored data. So, RocksDB uses a user-
level file system, called ZenFS [9]. ZenFS adopts LSM-tree-
aware zone allocation strategies [6, 22] to minimize the WA
problem explained earlier with the ZNS SSD by writing data
with the same lifetime to the same zone.This helps to reduce
the WA overhead during ZC by minimizing the amount of
valid data present in the victim zone. However, it is not pos-
sible to completely eliminate the WA overhead associated
with ZC.

Moreover, during ZC, the foreground I/Os being handled
by RocksDBmay be blocked due to interference with ZC, re-
sulting in decreased throughput. To minimize performance
degradation caused by ZC, ZenFS employs a runtime zone-
reset, which triggers zone-reset to a zone with only invalid
data during runtime. This runtime zone-reset can free up
space without any data copying, which was the main cause
of the WA problem during ZC. Moreover, the runtime zone-
reset can free up space before ZC, delaying the need for ZC
calls and ultimately reducing the I/O blocking issues of the
foreground I/Os that occur during ZC. However, the cur-
rent state-of-the-art runtime zone-reset implementation in
ZenFS uses a greedy approach, resetting a zone if all data
before the zone’s write pointer (WP) is invalid, regardless
of the WP’s location. This greedy approach can potentially
shorten the device’s lifetime due to excessive zone-resets.

https://doi.org/10.1145/3599691.3603410
https://doi.org/10.1145/3599691.3603410
https://doi.org/10.1145/3599691.3603410


HotStorage ’23, July 9, 2023, Boston, MA, USA S. Byeon et al.

Memory

Disk

Size LimitImmutable 

MemTable
MemTable

SST SST

SST SST

SST SST

SST

SST SST

PUT(key, value)

FLUSH/Compaction
Write Stall

Level 0

Level 1

Level 2

Figure 1: Description of RocksDB’s LSM-tree.

Thus, in this paper, we propose FAR, a free-space adap-
tive runtime zone-reset algorithm that dynamically adjusts
the frequency of runtime zone-reset calls based on the avail-
able free-space in the ZNS SSD. Consequently, FAR achieves
a balance between performance and device lifetime, effec-
tively increasing longevity of the device without compro-
mising performance. For evaluations, we developed the ZNS
SSD prototype on the Cosmos+ OpenSSD platform [1] and
implemented FAR bymodifying ZenFS v2.1 in RocksDB v7.4.
Our extensive evaluations of FAR confirm that it improves
the device’s lifetime by an average of 50% compared to
ZenFS’s current runtime zone-reset implementation using
a variety of workloads with minimal performance degrada-
tion.

2 BACKGROUND
2.1 Zone Namespace SSD
The NVMe Zoned Namespace (ZNS) [6, 10] uses a zone in-
terface for flash-based SSDs [4, 14–16, 27]. Each ZNS SSD
zone is composed of multiple NAND erase blocks, which
are directly exposed to the host machine through the zone
interface. ZNS enforces only sequential writes to each zone
with reset commands, eliminating the need for GC in the
FTL in the SSD. However, ZNS requires modifications to
the software running on the host due to the change made
on the SSD hardware [6, 7, 14, 27]. For example, applica-
tions that use the ZNS SSD must perform data placement
by selecting zones when writing data. Applications must
be in charge of free-space reclamation [6, 14, 27], explic-
itly erasing zones instead of relying on the FTL of the SSD.
The free-space reclamation process involves executing zone-
reset. The zone-reset entails erasing blocks, decreasing the
Program/Erase (P/E) cycle [11] of cells in the NAND flash
memory. During the zone-reset, valid data in the zone to be
reset must be copied into a free zone before the reset, lead-
ing to increased I/O blocking time.

2.2 Log-Structured Merge-Tree
LSM-tree [24] is a write optimized data structure and have
been widely adopted in various key-value stores such as
RocksDB [12], LevelDB [13], and MongoDB [18]. Figure 1
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Figure 2: Description of Zone Cleaning in ZenFS.

describes the architecture and operation of RocksDB’s LSM-
tree. LSM-tree is comprised of in-memory (MemTable and
Immutable MemTable) and persistent, Sorted String Table
(SSTable) components in an hierarchical levels of increas-
ing sizes. The in-memory components buffer the incoming
PUT request from application and later flushed, in sequential
order, to persistent storage in SSTable format at Level 0.

Once level 𝑖 reaches a certain size threshold, a compaction
operation is triggered. The compaction operation selects
a victim SSTable file from level 𝑖 and the corresponding
SSTable files from level 𝑖 + 1 with overlapping key ranges
and perform merge-sort operation on the selected SSTable
files to write a new SSTable file at level 𝑖+1. The compaction
operation maintains the structural constraint and lookup
performance of LSM-tree. However, compaction operation
can lead to write stall problem when level 0 reaches size
threshold and not able accommodate incoming in-memory
components. The write stalls block the foreground I/Os at
application level, thus resulting in high latency spikes and
decreased overall throughput [3, 8, 29, 30].

2.3 Zone Management Middleware
Applications that use the ZNS SSD require middleware that
can manage the zones of the ZNS SSD. ZenFS, a user-level
file system used as amiddleware for RocksDB, is responsible
for allocation space for SSTables in the zones and reclaiming
zones with invalid data.
Zone Allocation: ZenFS employs Lifetime-Based Zone

Allocation (LIZA) when allocating space for new SSTable
in the zone, which is to reduce the data copying overhead
during ZC. LIZA assigns a unique lifetime hint value to
each level of the LSM-tree which indicates the lifetime of
SSTables in that level. LIZA uses this lifetime hint informa-
tion to allocate zones for SSTables such that SSTables with
similar lifetime hints are grouped and placed in the same
zone. LIZA, consequently, allows SSTables in the same zone
more likely to be erased together in the future when ZC is
performed, eventually minimizing the valid data copy over-
head during ZC. Furthermore, Compaction-Aware Zone Al-
location (CAZA) [22] is another study with the same goal
as LIZA. CAZA allocates SSTables that participate in com-
paction to the same zone [22].
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Figure 3: An analysis of the balance between runtime
zone-reset and ZC in terms of ZC overhead and de-
vice’s lifetime.

Zone Cleaning: ZC is similar to segment cleaning in log-
structured file systems [21, 25]. Figure 2 illustrates the pro-
cess of ZC in ZenFS. When there is no available space for
writing, ZC is triggered to produce free-space/zones by eras-
ing invalid data in the zone through following steps:

(1) First it selects a victim zone to be erased.
(2) All valid data within the victim zone are copied to

a free zone. This process is necessary to ensure that
valid data is safely stored during the ZC process.

(3) ZenFS sends a zone-reset command to the ZNS SSD
to erase the victim zone.

In ZenFS, ZC is triggered in background when the free-
space falls below 20% of the entire space.

As explained, ZC entails valid data copying, which is the
main cause of blocking foreground I/O and lowering I/O per-
formance. Therefore, several previous works [19, 22] have
focused on minimizing the data copying overhead during
ZC by placing SSTables to be erased in the same zone. How-
ever, the valid data copy overhead during ZC cannot be com-
pletely eliminated. Thus, ZenFS adopted the runtime zone-
reset to alleviate the performance issues caused during ZC.

3 RUNTIME ZONE-RESET ALGORITHM
3.1 Eager Zone-Reset Algorithm
The state-of-the-art runtime zone-reset algorithm imple-
mented in ZenFS of RocksDB checks all zones and find zones
with invalid data up to the Writer Pointer (WP) whenever
a file or directory is deleted. If such zones exist, ZenFS per-
forms a zone-reset on them, without paying attention toWP.
This algorithm is referred to as the eager runtime zone-reset

Invalid

Unwritten

WPTwp

Figure 4: Description of LZReset with 𝑇𝑊𝑃 .

(EZReset), as it performs zone-resets during runtime rather
than during ZC.

EZReset has the advantage of reducing the frequency of
ZC calls and minimizing foreground I/O’s blocking times
that occur during ZC. This is because it frees up space by
performing a zone-reset to zones before ZC calls, ultimately
reducing the total number of ZC calls.

However, EZReset may call zone-resets excessively, even
when it is unnecessary (erase blocks in the zones exces-
sively), potentially increasing the number of P/E cycles,
leading to device failure. To mitigate this issue, EZReset
should be carefully optimized to ensure that it calls zone-
resets only when necessary, thus minimizing the impact on
device’s lifetime.

Figure 3 shows the trade-off between runtime zone-reset
and ZC in terms of data copying overhead during ZC and
device’s lifetime. If the number of runtime zone-reset calls
increase, the number of ZC call decrease, thus reducing
the data copying overhead during ZC and minimizing fore-
ground I/O blocking time that may occur during ZC (as
shown by the solid lines in the Figure 3). However, exces-
sive zone-reset calls have adverse effects which decreases
device’s lifetime, meanwhile fewer calls have favorable ef-
fects.

3.2 Free-Space Adaptive Runtime
Zone-Reset Algorithm

Unlike EZReset, Lazy runtime Zone-reset (LZReset) is an
algorithm that controls zone-reset calls according to the po-
sition of WP in runtime.

Figure 4 describes the working flow of LZReset where it
maintains aWP threshold (𝑇𝑊𝑃 ),which determines when to
call for runtime zone-reset. When WP in a zone is greater
than or equal to 𝑇𝑊𝑃 and all the data before WP is invalid,
LZReset calls zone-reset. Therefore, LZReset utilizes𝑇𝑊𝑃 to
control the frequency of runtime zone-reset calls, striking
a balance between the performance degradation caused by
the data copying overhead during ZC and the device’s life-
time impacted by excessive runtime zone-reset calls.

However, an inappropriate setting for 𝑇𝑊𝑃 can lead to
negative effects, so it needs to be carefully tuned. If 𝑇𝑊𝑃

is set too large, the frequency of calling runtime zone-reset
is reduced, which does not help minimize the performance
degradation caused by the aforementioned ZC. Conversely,
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if𝑇𝑊𝑃 is set too small, it behaves similarly to EZReset and in-
herits its advantages and disadvantages. Thus, our goal is to
develop an algorithm to set 𝑇𝑊𝑃 appropriately to minimize
the lifetime problem associatedwith EZReset and reduce the
overhead caused by ZC.

To achieve this goal, we propose a Free-space-Adaptive
Runtime zone-reset (FAR) algorithm that dynamically sets
𝑇𝑊𝑃 based on the remaining free space on the ZNS SSD.The
idea behind FAR is that the blocking time of foreground I/O
during ZC varies with the percentage of free space remain-
ing on the ZNS SSD. As the free-space ratio decreases, the
blocking time of foreground I/O increases during ZC, and
vice versa. FAR is a variant of LZReset as it controls run-
time zone-reset calls dynamically based on the amount of
free space remaining on the device.

To implement FAR, we use two variables: the ratio of free
space to the maximum device capacity (𝑅𝑓 𝑟𝑒𝑒) and a turn-
ing point (𝑇 ). 𝑅𝑓 𝑟𝑒𝑒 indicates the amount of remaining free
space in the ZNS SSD, with 0.0 indicating no free space and
1.0 indicating all free space. 𝑇 is a threshold value for the
free-space ratio, and FAR actively utilizes 𝑇 for its opera-
tions.

For instance, consider the case where 𝑇 is set to 0.8 in
FAR. When the free-space ratio (𝑅𝑓 𝑟𝑒𝑒) is higher than 0.8,
FAR operates similar to LZReset with a fixed 𝑇𝑊𝑃 value set
to the end of a zone. However, if 𝑅𝑓 𝑟𝑒𝑒 is lower than 0.8,
FAR gradually moves 𝑇𝑊𝑃 from the end of the zone to the
beginning based on the 𝑅𝑓 𝑟𝑒𝑒 . In summary, the setting of
𝑇𝑊𝑃 depends on the value of 𝑅𝑓 𝑟𝑒𝑒 as follows.

𝑇𝑊𝑃 =

{
𝑇ℎ𝑒 𝑒𝑛𝑑 𝑜 𝑓 𝑎 𝑧𝑜𝑛𝑒, if 𝑅𝑓 𝑟𝑒𝑒 ≥ 𝑇

𝑓 𝑢𝑛𝑐 (𝑅𝑓 𝑟𝑒𝑒 ), otherwise

In the above equation, 𝑓 𝑢𝑛𝑐 is a function of free-space
(𝑅𝑓 𝑟𝑒𝑒) remaining on the device. We consider Linear, Log
and Exponential functions for 𝑓 𝑢𝑛𝑐 .The Linear function has
a fixed change rate of 𝑇 according to 𝑅𝑓 𝑟𝑒𝑒 , while the Log
function has a small change of 𝑇 at first according to 𝑅𝑓 𝑟𝑒𝑒 ,
but then a very large change later on. Exponential function
has opposite tendency compared to Log function, it has a
large change of 𝑅𝑓 𝑟𝑒𝑒 at first, small change later on.

4 EVALUATION
4.1 Experimental Setup
We developed the ZNS SSD prototype on the Cosmos+
OpenSSD platform [1] which has Xilinx Zynq-7000 SoC,
1 TB NAND, and 1 GB DRAM. The zone size of the ZNS
SSD prototype was set to 512 MB, and for experimental con-
venience, we configured the device with a total capacity of
20 GB (40 zones in total). To evaluate on the ZNS SSD proto-
type, we connected it to a server equipped with an Intel(R)

Core i7-4790 3.60Ghz CPU (8 cores) and 16 GB of memory,
running Linux Kernel v5.18.0.

We implemented FAR1 by modifying ZenFS v2.1 in
RocksDB v7.4. ZenFS used a greedy ZC algorithm, in which
zones with the highest levels of invalid data are selected
as victims for ZC. We configured RocksDB setting with a
size limit of 64 MB for MemTables and L0 SSTables. And
we set the size limit of each level starting from 256 MB and
increases by a factor of ten for each subsequent level.

We compared three different runtime zone-reset algo-
rithms for our evaluation, namely:
• EZReset: Default runtime zone-reset in ZenFS
• LZReset: Lazy runtime zone-reset with 𝑇𝑊𝑃=1.0
• FAR(𝑇 , 𝑓 𝑢𝑛𝑐): free-space adaptive zone-reset algorithm

proposed in this paper.
Workloads: We used RocksDB’s db_bench. We first fill

the RockSDB using db_bench with “fillrandom” option for
workloads of 16 B key and 1 KB value pairs. We used
three workloads, small (9GB), medium (12GB), and large
(15GB), depending on the total amount of writes performed.
For writes, all workloads used the “fillrandom” option of
db_bench. An increase in write amount means an increase
in the number of ZC calls in ZenFS. We run multiple exper-
iments for each setting and show the mean and standard
deviation in error bars.

4.2 ZNS SSD Performance Analysis
We compared the device-level performance of the SSD and
ZNS SSD implementation of the Cosmos+ OpenSSD plat-
form using a Fio benchmark [2] for various I/O pattern
workloads excluding the randomwrite I/O patternworkload
(RanWrite), as ZNS SSD only allows sequential writes. We
set I/O size as 16 K with I/O queue depth as 4, total size of
file as 16 GB. The greedy FTL was employed for the conven-
tional SSD prototype [1].

Table 1: Evaluation of the performance of ZNS SSDand
conventional SSD prototype implementations.

(MB/s) SeqWrite SeqRead RanRead

ZNS SSD 401 394 393
Conventional SSD 403 391 394

Table 1 shows the results. As expected, there is little per-
formance difference between the two device implementa-
tions. This depicts that our prototype of ZNS SSD is stable.

4.3 Evaluation of FAR
To compare the efficiency of FAR, we evaluated throughput
and total zone reset count for two dependent variables (𝑇
1https://github.com/lass-lab/FAR-ACMHOTSTORAGE2023
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Figure 5: Throughput and zone-reset count compari-
son of FAR with different settings of 𝑇 and 𝑓 𝑢𝑛𝑐.

and 𝑓 𝑢𝑛𝑐). We used 1.0, 0.7, and 0.4 for 𝑇 and exponential,
linear and logarithmic functions for 𝑓 𝑢𝑛𝑐 . When the free
space reaches the turning point 𝑇 , the value of 𝑇𝑊𝑃 gradu-
ally decreases from 1.0 to 0.0. The rate of decrease varies for
each function type, such as exponential, linear, and logarith-
mic, until the available space reaches zero. Figure 5 shows
the results of different settings of FAR using the medium
workload as the insights with small and large workload are
also similar.

Figure 5(a) shows the zone-reset count with different set-
tings. As explained in Section 3.2, reducing the turning point
(𝑇 ) generally leads to fewer ZC calls. However, if 𝑇 be-
comes too small (approaching 0.0), the algorithm operates
like LZReset with 𝑇𝑊𝑃 set to the end of a zone, which can
increase the burden on ZC calls by rarely calling runtime
zone-resets. Thus, reducing the turning point too much is
not desirable from the point of performance (referring to
Figure 5(b)). Therefore, we consider 𝑇 = 0.7 as the most
appropriate turning point, taking into account the trade-off
between lifetime and performance.

Figure 5(b) shows that the throughput decreases as
the value of 𝑇 decreases in all functions. Among them,
𝑓 𝑢𝑛𝑐=Exponential showed the high throughput (61.45 MB/
s) because it actively considers free space and sets the 𝑇𝑊𝑃

value low initially, leading to similar operation to EZRest
while increasing ZC calls. On the other hand, 𝑓 𝑢𝑛𝑐=Log
sets 𝑇𝑊𝑃 to the end of a zone initially and does not ac-
tively consider free space, resulting in the lowest through-
put overall (57.54 MB/s), reducing the number of calls to
runtime zone-reset while increasing ZC overhead. Mean-
while, 𝑓 𝑢𝑛𝑐=Linear has a zone-reset count comparable to
𝑓 𝑢𝑛𝑐=Log but exhibits similar throughput/performance to
𝑓 𝑢𝑛𝑐=Exponential (61.65 MB/s)

Therefore, we consider FAR (𝑇=0.7, 𝑓 𝑢𝑛𝑐=Linear) the op-
timal setting for guaranteeing lifetime in our settings due to
its low zone-reset count and performance close to EZRest.
Thus, we use FAR(𝑇=0.7, 𝑓 𝑢𝑛𝑐=Linear) for the rest of the
experiments.
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4.4 Performance versus Lifetime
We evaluated the throughput and aggregate write stall
time of RocksDB using three workloads for EZReset, LZRe-
set (𝑇𝑊𝑃=1.0), and FAR (0.7, Linear). In RocksDB, a write
stall can happen when the memory components cannot be
flushed to L0 because L0 is full. Write stalls can be even
worse if a write stall occurs while ZenFS is running ZC.

Figure 6(a) shows that FAR is almost the same throughput
as EZReset regardless of the workloads, whereas LZReset is
the worst throughput. LZReset show higher write stall time
than EZReset and FAR, as shown in Figure 6(b). Fundamen-
tally, EZReset and FAR avoid write stalls as much as possible
by appropriately making free zones before ZC calls.

Next, we evaluated the impact of the runtime zone-reset
algorithm on the device’s lifetime. In order to evaluate it, we
defined a lifetime estimation metric such as Equation 1.

𝐸𝑍𝑅𝐶 = 𝑁𝑅𝑢𝑛𝑡𝑖𝑚𝑒 + 𝑁𝑍𝐶 (1)

Effective Zone-Reset Count (EZRC) is represented as the
sum of total runtime zone-reset count (𝑁𝑅𝑢𝑛𝑡𝑖𝑚𝑒) and total
zone-reset count that occurs during ZC (𝑁𝑍𝐶).

Figure 7 shows the breakdown of EZRC into 𝑁𝑅𝑢𝑛𝑡𝑖𝑚𝑒

and 𝑁𝑍𝐶 for three algorithms. Overall, EZReset performs
greedy runtime zone-reset, resulting in a higher EZRC value
than the other two algorithms, irrespective of the workload.
Moreover, EZReset has a higher 𝑁𝑅𝑢𝑛𝑡𝑖𝑚𝑒 value, accounting
for over 60% of the EZRC. In contrast, LZReset has a lower
𝑁𝑅𝑢𝑛𝑡𝑖𝑚𝑒 value of the EZRC. Importantly, FAR properly con-
trols the calls for runtime zone-reset, resulting in a similar
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EZRC value with LZReset. Therefore, FAR achieves almost
similar device’s lifetime as LZReset.

Consequently, FAR maintains similar throughput as
EZReset while ensuring similar device’s lifetime as LZRe-
set.

4.5 Microscopic Analysis
Figure 8 shows the results of a time-series analysis for the
remaining free-space, frequency of zone-reset calls, and ex-
ecution time for a large workload.

Figure 8 (top) shows that LZReset has approximately 30%
longer run time than the other two algorithms, while the
other two algorithms show similar execution times. This
phenomenon can be explained in relation to the number of
zone-reset calls. Figure 8 (bottom) shows total zone-reset
counts with time. Referring to the [0:50] time range (Region
‘A’),EZReset calls runtime zone-reset very frequently (refer
to purple spikes). On the other hand, LZReset rarely calls
runtime zone-reset as it relies mostly on ZC for free space
reclamation. Thus, LZReset shows gradual free space lost
than EZReset. On the other hand, FAR initially runs like
LZReset (because of 𝑇=0.7) (Region ‘A’), and after that, it
runs like EZreset.Thus, FAR initially loses free-space similar
to LZRest, but after 50 seconds behaves similar to EZReset
(Region ‘B’).

To compare the average WP values of each algorithm, we
measured the average value of the WP offset relative to a
zone size (𝑅𝑊𝑃 ) during the workload execution time.

Table 2: Comparison of the ratio of WP to a zone size
for various runtime zone-reset algorithms.

Algorithm EZReset LZReset FAR

𝑅𝑊𝑃 0.55 1 0.92

Table 2 shows the result. As expected, EZReset’s 𝑅𝑊𝑃

value is the smallest among the algorithms. On the other

hand, the 𝑅𝑊𝑃 value of FAR is between the values of EZRe-
set and LZReset.

5 CONCLUSION
In this paper, we identified that the current implementation
of ZenFS’s eager runtime zone-reset algorithm can have
a negative impact on device’s lifetime. Thus, we proposed
a free-space adaptive runtime zone-reset (FAR) algorithm
that balances application’s performance and device’s life-
time. Extensive evaluation shows that FARmaintains a high
level of performance compared to the ZenFS’s runtime zone-
reset algorithm while significantly improving device’s life-
time by a factor of 2.
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