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A Content-Based Ransomware Detection
and Backup Solid-State Drive for

Ransomware Defense
Donghyun Min , Yungwoo Ko, Ryan Walker , Junghee Lee , and Youngjae Kim

Abstract—Ransomware is a growing concern in business and
government because it causes immediate financial damages or
loss of important data. There is a way to detect and block ran-
somware in advance, but evolved ransomware can still attack
while avoiding detection. Another alternative is to back up the
original data. However, existing backup solutions can be under
the control of ransomware and backup copies can be destroyed
by ransomware. Moreover, backup methods incur storage and
performance overhead. In this article, we propose AMOEBA, a
device-level backup solution that does not require additional
storage for backup. AMOEBA is armed with: 1) a hardware
accelerator to run content-based detection algorithms for ran-
somware detection at high speed and 2) a fine-grained backup
control mechanism to minimize space overhead for data backup.
For evaluations, we not only implemented AMOEBA using the
Microsoft solid-state drive (SSD) simulator but also prototyped
it on the OpenSSD-platform. Our extensive evaluations with real
ransomware workloads show that AMOEBA has high ransomware
detection accuracy with negligible performance overhead.

Index Terms—Ransomware attack, solid-state drive (SSD),
storage security, storage system.

I. INTRODUCTION

RANSOMWARE is a type of malware that takes the user’s
data files as hostage by encrypting them until the victim

user pays a ransom. Ransomware is one of the most con-
cerning cybersecurity threats not only for individuals but also
enterprise environments [1], [2]. Existing techniques detect
and prevent ransomware by identifying known behaviors of
ransomware such as frequent access to cryptographic libraries
and receiving encryption keys from a remote server [3]–[6].
When ransomware accesses a cryptographic library, the user’s
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encryption key can be hooked, and it can be used for decryp-
tion [7]. Ransomware can also be identified by static analysis
of binary code if a specific cryptographic library is used [8].
However, it is difficult to detect ransomware when its behavior
has not been observed. Furthermore, malware can use pack-
ing techniques to hide themselves and encryption keys [3].
One of the guaranteed protections against ransomware is fre-
quent data backup on external backup storage devices [9], [10].
However, typical software backup solutions require additional
backup storage devices. Also, a copy of the data on the backup
storage device can be destroyed by ransomware again [11].

There have been studies that performed backups inside
devices, called device-level backup solutions. They do not
require additional backup devices [11]–[13]. This solution
utilizes the solid-state drive (SSD)’s NAND flash memory
characteristics. The SSD performs out-of-place writes for
writes, invalidating original pages and writing them to new
pages [12], [14]–[16]. More importantly, invalidated pages are
the previous version of the original page and they remain on
the SSD until they are erased by garbage collection (GC). That
is, the out-of-place write property by the NAND flash memory-
based SSD allows the opportunity to automatically create
backup data inside the SSD. If these invalidated pages are
carefully managed, the SSD itself performs backup internally.

FlashGuard [11] and SSD-Insider [12] are the state-of-
the-art device-level backup SSDs. They detect ransomware
attacks within SSDs by observing the ransomware’s write I/O
pattern in real time. Typical ransomware often shows over-
write patterns as it chooses victim files and reads, encrypts,
and rewrites them. Specifically, once ransomware invades the
system, it encrypts many files in a short time [11], [12], show-
ing a bursty write-after-read (WAR) I/O pattern. Based on
this observation, FLASHGUARD [11] and SSD-INSIDER [12]
detect ransomware attacks by observing WAR I/O patterns and
their burstiness. However, recent intelligent ransomware, such
as Sleeper ransomware (SR), performs a delayed encryption
attack [17]–[19], which does not exhibit a bursty WAR I/O
pattern.

FLASHGUARD can detect delayed encryption attacks if
it continuously keeps track of whether the page has been
read in the past for a long period of time. This is because
FLASHGUARD can perform backup whenever it observes the
WAR I/O pattern. However, it does not precisely detect ran-
somware attacks. Thus, it performs backups in a conservative
manner, producing a lot of unnecessary backups. On the
contrary, SSD-INSIDER performs backup by considering the

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:56:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6043-9264
https://orcid.org/0000-0001-6928-3107
https://orcid.org/0000-0003-0733-0136
https://orcid.org/0000-0001-8786-3850


MIN et al.: CONTENT-BASED RANSOMWARE DETECTION AND BACKUP SOLID-STATE DRIVE FOR RANSOMWARE DEFENSE 2039

WAR I/O pattern together with its burstness. However, SSD-
INSIDER fails to detect I/O access patterns that have not been
trained, such as nonbursty I/O patterns of ransomware that are
typical patterns of delayed ransomware attacks.

In this article, we propose AMOEBA, a device-level backup
SSD that more accurately detects the delayed attack of ran-
somware and performs a space-efficient backup. AMOEBA

is armed with 1) a DMA engine performing inline content-
based ransomware detection and 2) a fine-grained backup
copy mechanism. AMOEBA makes the following technical
contributions.

1) Content-based ransomware detection has high ran-
somware detection accuracy [3], [20]. AMOEBA per-
forms content-based ransomware detection along with
bursty WAR I/O pattern-based detection. However, exe-
cuting content-based detection inline while processing
I/O can slow down the I/O processing speed. Thus,
AMOEBA employs a new DMA hardware that performs
an inline content-based ransomware detection at high
speed. The DMA engine performs similarity and entropy
computations at high speed while performing direct
memory access of the host’s memory for writes. It accu-
rately detects ransomware attacks by combining several
attack detection factors (similarity, entropy, and bursti-
ness of I/O requests), called a Ransomware Attack Risk
Indicator (RARI).

2) AMOEBA implements a fine-grained backup copy man-
agement mechanism where each page is assigned a
RARI value, and the RARI value determines whether
or not to back up the previous page. AMOEBA keeps
only one backup page per page, saving backup space.
Since AMOEBA maintains only necessary backup copies,
GC runtime overhead and backup space overhead are
minimized. Also, the time to recover after ransomware
infection is shortened. AMOEBA further optimizes the
GC process by placing overwritten pages by ransomware
and backup pages in different NAND blocks. This seg-
regation helps the SSD reduce the GC overhead caused
by valid page copy operations during the GC process.

3) In order to demonstrate the effectiveness of AMOEBA,
we performed both simulation-based experiments and
real prototype implementation-based experiments. For
the simulation study, we implemented AMOEBA using
the Microsoft Research’s SSD simulator based on
DiskSim [21], [22] and evaluated it using a mix of
real ransomware (e.g., Erebus [23]) and normal applica-
tion workloads. Extensive simulation experiments show
that AMOEBA is highly comparable to the state-of-
the-art device-level backup SSD systems in terms of
performance. We also confirmed that the best and worst
false detection rates of the AMOEBA system are just
0.14% and 5.41%, respectively. For the real imple-
mentation study, we have prototyped the AMOEBA

system by modifying the flash translation layer (FTL)
of the firmware on the Cosmos+ OpenSSD development
platform [24]. From the experiments, we observed that
there exists a high tradeoff between SSD performance
and ransomware detection accuracy when content-based
detection algorithms are implemented in firmware.

II. BACKGROUND AND MOTIVATION

A. Solid-State Drive

NAND flash memory-based SSDs require read, write, and
erase operations. Erase operations are performed at the gran-
ularity of a block, which is composed of multiple pages. A
page is the granularity at which reads and writes are per-
formed. Each page on flash can be in one of three different
states: 1) valid; 2) invalid; and 3) free/erased. When no data
has been written to a page, it is in the erased state. A write
operation can be done only to an erased page, changing its
state to valid. Erase operations (on average 1–2 ms) are sig-
nificantly slower than reads or writes. Therefore, out-of-place
writes (as opposed to in-place writes in HDDs) are performed
to existing free pages, along with marking the page storing
the previous version invalid. Later, invalid pages are collected
after the erase operation during GC.

B. Device-Level Backup SSDs

An invalid page can be used as a backup page in NAND

flash memory-based SSDs. The invalid page is the data of the
previous version of the valid page. The invalid page remains
until the GC is triggered. Therefore, when ransomware writes
to the SSD to encrypt some pages, if invalidated pages are
well kept in the SSD, they can be used as backup pages.
FLASHGUARD [11] and SSD-INSIDER [12] use this prop-
erty of the invalid page of the SSD for device-level backup
SSDs. For example, FLASHGUARD keeps all invalid pages per
a valid page as backup pages. However, keeping all invalid
pages as backup pages increases the space overhead. It is
necessary to make only backup pages of pages encrypted by
ransomware. To do this, SSD-INSIDER runs algorithms that
detect ransomware attacks according to I/O patterns inside the
SSD. This ransomware I/O pattern-based detection approach
is called behavior pattern-based detection [3], [25].

Typical ransomware encrypts user data. For data encryption,
ransomware performs I/Os following a pattern that reads data
and overwrites it and repeats these two steps, called a WAR
pattern. In addition, the I/Os of ransomware attacks tend to
exhibit a burst pattern, which means that many I/Os arrive in a
short time. Specifically, FLASHGUARD monitors the WAR pat-
tern of I/O requests for ransomware detection. SSD-INSIDER

monitors the number of overwrite requests, i.e., the aver-
age length of continuously overwritten blocks for ransomware
detection. However, this behavior pattern-based detection often
fails to detect the evolved ransomware that does not follow
the existing ransomware I/O pattern. For instance, recent ran-
somware performs encryption intermittently, so it does not
follow the typical ransomware’s I/O pattern [17]–[19]. Also,
normal I/Os that similarly follow the typical ransomware
pattern may be falsely detected as a ransomware attack.

C. Motivation

Content-based ransomware detection is more powerful than
the aforementioned behavior pattern-based detection [3], [20].
Scaife et al. [3] stated that the most important features of
ransomware could be the change of content. Specifically, there
are two representative indicators of content-based ransomware
detection: 1) similarity, or the change rate of data content after
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Fig. 1. Depiction of AMOEBA’s modules (DMA, FTL, and ML modules)
and their interaction.

a write operation and 2) entropy, or the randomness of the data.
For example, a file encrypted by ransomware is very dissimilar
to its original data. Also, the entropy value of an encrypted
file is much higher than that of a normal file. Ransomware
uses a cryptographic library to encrypt data, which increases
the uncertainty of data. If these two values are high, it can be
determined that there is a ransomware attack.

In this article, we design and develop AMOEBA, a content-
based ransomware detection and data backup SSD system that
meets the following goals: 1) it guarantees a high ransomware
detection rate with little computational delay and 2) mini-
mizes the number of backup copies by keeping only necessary
backup copies.

III. OVERVIEW OF AMOEBA

The AMOEBA system consists of three major components:
1) AMOEBA DMA; 2) AMOEBA ML; and 3) the AMOEBA

FTL. AMOEBA DMA and the AMOEBA FTL are embedded
inside an SSD and operate at runtime, while the AMOEBA

ML is an offline module that runs outside of the SSD. The
AMOEBA ML runs offline to learn the ransomware’s I/O pat-
terns and data content on separate host machines. Fig. 1 depicts
how the components of the AMOEBA system interact.

1) The AMOEBA DMA is a DMA hardware for perform-
ing content-based ransomware detection at high speed.
AMOEBA DMA enhances the existing SSD’s DMA
hardware to perform content-based detection during
I/O operations. Specifically, the DMA engine executes
content-based detection algorithms, such as similarity
and entropy computations [3] while transferring data
between the host’s main memory and the device’s NAND

flash memory.
2) The AMOEBA FTL is a software module for backup and

recovery that is implemented by extending the existing
FTL module. The AMOEBA FTL runs a ransomware
detection algorithm for which we defined a RARI that
considers three indicators: 1) similarity; 2) entropy; and
3) write arrival rate (intensity) of I/O requests. Each
indicator of the RARI metric has significance.

3) The AMOEBA ML module sets the significance of each
indicator of the RARI metric. Specifically, the AMOEBA

ML performs supervised machine learning to find the
optimal significance values of each significance in the

RARI used in the AMOEBA FTL. The AMOEBA ML
runs on a host offline where it uses collected block-
level I/O traces of ransomware workloads as an input
and finds the optimal each significance (weight) val-
ues for the RARI. A high ransomware detection rate by
the AMOEBA ML module enables the AMOEBA FTL
to only maintain one necessary backup page per logi-
cal page, thus minimizing the SSD space overhead for
backup. Moreover, the recovery process is simple, as the
AMOEBA FTL can simply recover original data pages
by changing the state of each backup page to the valid
state.

The AMOEBA ML may be vulnerable to privileged malware
because it runs on a host system, which can be compro-
mised. For example, an adversarial attack is possible [26].
To attack data integrity, malware could perform a poisoning
attack that intentionally injects malicious learning data and
destroys the machine learning model. There is also an evasion
attack that deceives machine learning with input data tamper-
ing. However, this vulnerability issue of machine learning is
not in the scope of our research. Our goal is to defend against
ransomware attacks that read and encrypt data stored on SSDs.

IV. DESIGN AND IMPLEMENTATION

A. DMA Design for Content-Based Ransomware Detection

AMOEBA DMA executes inline byte-level similarity and
entropy algorithms during data transfer. The AMOEBA DMA
calculates similarity and entropy for every page write request.
When a traditional SSD receives a write request from a host,
the DMA engine fetches the data of the write request from the
host and temporarily stores it in the DRAM region of the SSD.
Then, the data is transferred to the NAND flash memory by an
internal DMA controller. On the other hand, the AMOEBA

DMA can calculate similarity and entropy inline while the
data is being transferred from a host to the DRAM region of
the SSD.

Similarity: What is actually calculated by the DMA is the
difference between the old and new data. When a write request
is issued, the DMA controller reads data of the old page and
calculates the difference between the old and new data page.
The difference is counted in bytes. In other words, the number
of bytes of the new data that are different from the old data is
accumulated. For example, suppose new data 0x00112233
overwrites old data 0x00AABBCC. Only the first byte is the
same (0x00), and the others are different (11 versus AA,
22 versus BB, and 33 versus CC). Thus, the difference is
calculated as three.

Entropy: The Shannon entropy is used as an indicator of
randomness in the data [20]. The entropy is calculated per
page. The formula is given in the following equation:

e =
255∑

i=0

PBi log
1

PBi

. (1)

PBi means the probability of finding byte i in a page. As an
example, suppose a page has only eight bytes, and they are
00, 01, 02, 03, 00, 01, 04, 00. Byte 00 occurs
three times out of eight bytes, which results in PB0 = 3/8. In
a similar vein, bytes 01, 02, 03, 04 occur twice, once,
once, and once, respectively. Thus, PB1 = 2/8, PB2 = 1/8,
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PB3 = 1/8, and PB4 = 1/8. All other PBi where i > 4 are
zero.

Thus, the probability PBi can be rewritten by CBi/S where
CBi is the number of occurrences of byte i and S is the page
size. Typically, the page size is in 2N form. For example, N=12
if the page size is 4 kB. If we denote S as 2N , (1) is rewritten
as follows:

e =
255∑

i=0

CBi

2N
log

2N

CBi

. (2)

The DMA controller maintains a counter for each byte and
increments it whenever the corresponding byte is found while
transferring data. After finishing data transfer, it calculates the
entropy from the counter values. Since the entropy is calcu-
lated per page, if the request size is smaller than a page, the
remaining bytes need to be read before calculating the entropy.

If we use (2) as it is, it will incur excessive overhead to
implement in hardware because the formula requires real num-
ber computation. To reduce hardware cost, we only use integer
computation by approximating the equation.

The purpose of calculating the entropy is not to find the
exact value but to compare the relative values of different write
requests. Thus, the AMOEBA DMA controller calculates 2N ×e
to avoid expensive division operations

2Ne =
255∑

i=0

CBi log
2N

CBi

. (3)

The log term can be approximated as the count of leading
zeros if we cut off all decimal points

2Ne =
255∑

i=0

CBi

{
CLZ

(
CBi

) + 1
}

(4)

where CLZ means the count of leading zeros.
In a binary number, the count of leading zero (CLZ) is

the number of “0” digits in the most significant positions of
data, up to the position in which the first “1” is present. For
example, if a binary number is 00001001, the CLZ of this
number is 4. Suppose CBi has k leading zeros out of N bits [i.e.,
k = CLZ(CBi)]. Then, 2N−k−1 ≤ CBi < 2N−k − 1. Note that
the log computation is required only if CBi > 0, which means
k < N. If we cut off all decimal points, logCBi = N − k − 1,
which means N − logCBi = k + 1 and log(2N/CBi) = k + 1.
Therefore, log(2N/CBi) is approximated by k + 1, which is
CLZ(CBi) + 1.

DMA Design: DMA controllers may have advanced fea-
tures, such as burst, pipelined, and scatter-gather transfer. To
focus on the proposed features of DMA, we assume a basic
DMA controller without such advanced features, as shown in
Fig. 2(a). The baseline DMA is a simple DMA that has three
states. While it is in the Idle state, if the firmware triggers its
operation, it moves to the Read state to read data from the
source location. For a write request, the source location is in
the main memory of an SSD. After reading data, it moves to
the Write state to write the data to the destination, which is
a NAND flash memory. It repeats reading and writing until all
of the requested data are transferred.

The AMOEBA DMA has two more states, as shown in
Fig. 2(b). In the Read state, it reads data from both the source

(a) (b)

Fig. 2. State diagram of (a) baseline DMA and (b) AMOEBA DMA
controllers.

and destination to calculate their difference. In the Write state,
it actually calculates the difference and counts the occurrences
of bytes while writing data. In the Page state, it reads the
remaining data in the page, which are not read in the Read
state, to calculate entropy. If there is no remaining data, this
state is skipped. In the Calc state, it calculates entropy by
going through counters of occurrences of bytes.

If the write request is aligned with pages, most of the cal-
culation delay is hidden by parallelizing calculation with data
transfer. The only perceivable delay is the final entropy calcu-
lation that takes place in the Calc state. Compared to memory
access delay, the final entropy calculation delay is negligible.

B. Ransomware Risk Calculation

RARI considers similarity, entropy, and write intensity.
Then, the AMOEBA FTL computes RARI values by using the
following equation:

ρ = 1

1 + exp(−ζ )
, where

ζ = α ∗ SIM + β ∗ ENT + γ ∗ INT + δ (5)

Equation (5) shows the RARI calculation. Specifically, SIM,
ENT , and INT refer to similarity, entropy, and write intensity,
respectively. The weights α, β, and γ are prelearned weights
of similarity, entropy, and write intensity and δ is a bias of the
neural network.

The AMOEBA ML determines what portion of each indi-
cator is reflected in the RARI calculation. The AMOEBA

ML employs logistic regression, a representative statistical
algorithm used to predict the classification of each
instance [27]. In (5), a ζ is a linear combination of each indi-
cator and its weights. This linear form is a general way to put
them on a computation unit (neuron) in a neural network [28].

ρ is the actual RARI value of the write request page,
which means the possibility of being ransomware, and is
computed using (5). In order to compute the probability (ρ)
of whether the write request with ζ is by ransomware, we
employ the softmax sigmoid function, which is often used as
a hypothesis function in the classification problem [28]. This
function always generates expected results between 0 and 1.
We map normal write requests to 0 and ransomware attack
write requests to 1. By default, the AMOEBA FTL determines
that it is a ransomware attack if ρ ≥ 0.5.

The AMOEBA FTL receives similarity and entropy values
from the AMOEBA DMA for all write requests and receives
weights of the indicators in advance (e.g., firmware update).

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:56:18 UTC from IEEE Xplore.  Restrictions apply. 



2042 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 7, JULY 2022

Fig. 3. Description of OOB metadata area for supporting the backup mech-
anism. LPN: logical page number, PPN: physical page number, BPN: backup
page number, V: valid state, B: backup state, and F: free state.

Fig. 4. NFA for a logical page in AMOEBA.

The write intensity can be obtained by counting the num-
ber of write requests during a given time window, which can
be implemented by the firmware FTL at a negligible cost.
Therefore, based on (5), the AMOEBA FTL finally computes
the RARI value for each page write request and determines
ransomware attacks.

C. Backup Process

The AMOEBA FTL uses the out-of-band (OOB) region of a
physical page as a data structure to implement the backup and
recovery mechanism, as depicted in Fig. 3. The OOB region of
a page contains the backup page number (BPN) and the RARI
value of the page. In Fig. 3, when a ransomware write I/O is
requested at physical address 121, the AMOEBA FTL keeps its
previous physical address 120 in the BPN of the OOB region.

Fig. 4 describes the state transition behavior of AMOEBA

logical pages using nondeterministic finite automata (NFA).
The graphical representation of the NFA consists of states
(node) and inputs for state transition (edge). Table I presents
the description of the state and input of the AMOEBA NFA.
When the first page write occurs to a free page, its state
changes from OF to OV through the state transition. From
this point, if an overwrite request arrives, AMOEBA checks
whether the request is safe.

The AMOEBA backup mechanism checks whether the
RARI value of the current write request is larger than the
defined threshold value. If this condition is satisfied, AMOEBA

will regard it as the write request of a ransomware attack
(OWransomware). If either of the two conditions is not satisfied,
it will be regarded as a normal write request (OWnormal).

TABLE I
DESCRIPTION OF THE STATE AND INPUT OF THE NFA.
(A) EACH STATE DESCRIPTION IN THE NFA. (B) EACH

STATE TRANSITION DESCRIPTION IN THE NFA

(a)

(b)

The state transitions of the ransomware overwrite and nor-
mal overwrite depend on the current state of the page (OV
or VB). For instance, let LPN(x,ov) denote logical page x in
the OV state and PPN(y,valid) denote physical page y in the
valid state.

1) OWransomware or OWnormal Upon OV State: Suppose that
a logical page LPN(a,ov) has been mapped to a physical
page PPN(b,valid).

a) When OWransomware is written to LPN(a,ov), the
physical page PPN(b,valid) in the valid state
becomes PPN(b,backup) in the backup state and a
new physical page PPN(c,free) becomes PPN(c,valid)

in the valid state. Therefore, LPN(a,ov) will have
both the valid page PPN(c,valid) and the backup
page PPN(b,backup). Then, LPN(a,ov) changes to
LPN(a,vb).

b) If a normal write request OWnormal occurs to
LPN(a,ov), a page overwrite request is immedi-
ately executed without creating a backup page, and
remains in the OV state. In other words, the exist-
ing mapping PPN(b,valid) of the LPN(a,ov) becomes
PPN(b,invalid), and the new PPN(c,free) becomes the
PPN(c,valid) being mapped to LPN(a,ov).

2) OWransomware or OWnormal Upon VB State: Suppose
that a logical page LPN(a,vb) is mapped to a physical
page PPN(c,valid) and has a backup page PPN(b,backup).
In other words, a logical page in the VB state has
both a physical page in the valid state and a physical
page in the backup state. The backup state is main-
tained since one or more ransomware requests have
been received before. When an overwrite request is
received in the VB state, a new physical page PPN(d,free)
is allocated and ready for writing. Since AMOEBA

defines all write requests (OWransomware, OWnormal) to
ransomware attacks, PPN(b,backup) is still maintained
as a backup page, PPN(c,valid) becomes PPN(c,invalid)

and PPN(d,valid), and LPN(a,vb) has PPN(d,valid) and
PPN(b,backup).

When a recovery operation is requested by the user, the
AMOEBA FTL changes SSD status to read-only. Pages in the
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VB state also change to the RCV state. The valid page is just
substituted by the current backup page during the recovery
process by referencing the OOB metadata region. This process
does not require user intervention multiple times compared
with previous works [11], [12]. This is because a logical page
has only one backup page at most. Therefore, it can be restored
with a single user’s recovery instruction.

D. Backup Data Management in AMOEBA

AMOEBA has backup state pages that are also considered
a valid state. Until the recovery operation is called, AMOEBA

must basically keep backup pages that have been created. But
according to prior work [29] and our experimental results, the
more backup pages created and the more SSD space occupied,
the more GC calls and page copies that are needed. This is a
side effect of maintaining a backup page in SSD. Meanwhile,
after the recovery operation is called, AMOEBA changes the
infected page to an invalid state and the backup page to a
valid state. Then, the invalid page is later reclaimed by GC.
However, if valid pages and invalid pages are mixed in a victim
block, a valid page copy is necessarily required during GC.
This is one of the factors that decreases GC efficiency. To
address this side effect and increase GC efficiency, we propose
the following backup page management policies: 1) backup
page leveling and 2) segregation between ransomware-infected
data and backup data.

1) Backup Page Leveling: When a block is chosen to be
erased by GC, the existing SSD uses a greedy algorithm that
selects a block with the smallest number of valid pages as
a victim block. The GC with this greedy algorithm aims at
reducing the number of valid page copies.

In GC of AMOEBA, backup pages are valid pages. In other
words, unless they are forced to be deleted, they are regarded
as valid pages that are not reclaimed during GC. If the number
of backup pages increases, even though the total utilization of
the SSD is not 100%, the SSD may have no free pages. In
this situation, AMOEBA can have three design options: 1) to
ignore incoming write request; 2) to stop backup allowing
write requests (e.g., standard SSDs with no backup feature);
and 3) to notify the user that the SSD is full and ask if backup
pages are to be deleted. However, in the last option, if the user
tells AMOEBA to delete backup pages, it may delete some
backup pages that should not be deleted. Every backup page
has a different probability of ransomware infection. Therefore,
AMOEBA provides an algorithm that selects the backup pages
to delete according to the probability of ransomware infection.
We assume each backup state has a backup level defined by
the following equation:

Backup Level =
⌈

(ρ − MIN)L

MAX − MIN

⌉
(6)

where ρ is the RARI value of the corresponding page in the
valid state, L is the fixed number of possible backup levels,
and MIN and MAX denote possible smallest and largest RARI
values of an infected page, respectively. These are experimen-
tal parameters. In our experimental setting, we set MIN and
MAX to 0.5 and 1.0, respectively, to evenly divide the range
of suspicious RARI values into L regions.

As the backup level is lower, the importance of the backup
becomes lower since its corresponding valid page has less pos-
sibility of being infected by the ransomware. If the backup
page space occupies too much of the SSD, AMOEBA can
delete backup pages with the lowest level, which have the
lowest probability of ransomware infection. In our implemen-
tation, AMOEBA begins to delete backup pages when the SSD
occupancy ratio reaches 90%. AMOEBA reduces GC over-
head and consequently stabilizes SSD performance even when
SSD’s page occupancy is extremely high.

2) Segregation of Infected Data: We see that the lifetimes
of all infected pages by ransomware are the same until the
recovery is triggered. This is because when AMOEBA executes
a recovery operation, the state of all infected pages changes
to the invalid state and that of all backup pages changes to
the valid state. Later, invalid pages created after recovery are
initialized as free pages through the GC process.

If the victim block selected during GC consists of invalid
pages and valid pages, it is inevitably needed to copy valid
pages to a free block. Note that this valid page copy operation
is expensive during GC. To decrease the number of pages
copied during GC, AMOEBA provides an algorithm to place
backup pages and infected pages in different blocks. If we
prevent backup pages from being mixed with infected pages
in the same block in advance, only invalid pages remain in the
block that stores only the infected page after recovery. Thus, a
copy for valid pages is not required for this block. Therefore,
we can also reduce the number of page copy operations during
GC and minimize the SSD performance overhead [30]. We call
this scheme AMOEBA-Div hereinafter.

Fig. 5 illustrates how AMOEBA and AMOEBA-Div perform
incoming I/O requests, respectively. In Fig. 5(a), AMOEBA,
which does not have the segregation technique, scatters valid,
backup, and infected pages by ransomware over several blocks.
When a user recognizes a ransomware attack and triggers
the recovery process, infected pages become invalid and the
backup pages become valid again. After the recovery process,
invalid pages are mixed with valid pages. As a result, page
copy operations are required during GC. In particular, if these
blocks are selected as a victim block later, two page copy
operations are required.

On the other hand, in Fig. 5(b), AMOEBA-Div segregates
infected pages from other types of pages in advance by assign-
ing different types of blocks. A type 1 block is used to collect
both valid and backup pages in AMOEBA-Div. A type 2 block
is used to keep only infected pages that have a RARI value
of 0.5 or greater. After recovery, only invalidated pages exist
in the type 2 block and only valid pages exist in the type 1
block. Therefore, in AMOEBA-Div, an erase operation does
not require a page copy operation during GC. In particular, if
block 2 is selected as a victim block, no page copy operation
is required.

E. Recovery Process

AMOEBA has only one backup page per logical page. Since
AMOEBA performs content-based ransomware detection, a
page attacked by ransomware is detected accurately. As a
result, it makes it possible for AMOEBA to maintain only
one backup page for each page necessary for recovery and
not to keep other pages. Therefore, the recovery process
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(a)

(b)

Fig. 5. Illustration of (a) AMOEBA without block segregation and
(b) AMOEBA with block segregation for two write sequences and a recov-
ery call. N = user’s valid or backup data (Normal), R = ransomware data.
F, V, I, and B means free, valid, invalid, and backup state. Each flash block
consists of four pages.

is simple because it only needs to switch to backup pages
during recovery. Hence, AMOEBA can be restored to the
correct backup page, which is before ransomware infection,
due to accurate ransomware detection. On the other hand,
the recovery procedures of FLASHGUARD and SSD-INSIDER

are complicated and can be recovered as incorrect backup
pages. FLASHGUARD unconditionally creates backup pages
for all WAR I/O patterns. FLASHGUARD creates backup
pages for overwritten pages of normal applications as well
as overwritten pages of ransomware. FLASHGUARD starts
the recovery process only when the user sends the recovery
operation (passive policy). During recovery, the user must indi-
vidually scan all backup pages to find the correct pages to
recover. SSD-INSIDER runs ransomware detection based on
an overwrite pattern every time slice (1 s). If SSD-INSIDER

detects ransomware in a time slice, it creates backup pages
for all overwrite requests for the time slice. SSD-INSIDER

keeps backup pages for up to 10 s because it follows the
belief that ransomware can be detected within 10 s. Unlike
FLASHGUARD, when SSD-INSIDER detects consecutive ran-
somware attacks for 3 s (tunable parameter), the SSD blocks
write requests, automatically reports the detection results to the
user and waits for the user’s response to begin recovery (active
policy). However, if the attack is not detected within 10 s
due to false detection, SSD-INSIDER does not perform recov-
ery and removes necessary backups. This can make recovery
incorrect. AMOEBA can be equipped with either the passive
recovery policy or the active policy. We will compare the
recovery efficacy of AMOEBA (passive and active policies)
with FLASHGUARD and SSD-INSIDER in Section VI.

TABLE II
SSD SIMULATOR CONFIGURATIONS

V. EXPERIMENTAL SETUP

AMOEBA Simulation: In order to evaluate the efficacy of
AMOEBA, we implemented AMOEBA, FLASHGUARD [11],
and SSD-INSIDER [12] using the SSD simulator developed by
Microsoft Research [21], [22]. FLASHGUARD performs back-
ups whenever WAR is visible. SSD-INSIDER implements an
ID3 decision with tree-based machine learning. We use six ran-
somware’s behavioral traits that are described in [12] as inputs
of the decision tree. If SSD-INSIDER detects ransomware at
specific time slice (1-s interval), it keeps backups of all over-
writes requested during this time interval. For AMOEBA, we
implemented a RARI value computation module and a mech-
anism that maintains only one backup page per page. Each
page has a backup page level that indicates the likelihood of
the page being infected by ransomware. For experiments, we
used a two-level (high and low) backup page policy. Whenever
GC is triggered, AMOEBA checks whether 90% of the flash
chip is in use or not. If the page occupancy reaches 90%, the
backup pages with low levels are not copied into the free block
and are deleted during GC. We also implemented AMOEBA-
Div to see the efficacy of segregating infected pages from other
types of pages. When AMOEBA serves a write I/O request or
valid and backup pages are copied during GC, the user’s data
and infected pages are stored separately on different blocks.
All detailed configuration parameters used in the simulator are
described in Table II.

AMOEBA DMA Simulation: AMOEBA DMA has the fol-
lowing additional overheads: 1) an additional page read for
similarity computation and 2) extra clock cycles to com-
pute entropy after the data transfer. Other computations (e.g.,
counting the number of occurrences of bytes) are hidden by
parallelizing them with data transfers. The AMOEBA DMA
is modeled in Verilog. To take into account the performance
overhead of the AMOEBA DMA, we estimated the number
of clock cycles consumed by baseline DMA and AMOEBA

DMA using the Xilinx ISE simulator [31]. Note that baseline
DMA is only responsible for data transfer, while the AMOEBA

DMA not only performs data transfer but also calculates sim-
ilarity and entropy. All these overheads are accounted as an
additional latency in the AMOEBA DiskSim simulation.

Content-Based I/O Trace Collection: We collected block-
level I/O traces including contents using blkCtrace [32] while
running real ransomware samples and normal workloads.
blkCtrace extracts block contents of every I/O request at the
generic block I/O layer in Linux. Each I/O request’s content is
required to calculate the entropy and similarity of each block.
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TABLE III
TESTBED CONFIGURATIONS FOR AMOEBA EMULATION

In the case of a write request, blkCtrace extracts I/O contents
when the request is inserted into the device queue. In the case
of a read request, blkCtrace extracts I/O contents when I/O
is complete, since data must be read from the device to the
main memory. Based on the fact that ransomware changes the
extensions of encrypted files, we labeled block I/O performed
on files with changed extensions as ransomware I/O.

Prototype: In addition to simulation, we also prototyped
AMOEBA on a real SSD platform, Cosmos+ OpenSSD [24]
in a Linux environment. We implemented content-based ran-
somware detection algorithms for RARI computation and
backup mechanisms on FTL in firmware. When an overwrite
I/O is requested on the SSD, FTL performs algorithms (simi-
larity and entropy) using the CPU’s computational capabilities
and checks whether each I/O is ransomware I/O or user I/O.
Therefore, the input values of algorithms (the previous data
and the new data) should reside in device DRAM memory. For
the previous data, the FTL issues the internal I/O request to the
flash controller to fetch the data. For the new data, it is trans-
ferred from the host memory to device memory via the external
DMA. By polling manner, the FTL confirms that the both of
them reside in DRAM memory and performs the algorithm.
According to (5), the FTL calculates the actual RARI value
with the RARI weights that have already completed learning.
If the RARI value is higher than 0.5, the FTL determines that
the I/O was sent from ransomware.

If an infection is confirmed, FTL keeps the previous page
as a backup page. In our firmware, GC does not erase phys-
ical pages where previous data exists. The physical address
for the backup page can be accessed from an extra area of
the current DRAM. The configurations used for OpenSSD are
summarized in Table III. Our proposed AMOEBA system is
independent of the host’s operating system.

Workloads: To make files to be infected by ransomware,
we generate a total of 3544 files in Table IV, which is
3.34 GB in size. We infect these files with ransomware, such as
Erebus [23] (ER) and SR. The ER is capable of infecting files
without delaying an encryption attack. Unlike ER, the SR per-
forms a delayed encryption attack by slow encryption, which is
intended to avoid existing detection systems. We extended an
open-source ransomware from Github [33] to mimic the fun-
damental behavior of SR. We denote the SR with 0, 2–3, and
8–9 s of delay as SR(z), SR(s), and SR(l), respectively. We
added each delay whenever ransomware encrypts individual
files. Our set of ransomwares uses cryptographic algorithms,
such as AES, DES, which are often used by well-known
ransomware [34].

TABLE IV
FILE WORKLOAD CHARACTERISTICS TO BE

INFECTED BY RANSOMWARES

TABLE V
WORKLOADS OF RANSOMWARES AND NORMAL APPLICATIONS.

THE AVERAGE REQUEST SIZE OF EACH WORKLOAD IS 8 KB

For normal workloads (not ransomware), we used normal
applications such as compression and data wiping programs.
This wiping program overwrites a set of files with 0 and
does the same with 1. The compression and data wiping pro-
grams follow similar I/O patterns as ransomware as their I/Os
show a WAR pattern. In particular, compression and data wip-
ing can dilute the content-based ransomware detection effect.
Compression increases data randomness because compressed
data requires fewer bits to store the same information. Data
wiping decreases the similarity of files before and after wip-
ing by completely replacing data with 0 or 1. Moreover, to
consider a variety of I/O patterns, we developed a synthetic
workload generator (called a normal I/O program hereinafter)
that iterates read and overwrite I/Os to a file at a random offset.
We also perform these normal applications to files.

We also generated mixed workloads by mixing ransomware
and normal workloads. Table V shows two groups of ran-
somware. One group consists of a set of only ransomware
workloads. The other group consists of mixed workloads.
Specifically, we run normal applications on the files and then
run ransomware. For example, for CWER in Table V, we com-
pressed half of the files and wiped the rest simultaneously, then
ran the Erebus ransomware on all files.

Parameter Setting From Machine Learning: In order to
obtain the significance values of each indicator of the RARI
equation, we used a logistic regression of supervised machine
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Fig. 6. Performance comparison between baseline DMA and AMOEBA DMA
for overwrite requests of different size.

TABLE VI
RESULTS FOR GATE COUNT ESTIMATION

learning by training all types of normal programs and realistic
ransomware workloads.

Table II shows the machine learning parameter values (α, β,
and γ ) set for the RARI in AMOEBA.

VI. EVALUATION RESULTS

A. DMA Performance and Hardware Cost

We analyze the performance overhead of the AMOEBA

DMA. Fig. 6 compares clock cycles according to different
request sizes. A request can be bigger than a page size in an
SSD. If it is bigger than the page size, it should be divided
into subrequests with the page size. If the size of a subrequest
is aligned with the page size in SSD, the additional clock
cycles consumed by the AMOEBA DMA are negligible com-
pared with baseline DMA. In Fig. 6, we see there is only a
2% difference in clock cycles at an 8-kB request size (page
size in an SSD). On the other hand, if the size of a subre-
quest is not aligned with the page size in SSD, the AMOEBA

DMA generates up to four times more clock cycle overhead
because it needs to read an entire page regardless of the request
size to calculate entropy. However, we expect that many stud-
ies [14], [35] that reduce the number of subrequests can be
integrated with AMOEBA and lead to fully reducing this clock
cycle overhead as a result.

Next, we analyze hardware cost in terms of gate count. For
this, we used the Synopsys Design Compiler with a 45-nm
Nangate OpenCell Library [36] to estimate the gate count
of each DMA approach. The results are shown in Table VI.
Compared to the baseline DMA, the AMOEBA DMA seem-
ingly incurs much more overhead. This is attributed mainly
to two facts. First, the baseline DMA is quite simple because
it only implements basic data transfer. Second, to calculate
entropy, the AMOEBA DMA employs 256 counters, which
are the major components (in terms of area) of the DMA.
However, compared to the area of an entire SSD controller,
a 37 K gate count is not a significant overhead. For exam-
ple, hardware accelerators are often employed for low-density
parity check (LDPC) in SSD controllers. One of the LDPC

decoders is reported to incur 36.6 K to 158.6 K gates [37].
Thus, we believe that 37 K gates are acceptable in modern
SSD controllers.

B. Performance Analysis

We evaluate the performance overhead of AMOEBA. Fig. 7
shows a performance comparison of AMOEBA and a baseline
SSD that does not perform backup for Workload-NER. The
average I/O response time was measured while varying the
SSD’s initial occupancy ratio. All I/O average response times
are normalized to that of the baseline.

In Fig. 7(a), we observe that the response times of
AMOEBA are similar to the baseline. AMOEBA has about 4%
performance degradation when the SSD occupancy ratio is
0%. Even when the SSD occupancy ratio is 80%, AMOEBA

has only 7.5% overhead. In Fig. 7(b) and (c), we can attribute
this performance degradation to the increased number of page
copies and GC calls. The more backup pages an SSD keeps,
the more frequently GC is invoked, which results in migrating
more backup pages.

Next, we evaluate performance between AMOEBA and
AMOEBA-Div by using Workload-NER. To see the effects
of block segregation, we performed recovery after finishing
a ransomware attack. The average I/O response times were
measured. The average response times are normalized to that
of AMOEBA. In Fig. 8(a), we observe that AMOEBA-Div
reduces the response time compared with AMOEBA. We see
that AMOEBA-Div’s response time is up to 13% lower than
baseline AMOEBA. Because AMOEBA-Div segregates infected
pages from other valid pages in advance, the GC process is
faster than AMOEBA. In Fig. 8(b) and (c), the reduced response
times of AMOEBA-Div are attributed to the reduced number
of page copies and GC calls. Overall, AMOEBA-Div reduces
the GC overhead up to 15% compared with AMOEBA.

C. Detection Accuracy Comparison

We compare the accuracy for ransomware detection tech-
niques of AMOEBA, FLASHGUARD, and SSD-INSIDER with
all workloads in Table V by counting false positive (FP) and
false negative (FN) for each experiment. FP means normal I/O
is mistakenly determined as ransomware I/O, and it unnec-
essarily makes backup pages. On the other hand, FN means
ransomware I/O is mistakenly determined as normal I/O, and it
does not make backup pages that should have been made. For
machine learning of AMOEBA and SSD-INSIDER, we trained
them with both normal and ransomware workloads. For exam-
ple, normal program, ER, and SR(z) are trained workloads.
Then, we evaluated AMOEBA and SSD-INSIDER for both
trained workloads and untrained workloads, such as SR(s) and
SR(l). In particular, the weight values of each RARI indica-
tor in AMOEBA were determined through the training process,
and the values used are shown in Table II.

Table VII shows FP and FN values for each workload.
Workload-ER, SR(z), SR(s), and SR(l) contain only ran-
somware I/Os. For these workloads, we observe that AMOEBA

has the highest ransomware detection accuracy. Specifically,
AMOEBA only has a 0.26% of total false ratio on aver-
age, while FLASHGUARD and SSD-INSIDER have 1.06%
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(a) (b) (c)

Fig. 7. Comparison of (a) response time, (b) number of page copies, and (c) number of GC calls between AMOEBA and the baseline system for different
SSD occupancy ratios. The average I/O response time for baseline is 0.487 ms when SSD occupancy is 0%. Workload-NER is used.

(a) (b) (c)

Fig. 8. Comparison of (a) response time, (b) number of page copies, and (c) number of GC calls between AMOEBA and AMOEBA-Div for different SSD
occupancy ratios. The average I/O response time for AMOEBA is 0.503 ms when SSD occupancy is 0%. Workload-NER is used.

and 7.87% of total false ratios on average, respectively. For
detection technique, FLASHGUARD only uses a WAR pattern.
SSD-INSIDER completely relies on the overwrite I/O pat-
tern. On the other hand, AMOEBA detects ransomware more
accurately because it uses both I/O pattern and content-based
detection.

We also observe that AMOEBA and SSD-INSIDER tend to
miss the ransomware I/Os if ransomware workloads have a
large delayed I/O pattern. For Workload-SR(z), AMOEBA and
SSD-INSIDER only show 2624 FNs and 49 273 FNs. However,
for Workload-SR(l), AMOEBA and SSD-INSIDER show 3160
FNs and 113 558 FNs. Since AMOEBA and SSD-INSIDER

both take write intensity as a ransomware indicator, FN tends
to increase if ransomware performs a delayed encryption
attack. In particular, SSD-INSIDER’s FN increases more than
AMOEBA’s FN because SSD-INSIDER only relies on the over-
write I/O pattern. In FLASHGUARD, detection is irrelevant to
the delayed attack because only a pattern of a WAR is used
for detection.

For Workload-NER, NSR(z), NSR(s), and NSR(l), nor-
mal I/O programs and ransomware workloads are mixed. In
these workloads, normal I/O can be misjudged as ransomware
I/O. For these workloads, we also see that AMOEBA has
the highest accuracy. In FLASHGUARD, the best-case and
worst-case accuracy are 17.12% and 17.24%, respectively. In
SSD-INSIDER, the best-case and worst-case accuracy show
13.77% and 18.25%, respectively. On the other hand, in
AMOEBA, the best-case and worst-case accuracy are 0.15%
and 0.2%, respectively. Unlike FLASHGUARD and SSD-
INSIDER, the number of misjudgments is low since AMOEBA

uses content-based detection. For these workloads, we also
observe that FN tends to increase if ransomware performs a
delayed encryption attack. For Workload-NSR(z), AMOEBA

shows 2574 of FN and SSD-INSIDER shows 72 281 of FN.
However, for Workload-NSR(s) and NSR(l), AMOEBA shows
2578 and 2659 and SSD-INSIDER shows 90 192 and 103 740,
respectively. Unlike SSD-INSIDER, AMOEBA maintains a
low FN even if normal I/Os are included. This is because
content-based detection significantly affects AMOEBA’s detec-
tion accuracy.

For Workload-CWER, CWSR(z), CWSR(s), and CWSR(l),
data compression and wiping applications are included. These
workloads include many normal I/O patterns. In compression
and wiping programs, both WAR I/O and overwrite I/O pat-
terns appear. In these workloads, AMOEBA has a 5.18% total
false ratio on average. This false ratio is higher than the
average false ratios of other workloads. This is because the
effect of similarity and entropy indicators is diminished due
to compression and data wiping applications.

However, AMOEBA still has higher accurate detection ratios
than FLASHGUARD and SSD-INSIDER for these workloads.
FLASHGUARD only considers the WAR pattern, which is also
often found in normal applications. Ransomware, which uses
intermittent encryption, such as delayed attacks, can avoid
SSD-INSIDER’s detection mechanism because SSD-INSIDER

considers only I/O behavioral features of known ransomware.
Typical malicious code uses anti-debugging, such as timing
checks [38], to avoid being detected by debuggers. Along
with SR, other malware can also attempt a delayed encryption
attack to avoid detection after identifying the existence
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TABLE VII
RESULTS FOR RANSOMWARE DETECTION ACCURACY. (A) RANSOMWARE

DETECTION ACCURACY OF AMOEBA. (B) RANSOMWARE DETECTION

ACCURACY OF FLASHGUARD. (C) RANSOMWARE DETECTION

ACCURACY OF SSD-INSIDER

(b)

(c)

(a)

of the debugger. Unlike FLASHGUARD and SSD-INSIDER,
AMOEBA considers not only the I/O access patterns but also
I/O contents for detection. Therefore, AMOEBA can more
accurately detect ransomware even if it uses anti-debugging
and performs delayed encryption attacks.

D. Recovery Comparison

We compare the recovery performance of each system. We
measure how much infected data cannot be recovered after a
ransomware attack. Note that FLASHGUARD has a passive
recovery policy and SSD-INSIDER has an active recovery
policy. For a fair comparison, we compare AMOEBA that
has a passive recovery policy with FLASHGUARD. Also, we
compare AMOEBA that has an active recovery policy with

(a) (b)

Fig. 9. Tradeoff between (a) SSD performance and (b) detection accuracy
in AMOEBA-emulated SSD. Workload-NER is used.

SSD-INSIDER. We used workload-NSR(s) with a total of 37
min of simulation time.

To compare with FLASHGUARD, we perform a recovery
after all write requests are processed. In FLASHGUARD, if
a recovery is requested, it has to navigate all backup pages
per page to find the correct backup page. The high FPs of
FLASHGUARD lead to longer backup page search times. Also,
even if all of the backup pages have been searched, it may not
find the correct backup page. In our experiment, among total
infected pages, 1.18% are not recovered. This stems from FN.
On the other hand, AMOEBA, which has a passive recovery
policy, is fast in searching for the backup page because it keeps
one backup page per page. In addition, AMOEBA can recover
more pages than FLASHGUARD. In AMOEBA, only 0.308%
of total infected pages are not recovered, which is much less
than that of FLASHGUARD. This is because AMOEBA’s FN is
lower than the FN of FLASHGUARD.

To compare with SSD-INSIDER, we can vary the time win-
dow that triggers recovery from 1 to 10 s. For example, if
AMOEBA or SSD-INSIDER has a 2-s time window, they trig-
ger the recovery process after detecting ransomware consecu-
tively for 2 s and block all next incoming I/Os. In most cases,
AMOEBA triggers recovery faster than SSD-INSIDER because
SSD-INSIDER’s FN is higher than AMOEBA’s FN. Since
SSD-INSIDER regards some ransomware I/Os as normal I/Os,
it may result in late recovery execution. In SSD-INSIDER,
if the recovery runs late, some backup pages disappear.
Therefore, the recovery process cannot operate correctly. On
the other hand, AMOEBA performs an early recovery, which
helps prevent the loss of backup pages. In our experiment,
7.7% of infected pages are not recovered in SSD-INSIDER in
the worst case. However, in AMOEBA only 0.207% of infected
pages are not recovered in the worst case, which is much less
than that of SSD-INSIDER.

E. Prototyping AMOEBA on Real SSD Platform

We prototyped AMOEBA on the Cosmos+ OpenSSD plat-
form [24]. We implemented ransomware detection modules in
firmware on the SSD platform and studied the tradeoff between
ransomware detection accuracy and performance overhead.
For this, we compared three cases of ransomware detection:
1) when only entropy is considered; 2) when only similar-
ity is computed; and 3) when both entropy and similarity are
considered. Fig. 9 shows the tradeoff results. In Fig. 9(a), we
observe that considering either entropy or similarity shows a
much higher I/O response time than when neither of them is
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TABLE VIII
COMPARISONS OF AMOEBA, FLASHGUARD, AND SSD-INSIDER AGAINST

VARIOUS I/O PATTERNS OF APPLICATIONS. © DENOTES THAT SYSTEM

DETECTS RANSOMWARE. X DENOTES SYSTEM CANNOT DETECT

RANSOMWARE WELL, CAUSING DATA LOSS. DENOTES SYSTEM

MISJUDGES USER I/O AS A RANSOMWARE I/O, CAUSING

UNNECESSARY BACKUP COPIES

considered. This overhead is attributed to data comparison and
calculation byte by byte. In addition, we observe that using the
only similarity is 1.5 times as slow as using only entropy. This
is because both new data and existing data should be loaded
from the NAND flash memory to DRAM for access byte by
byte in order to perform the similarity calculation. Entropy,
on the other hand, only needs to count the number of bytes
present for the new data.

Fig. 9(b) shows the probability of detection accuracy
depending on which ransomware detection algorithm is used.
We observe that considering both similarity and entropy has
the lowest false detection rate. However, considering the only
similarity shows similar detection results to consider both. On
the other hand, considering only entropy has a high false detec-
tion rate compared to others. Specifically, considering both
similarity and entropy exhibits a total false detection rate of
6%, while considering only entropy exhibits a total false detec-
tion rate of 32%. This result is caused by a significant increase
in the number of FPs due to data files that originally have high
entropy (e.g., PDFs).

In summary, we see that there is a tradeoff between system
performance and ransomware detection accuracy. According
to our experiments, we observed that the similarity indica-
tor has high detection efficiency compared to computational
overhead. Moreover, the need for the AMOEBA DMA is further
emphasized because it not only reduces the performance over-
head from RARI computation but also detects ransomware
accurately.

F. Discussion for Various Ransomware Attack Scenarios

In this section, we discuss the ransomware detection accu-
racy, recovery, and backup efficiency of various ransomware
defense SSDs for the following application scenarios.

Case 1: Ransomware’s encryption attack with bursty I/O
pattern.

Case 2: Ransomware’s encryption attack without bursty
I/O pattern.

Case 3: Legitimate encryption with bursty I/O pattern.
Case 4: Legitimate encryption without bursty I/O pattern.
Table VIII summarizes the aforementioned comparison

and analysis of ransomware detection for AMOEBA with
FLASHGUARD and SSD-INSIDER.

Case 1: FLASHGUARD simply checks the WAR I/O pattern
and performs backup accordingly. SSD-INSIDER

can detect ransomware correctly because it con-
siders the bursty I/O access pattern for detection.
AMOEBA is also able to detect correctly because

it can observe a high write I/O arrival rate and
changed data content.

Case 2: Ransomware that executes a delayed encryption
attack belongs to case 2. In this case, SSD-
INSIDER fails to detect ransomware because it has
learned only ransomware with a bursty I/O access
pattern. Therefore, it misjudges delayed encryp-
tion attacks by ransomware as a user’s I/O. Unlike
SSD-INSIDER, AMOEBA correctly detects delayed
attacks of ransomware because it further considers
the data content as well as the bursty I/O intensity.

Case 3: All of three systems misjudge user I/O as a ran-
somware I/O. FLASHGUARD and SSD-INSIDER

perform the backup because data encryption by the
user also shows a WAR pattern and bursty I/O
access pattern. AMOEBA also performs backup.
This is because the entropy of encrypted data is
high, and the content is dissimilar to previous con-
tent. AMOEBA also checks a bursty I/O access
pattern.

Case 4: SSD-INSIDER does not misjudge user I/O as a
ransomware I/O. On the other hand, AMOEBA is
likely to misjudge it as a ransomware I/O accord-
ing to entropy and similarity indicators. This is
because the data is encrypted. However, it is not
always misjudged, as AMOEBA also takes into
account the low I/O arrival rate. AMOEBA exhibits
these two behavioral patterns.

Overall, AMOEBA is superior to other ransomware defense
SSDs in terms of detection accuracy, recovery, and backup
efficiency. But, AMOEBA does not guarantee data recovery if
the user legitimately and intentionally encrypts data multiple
times in a burst pattern and ransomware encrypts the data.
In the case of a user’s intentional encryption, AMOEBA can
misjudge user I/O as ransomware I/O. Therefore, in AMOEBA

data before encryption is created as backup data. Immediately
afterward, AMOEBA is actually attacked by ransomware, but
it does not create a backup page. Therefore, it is impossible to
recover data encrypted by the user just before a ransomware
attack. However, this case will happen very rarely.

VII. RELATED WORK

FLASHGUARD [11] proposes a mechanism to perform data
backup inside SSD rather than OS. If any page inside an SSD
shows a WAR pattern it keeps invalidated pages as backup
pages. FLASHGUARD adds a backup state between valid and
invalid states, considering the feature of an SSD device in
which the valid state page is not deleted immediately but rather
kept in the invalid state for a certain period of time. If a WAR
pattern that is suspected to be an access pattern of ransomware
is found, FLASHGUARD switches the valid state to the backup
state instead of invalid for all overwrites. Thus, FLASHGUARD

does not require additional backup disks.
SSD-INSIDER [12] proposes a new approach to increase

the detection accuracy. SSD-INSIDER observes that the ran-
somware’s overwrite patterns are distinguishable from a
benign application’s patterns. For example, the number of
overwrites of ransomware is greater than that of a normal
application. There is also a difference in that the average

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 07:56:18 UTC from IEEE Xplore.  Restrictions apply. 



2050 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 7, JULY 2022

number of blocks that are consecutively overwritten is less
in ransomware writes. SSD-INSIDER detects ransomware by
calculating these features every time slice (1 s) with negligible
overhead. In particular, SSD-INSIDER uses the ID3 decision
tree for high detection accuracy. SSD-INSIDER also uses the
invalid page for a backup. However, unlike FLASHGUARD, a
fixed-size data structure, called a recovery queue is required to
maintain the backup information (previous physical address).
When ransomware is detected three times in a row, SSD-
INSIDER automatically triggers the recovery process. Then,
SSD-INSIDER will wait for the user’s response and get ready
to roll-back the FTL’s mapping information to 10 s ago by
using the recovery queue.

RansomBlocker [34] leverages existing hardware accel-
erators to calculate entropy and to apply convolutional
neural networks (CNNs) to SSD to prevent ransomware.
RansomBlocker employs a time-out backup policy to prevent
ransomware attacks that delete original data after writing
encrypted data. This policy only temporarily backs up all
the pages that are regarded unnecessary by the host in a
conservative manner. The CNN incurs significant overhead
in terms of latency and hardware cost. Even though a high-
performance FPGA-based CNN accelerator is employed, its
latency is usually at least 1 ms [39], [40]. Considering the
response time of modern SSDs, it is difficult to apply CNN
prediction in real time for ransomware detection. Furthermore,
the CNN hardware accelerator requires considerable hardware
cost. The number of gates that the AMOEBA DMA requires
is only 37 K. This gate count can be converted to 2.7 K logic
cells [41]. On the other hand, the CNN accelerator is imple-
mented using 80% of ZCU102’s FPGA logic cells, which
means it uses 480 K logic cells [42]. It is 192 times higher
than the AMOEBA DMA.

VIII. CONCLUSION

A ransomware attack encrypts data and requires a ran-
som fee, causing financial damages to companies, financial
institutions and organizations. To defend ransomware attacks,
device-level backup SSDs have been proposed. They detect
ransomware only based on I/O access patterns. However,
they often fail to detect attacks that do not exhibit tradi-
tional I/O patterns of ransomware. In this article, we proposed
AMOEBA, a content-based ransomware detection SSD frame-
work. AMOEBA consists of three modules. First, the AMOEBA

DMA is a hardware module that performs ransomware detec-
tion at high speed. This DMA module not only causes
negligible performance overhead but also uses content-based
detection to enable accurate detection. Second, the AMOEBA

ML is a supervised machine learning module that operates
on a host machine offline. With this module, the weight val-
ues of the RARI can be calculated. Accordingly, AMOEBA

further minimizes the ransomware detection error rate. Third,
the AMOEBA FTL has a backup mechanism with one backup
page per logical page. Since it manages only necessary
backup pages, it has a low GC overhead. We conducted
extensive evaluations with mixed traces of normal workloads
and real ransomware workloads and observed there is lit-
tle performance overhead caused by detection and backup
management in AMOEBA. We also saw that the performance

of AMOEBA is almost similar to that of an SSD without
backup. From the perspective of ransomware detection rate,
AMOEBA has significantly lower false detection rates than
FLASHGUARD and SSD-INSIDER.
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