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ABSTRACT R-trees have been popular for their support of multidimensional data and high-performing
queries. FBR-tree is the state-of-the-art concurrent variant of the R-tree for Intel DC Persistent Memory
(DCPM). However, its adoption on manycore servers is impeded by concurrency limitations due to lengthy,
lock-based synchronization, including structure modification operations, split and merge. Additionally,
emerging DCPM-based machines are equipped with multiple CPU sockets, forming a non-uniform memory
access (NUMA) architecture. FBR-tree’s lack of NUMA -awareness induces further performance overhead
from remote memory accesses. In this paper, we propose MPR-tree, a concurrent, NUMA-aware and
persistent future-based R-tree for DCPM servers. MPR-tree focuses on insert operations due to their
laborious nature. MPR-tree relies on per-thread local future objects and a global R-tree. To introduce NUMA-
awareness and minimize remote memory accesses, MPR-tree adopts per-socket dedicated asynchronous
evaluate threads to checkpoint future objects to the global R-tree. MPR-tree employs an in-memory hash
table to mitigate the read overhead of key searches over the future objects. We implemented MPR-tree atop
FBR-tree and evaluated its performance on a server with 40 physical cores for insert and lookup queries, and
it showed that MPR-tree outperforms FBR-tree on average by 2x on log10 scale.

INDEX TERMS Futures, index data structures, non-volatile memory, manycore machines.

I. INTRODUCTION CPU cores [3], [4] .} These DCPM-based manycore machines

The emergence of manycore machines with Intel DC Persis-
tent Memory (DCPM) [1] aim to provide high performance
and concurrency/scalability with persistence guarantees.
DCPM offers byte addressability, high density, persistency,
and close to DRAM performance. DCPM has been intro-
duced with manycore machines with multiple CPU nodes
where each CPU node can comprise tens of cores and sup-
port a high degree of parallelism [2]. These multi-CPU
nodes are known as non-uniform memory access (NUMA)
machines due to irregular memory access latency between
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have been adopted by several cloud vendors [5], [6] and are
also being included in high-performance computing facili-
ties [7]. With the DCPM-based manycore machines, appli-
cations such as databases and filesystems can operate and
persist data directly on the memory bus due to the aforemen-
tioned characteristics of DCPM.

DCPM-based manycore machines have become more pop-
ular, and applications such as databases and filesystems are
expected to have high performance with an increased num-
ber of resources i.e., CPUs. However, several studies have

Hereafter we will refer to NUMA-based manycore machines as simply
manycore machines.
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shown that even with an increased number of CPUs, such
applications do not improve performance due to a high degree
of concurrency and parallelism [8], [9]. Furthermore, this
limited performance occurs due to a lack of support for
the high degree of parallelism in data structures adopted in
these applications, which rely heavily on index data struc-
tures such as B/B+-trees, hash tables, radix trees, and R-tree
for fast data retrieval. Several indexing data structures have
been proposed to exploit the performance characteristics of
DCPM [10], [11], [12], [13], [14]. These index data struc-
tures can be classified as single-dimensional and multidi-
mensional data structures. Single-dimensional index data
structures, such as B/B+-trees, radix tree, and hash tables,
have been exploited extensively for DCPM-based manycore
machines. However, multidimensional index data structures
such as R-tree have only been studied with single CPU
node machines and have not been exploited for DCPM-based
manycore machines [14].

FBR-tree is a state-of-the-art DCPM variant of R-tree.
However, its adoption on manycore machines results in an
application concurrency constraint. This is because FBR-
tree uses legacy exclusive locking, which results in lock
contention. The lock contention mainly increases for two
reasons. First, the exclusive lock creates a point of con-
tention when multiple threads try to perform insert/update
operation on the same node. Second, the chain of structural
modification operations (SMOs), such as split and merge,
increases this contention as each thread is only able to acquire
the lock when the previous thread completes its operation.
This lock contention limits the performance of FBR-tree on
DCPM-based manycore machines and does not fully exploit
the resources and high degree of parallelism of manycore
machines.

There have been several solutions to optimize R-tree
on DRAM-based manycore machines [15], [16]. These
techniques include shadowing and log-based approaches.
However, when applied to DCPM, these approaches incur
substantial performance overhead due to extra writes and
cacheline flushes [3], [12]. Furthermore, traditional lock
optimization techniques, such as MCS [17], FC-MCS [18],
and HMCS [19], cannot overcome the inherit limitations of
FBR- Tree due to SMOs and mutual exclusion. An alter-
nate approach to such lock-based optimizations is to adopt
scalable- friendly futures [20].

Futures have been proposed to increase the performance
of concurrent shared data structures. Futures are the promise
objects used to deliver the results of an asynchronous com-
putation when a client/application requests it. Futures can be
allocated as thread-local objects, and these objects perform
the assigned task when the evaluation method is called. These
thread-local future objects (TLFOs) can be applied to the
shared data structure in various ways. For instance, an evalua-
tion method can process the pending FOs in a batch or one by
one. Applying TLFOs to R-tree on DCPM will help achieve
concurrency for R-tree operations, as each application thread
will perform operations independently. However, applying

114712

future objects on such complex data structures comes with
its own challenges, such as maintaining a consistent view
between the FOs and persistent R- Tree, and avoiding read
performance degradation.

Furthermore, index data structures also suffer from the
NUMA -effect, a trade-off between high memory bandwidth
and irregular memory access latency [3], [4]. FBR-tree and
other DCPM-based data structures are particularly vulnerable
to performance loss from the NUMA-effect because they
are not designed for NUMA machines. The NUMA -effect
becomes significant since these data structures rely on a
pair of FLUSH+FENCE instructions to achieve persistency
by writing data from the cache to the remote DCPM node,
which results in high remote memory accesses and hinders
the scalability of applications. This is because, compared with
local DCPM write, the peak bandwidth of remote ones is
decreased to 59% over DCPM-based manycore machines.

To solve the concurrency limitations of FBR-tree, we pro-
posed MPR-tree, a manycore-aware persistent R-tree for
DCPM-based manycore machines. MPR-tree design is com-
posed of three core components: (i) thread-local future
objects (TLFOs), (ii) an in-memory hash table to optimize
read operations, and (iii) a shared R-tree with fine-grained
locking. To the best of our knowledge, this is the first work
to address the concurrency limitation of the persistent R-tree
on DCPM-based manycore machines.

The key contributions of this work are as follows:

« MPR-tree first reduces the lock contention by replac-
ing the FBR-tree’s lock with the adoption of the
lock-release-lock concept, which we call fine-grained
locking, whereby in less concurrent write scenarios
our proposed technique achieves relatively high perfor-
mance.

e MPR-tree introduces future objects (FOs) for high-
volume concurrent writes to R-tree where application
threads are responsible for inserting the spatial objects
into thread-local future objects (TLFOs) while desig-
nated asynchronous evaluate threads checkpoint the data
into R-tree. To maintain a consistent view of TLFOs in
DCPM, we rely on durable linearizability for correctness
condition.

o To reduce the cross-CPU communication among appli-
cation and evaluate threads, we introduced NUMA-
aware TLFOs and evaluate threads to minimize remote
memory accesses.

o We evaluated our proposed MPR-tree against the base-
line FBR-tree and showed that MPR-tree outperforms
FBR-tree by 2x with an increasing number of threads on
log10 scale while achieving crash consistency and com-
parable read performance and reducing remote memory
access by 1.3x with node-local memory allocations.

Roadmap: The rest of the paper is organized as fol-
lows. Section II describes the background and motivation.
Section III explains the problem definition. Section IV
presents the solution and design for scalable R-tree for
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DCPM-based manycore machines. Section V presents
evaluation and experiment results. Finally, we discuss related
work in section VI and conclude the paper in section VII.

Il. BACKGROUND AND MOTIVATION

In this section, we present the background of FBR-tree,
followed by how existing index data structures address
the concurrency limitation and NUMA-effect on manycore
machines.

A. FBR-TREE: DCPM-BASED R-TREE

R-tree is one of the most popular spatial index data structures
used in databases to store multidimensional data objects.
R-tree is different from other single-dimensional data struc-
tures because it stores a set of minimum bounding rectangles
(MBR) instead of sorted array of keys and value pointers
at tree nodes. Each MBR contains all the MBRs of the
corresponding sub-tree, whereby leaf nodes store the MBR
pointing to the actual spatial object, i.e., data object. FBR-
tree is a DCPM variant of R-tree. FBR-tree introduces a
configurable size bitmap metadata update operation. Since
the DCPM store instruction is bounded to 8-Byte, FBR-tree
updates 8-byte metadata atomically, whereas in the case of
metadata larger than 8 bytes, it carefully flushes the data to
DCPM by relying on hardware transactional memory. For
structural modification operations (SMOs), such as split and
merge, FBR-tree introduces in-place rebalancing algorithms
with metadata-only logging. FBR-tree also provides lock-free
read operations in parallel to insert operations.

When the MBR of a new spatial object is inserted, FBR-
tree performs a recursive search from the root to a leaf node
to identify the candidate MBR of the leaf node using the least
enlargement heuristics algorithm [21]. Once the candidate
MBR is selected, two cases need to be taken into account.
First, when the selected MBR does not overlap the new
MBR, the existing MBR will be enlarged to accommodate
the new MBR. After enlarging the MBR, FBR-tree calls
FENCE~+FLUSH to persist the enlarged MBR. Second, if the
candidate MBR overlaps the new MBR, FBR-tree will update
MBRs as needed on the way down to a leaf node, ensuring that
all ancestor nodes get the updated MBR. Whenever it finds a
leaf node, it will seek a vacant space by checking the bitmap
in the leaf node and storing the object’s spatial coordinates
and call FENCE+FLUSH to persist the new object. Finally,
it will increment the version number and update the bitmap
to validate an MBR newly inserted into the FBR-tree.

If a leaf node is overflown, FBR-tree will call a split oper-
ation. First, it will allocate memory for a new sibling node
and copy half of the content to the new node. Second, it will
update the version number to 0, which tells other threads that
this particular node is splitting and the content might not be
updated in the parent node yet. In the next step, it will add the
corresponding new node MBR to the parent node and update
the bitmap of the parent node to reflect the changes. Suppose
a system fails before the bitmap is updated. In that case, the
written MBR is ignored and treated as an empty space when
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the system recovers. Therefore, there is no need for a recovery
procedure.

B. CONCURRENCY LIMITATIONS OF FBR-TREE

FBR-tree adoption on DCPM-based manycore machines
results in an application concurrency constraint. This is
because, to avoid mutual inclusion during the write operation,
FBR-tree uses legacy exclusive locking, which results in lock
contention. To investigate the concurrency limitation of FBR-
tree, we performed concurrency experiments with an increas-
ing number of threads. Our evaluation platform consists of
four CPU nodes with 10 cores per CPU. We used the synthetic
data used by [14] and inserted 500K spatial objects into FBR-
tree with 100% put (write) requests (details of the experiment
setup are mentioned in Section V)

Figure 1 depicts the throughput and performance break-
down analysis of the FBR-tree. In Figure 1(a) FBR-tree
shows adequate performance with a single thread. As we
accumulate more threads, the overall throughput of the FBR-
tree starts decreasing right from start and becomes stable after
a certain number of threads. This leads us to further investi-
gate what is precipitating this throughput performance drop.
Therefore, we further analyzed the performance breakdown
within the FBR-tree and identified that one potential cause
could be lock contention among threads, because in FBR-
tree the write request acquires locks on different parts of the
R-tree. Figure 1(b) shows the result of the lock contention
among threads. A thread has to wait to acquire the lock on a
particular node. As depicted in Figure 1(b), with an increas-
ing number of threads, the lock contention increases, which
limits the performance of FBR-tree on manycore machines
(Section III presents a working example of it).

C. OPPORTUNITIES TO ADOPT FUTURES IN INDEX DATA
STRUCTURES

With the emergence of manycore machines, the use of many-
core parallel programming is essential. Asynchronous calls
and better reactive system program structures have increased
to use these manycore machines. A future is a language con-
struct that enables programmers to quickly and easily reveal
parallelism in programming languages. As an alternative to
low-level constructs such as locks and threads, the choice of
futures has several advantages [22]. In comparison to more
lower-level parallel models, a parallel futures library in C++
would offer all the advantages of safety, maintainability, and
programmability while guaranteeing performance and con-
siderable scalability with low overhead. Futures provide a
way to manage return values from asynchronous calls. The
method caller receives a ““placeholder” future object repre-
senting the return value as soon as an asynchronous call is
made, and the call itself continues to run simultaneously. The
method caller can obtain the call’s return value in the future
after it has been processed. If the value is requested before the
call has finished, the future suspends the requesting thread’s
execution until the value of the future becomes available.
The principal design rationale behind futures is that “the
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FIGURE 2. Use case for multi-thread insertion to illustrate the scalability limitation in FBR-tree [14].

programmer takes on the burden of identifying what can be
computed safely in parallel, leaving the decision of exactly
how the division [of work] will take place to the runtime
system” [23].

Adopting futures for the scalability of index data struc-
tures on DCPM-based manycore machines is a relatively new
topic and has recently been explored for BT-tree, a well-
known but simple tree-based data structure as F-tree [8].
B -tree is a single-dimensional data structure that stores sim-
ple key values and a sorted data structure. On the other hand,
R-tree stores spatial data in terms of minimum bounding
rectangles (MBR) and are composed of considerably more
complicated multidimensional workloads. F>-tree shows that
adopting futures for DCPM-based manycore machines could
be advantageous to achieve high scalability but lacks a clear
statement about whether future objects are favorable to uti-
lize in complex data structures such as R-tree. In this work,
we explored futures for complex and multidimensional data
structures and investigated futures to apply to multidimen-
sional data structures for concurrency.
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D. NUMA EFFECT ON FBR-TREE

FBR-tree design does not consider NUMA architectures and
suffers from the NUMA effect on manycore machines. The
difference in the latencies on the CPU’s local memory and
remote memory is known as the NUMA effect and is usu-
ally caused by cross-CPU node communication [3], [24].
To investigate the NUMA effect on FBR-tree, we performed
experiments with an increasing number of threads within and
across the NUMA node of our machines. Our evaluation
platform consisted of four NUMA nodes where each node
has 10 physical cores (for the details of the experiment setup,
please refer to Section V). Figure 1(c) shows the normalized
percentage of remote memory access (RMA) of the FBR-
tree. Perf tool [25] was used to investigate the RMA. It can
be seen in Figure 1(c) that the FBR-tree performs RMAs
even for 10 threads, which is within the NUMA boundary
of our testbed. This is because in FBR-tree, the threads are
not bonded to any CPU cores and are being assigned across
the system. RMA increases considerably as the number of
NUMA nodes increase. However, the central thought from
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Figure 1(c) is straightforward: the DCPM-based data struc-
ture is severely affected by the lack of NUMA-awareness,
as exemplified by the large percentage of remote memory
accesses.

Ill. PROBLEM DEFINITION

In this section, we provide details on the limitations of con-
currency in FBR-tree and form the basis for the problem we
are targeting in this work.

A. CONCURRENT INSERT OPERATIONS (INCLUDING
UPDATE)

FBR-tree faces a performance constraint when executed in
a high degree of concurrency, and this is due to its design
and development choices. For example, a critical section of
FBR-tree is composed of several sub-operations including
acquiring mutex lock, updating MBR if required, and SMO
operations including split or merge, if required.

Figure 2 shows a concurrent write operation in FBR-tree,
where two threads, Thread 1 (7'1) and Thread 2 (7'2) perform
an insert operation. 7'l identifies the candidate node where it
needs to insert a new spatial object (MBRI in this case). Note
that we represent the MBR in the figure to make it simple
instead of the node that contains multiple MBRs, as shown
in step @ of Figure 2. In step @, T'1 acquires the lock on
candidate node MBR1 while 72 also has to perform the insert
operation at the same node based on heuristic algorithms [21].
Since T'1 has acquired the lock of node MBR1, T2 has to
wait to perform its operation of the same node. Note that both
threads select MBR3 (leaf node) as their candidate for key
insertion as shown in step ®.

Now the T'1 will identify the leaf node where the actual
insertion is to be made (i.e., MBR3 as shown in step ®).
As T'1 proceeds, it first checks the capacity of the candidate
leaf node (MBR3) and if it is overflown then T'1 triggers
an SMO; otherwise a new MBR is simply inserted and
T 1 releases the lock. However, in step @ of Figure 2, an SMO
is triggered by T'1. During the SMO, T'1 allocates a new
node (denoted as MBR in step @), and migrates half of
the entries of MBR3 to MBR. The pointer of the MBR is
updated in the parent node (MBR1) and the corresponding
new insert operation proceeds on either one of the nodes,
MBR or MBR3, and T'1 releases the lock as shown in step ®.
Now, T2 is finally able to acquire the lock on MBR1, and
it finds out that MBR3 has been split. 72 will again call
the heuristic algorithm and identify the node where the entry
needs to be inserted.

The simplest technique to ensure correctness in index data
structures is to obtain a lock on the shared data and allow only
one thread to write at a time. This serializes the operations
and reduces the performance of the data structure with an
increasing number of threads. In FBR-tree, we identified that
a thread needs to acquire a lock on a sub-tree to perform its
write operation, as shown in Figure 2, which eventually leads
to whole tree being locked. For instance, if the root node is
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locked, the whole tree will be locked until that lock is released
by the corresponding thread.

B. CONCURRENT LOOKUP OPERATIONS

FBR-tree supports lock-free read operation and relies on
atomic metadata update operations for the correctness of the
data structure. With lock-free read operation, FBR-tree can
allow multiple threads to concurrently perform a read oper-
ation. In FBR-tree, a read thread will first read the metadata
of the leaf node, as the spatial objects are stored at the leaf
nodes of the tree. Once the metadata is read, the read thread
will access the spatial object and verify the state of the spatial
object by accessing the metadata once again. If the state of
metadata is consistent, the spatial object will be returned to
the application. Otherwise, it will perform the read oper-
ation once again. This optimistic approach always returns
consistent data to the application thread and thus supports
concurrent read operations.

C. CONCURRENT DELETE OPERATIONS
The delete operation in FBR-tree takes advantage of the
lock-free read operations to identify the leaf node where the
entry to be deleted can be found without any concurrency
limitations. A delete thread will simply flip the valid bit of
the deleting entry in the bitmap of the leaf node atomically
without acquiring any lock. The invalid entry in the leaf node
of FBR-tree is updated using an in-place update operation
with a new entry. In addition, delete operations do not deal
with SMOs in FBR-tree since SMOs are only entertained by
the insert operations. Thus, delete operations have a small
critical section and do not cause concurrency limitations.
This blocking mechanism limits scalability, i.e., concurrent
writes accessing the FBR-tree on DCPM-based manycore
machines where hundreds or thousands of application threads
are withstood to perform the write operation. To address the
aforementioned limitation of FBR-tree, we proposed MPR-
tree, and our work focused on designing a scalable multidi-
mensional index data structure for DCPM-based manycore
machines. To the best of our knowledge there has been no
prior attempt to address this problem, and our work is unique
in performing a scalability study for multidimensional index-
ing such as R-tree on DCPM-based manycore machines.

IV. MPR-TREE DESIGN

In this section, we provide the design overview of our pro-
posed MPR-tree followed by operational flow, correctness
guarantee and NUMA -awarenes.

A. SYSTEM OVERVIEW

The design objectives of MPR-tree are to achieve concur-
rency, crash resilience, and NUMA-awareness while main-
taining read performance. Our design approach was inspired
by an asynchronous computing design idea that is a pro-
ducer and consumer model. The producers are responsible for
serving application requests, while the consumers manipulate
the shared index data structure. Figure 3 shows a design
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FIGURE 3. Design overview and the operational flow of our proposed
MPR-tree (manycore-aware persistent R-tree). The three-layered design
of MPR-tree composed of index data structure, thread-local future
objects and in-memory hash table.

overview of our proposed MPR-tree. Our solution is com-
posed of three components divided into DRAM and DCPM.
The DCPM-based components include thread-local future
objects (TLFO) and a modified version of FBR-tree while
we adopted a DRAM-based in-memory hash table to main-
tain the read performance. TLFOs are designed as lock-free
doubly linked-list and rely on durable linearizability [26] to
achieve crash consistency. Further, we modified the FBR-tree
to adopt a fine-grained locking mechanism by changing it
to acquire a per-node lock instead of sub-tree, and we refer
to it as FBR-tree-FG. Lastly, to avoid the linear traversal
of TLFOs, we adopted an in-memory hash table to provide
direct access to spatial objects stored at TLFOs. To achieve
NUMA-awareness, we bound the memory allocations of
TLFOs to the CPU’s local memory modules and introduced
node-local consumers.

B. OPERATION FLOW

Figure 3 shows the insert, search, and delete operation flow of
our proposed MPR-tree. The green arrows in Figure 3 along
with dedicated asynchronous evaluate threads show the insert
operation flow. During the insert operation, the application
thread will first insert the spatial object to the thread-local
linked-list as shown in step @. Once the object is written
to the TLFO, an entry will be made in the in-memory hash
table for lookup as shown in step @. Algorithm 1 shows the
pseudo-code of the insert operation at TLFOs. In our design,
the delete and search operation use a distinct path (shown in
red arrows) as compared to the insert operation.
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Algorithm 1 Insert FO to TLFOs
1: SO: Spatial Object
2: Tiq: Thread ID for TLFO
3: TLFOr,,: Thread Local Future Objects of Thread Ty

4: procedure insert_futureObj(SO, Tiy)

5 Identify the corresponding TLFO by Ti4

6: if FO; not full then

7 Insert SO to FOq of TLFO7,

8 // FO\ represents the 2" node of TLF (U
9 Update metadata

10 // Update number of entries in the FO

11: Insert SO entry to Hash Table

12: else

13: Allocate new FO

14: Update Next node pointer of Head node

15: Update Next node pointer of new FO to point to
previous FO

16: //Now new FO becomes FO1

17: Call FLUSH+FENCE

18: Update the previous pointer of new FO; to Head
node

19: Update the previous pointer of old FO; to new
FO,

20: Insert SO to new FO; of TLFO7,

21: Update metadata

22: // Update number of entries in the FO

23: Insert SO entry to Hash Table

24: end if

25: if SizeOf(FO,)>=CACHELINE then

26: Call FLUSH+FENCE

27: end if

28: end procedure

Our design supports hierarchical spatial object lookup
operations for both search and delete. To perform lookup,
a spatial object is first identified in the hash table (step @ in
Figure 3) and if an entry is found, the corresponding TLFO is
accessed directly and returns the spatial object, as shown in
step @. Otherwise, FBR-tree-FG is traversed in a traditional
look-free manner. On the other hand, the dedicated asyn-
chronous evaluate threads are responsible to checkpoint the
spatial objects from TLFOs to global FBR-tree-FG, steps ®
of Figure 3. Each evaluate thread is responsible for specific
TLFOs and only checkpoint the data from assigned linked-
lists. The evaluation of TLFOs can be done based on several
options; data in TLFOs can be written to FBR-tree-FG based
on the amount of time or size of the TLFOs. Algorithm 2
shows the pseudo-code of the evaluate operation.

C. FINE-GRAINED LOCKING OF FBR-TREE-FG

As discussed in section III, when acquiring the lock on
the internal node, FBR-tree completely locks the sub-tree.
In tree-based index data structures, every locking action
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Algorithm 2 Evaluate TLFOs to FBR-tree-FG

1: procedure Evaluate(7ID)

2 Identify the corresponding TLFO by Tjy

3: Traverse to the N FO of TLFO7,,

4 while (TLFOr,, head pointer != TLFOr,, tail pointer)

do
5: while FO_..,:! = 0 do
6: Call rtree_insert() with SO from FOp of
TLFO7,
7: // rtree_insert is same as FBR-tree
8 update metadata
Remove the SO entry from Hash Table
10: end while
11: Update TLFOr,, tail to FOn_1
12: De-allocate FOy
13: end while

14: end procedure

begins at the root of the tree and progresses down to the leaf
node, locking each node along the way. If it comes across a
locked node that isn’t the root, the locking procedure is either
aborted (failure) or set to wait and try again (busy wait).

Consider the same example from Figure 2 in section IIL
Let’s say two threads, thread 71 and thread 72, identify
the MBR where they need to perform the insert operation
and only one thread will be able to continue and the other
thread has to wait. As shown in Figure 4(1), 71 wants to
acquire a lock on MBR3 and 72 wants to perform an oper-
ation on the same parent node. In FBR-tree, if 71 wins to
acquire the lock, T2 will have to wait until 7'1 finishes its
operation, which is inserting a new MBR into the leaf node.
This causes T2 to wait for a long time and increase the lock
acquire time, which eventually degrades the performance
of the application. To mitigate the performance drop of the
locking mechanism of FBR-tree, we adopted FBR-tree-FG,
a fine-grained lock-release-lock mechanism atop FBR-tree.

Figure 4 shows the lock-release-lock operation flow.
In FBR-tree-FG, after T'1 wins to acquire the lock, it will
perform the internal/parent node operation as shown in Fig-
ure 4 step @, while T2 has to wait to acquire the lock. Once
T 1 starts the insert operation after identifying MBR3 to insert
a new object, if the parent of MBR3 (MBRI in this case) is
needed to extend, i.e., the existing MBR1 does not have the
capacity to accommodate the new spatial object, MBR1 will
be extended to accommodate the new spatial object. However,
step @, T'1 will release the lock of the parent/internal node
and acquire the lock on the desired child node (MBR3 in
this case) and will repeat the same on the tree until the leaf
node. Since the lock on MBR1 is released by 7'1, T2 now has
the opportunity to grab the lock on MBR1 and perform its
operation on MBRS.

The lock-release-lock mechanism for FBR-tree reduces
the lock contention among threads where few threads try
to perform the operation on the same sub-tree of the
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FIGURE 4. Lock-release-lock mechanism for FBR-tree, i.e. FBR-tree-FG.

parent/internal node. This will give threads the opportunity
to acquire the lock and concurrently perform operations on
the sub-tree of the targeted node. However, the performance
of the overall application does not scale due the inherit lock
contention, where the insert operation cannot be performed
without acquiring a lock and hundreds of threads are wait-
ing to acquire the lock on the same node. In FBR-tree-
FG, the lock-release-lock strategy gives some extra space to
achieve better performance and reduce the lock contention
time among threads when the number of threads are small.

D. THREAD LOCAL FUTURE OBJECT

A future is a data item that promises to provide an operation’s
results when it is ready [20]. In our design, a future object
constitutes an array of spatial objects, an entry count, and
the previous and next FO pointers, as depicted in Figure 3.
Thread local future objects are stitched together by a doubly
linked-list for each thread.

We used a doubly linked-list for two main reasons. First,
the doubly linked-list reduces contention between applica-
tions and asynchronous evaluate threads by allowing appli-
cation threads to modify the linked-list only from the head
pointer. Meanwhile, asynchronous evaluate threads check-
point the future objects from the tail pointer, as shown in
Figure 3. Second, to maintain a consistent view of the doubly
linked-list in case of failure. For instance, if a crash happens
in between updating the head pointing to the newly allocated
FO, as shown in step @ and step @ of Figure 6, the recovery
mechanism will still be able to access the allocated FOs by
traversing through the tail pointer of the head node. With
DCPM, a consistent view of TLFOs is a critical problem.
Note that we do not rely on any existing locking mechanism
while consuming data from TLFOs. Therefore, we adopt
durable linearizability to ensure that each operation takes
effect in sequential order.

E. PERSISTENCY ACHIEVED IN TLFOS
In concurrent data structures, if each operation takes effect
in between the method’s invocation and response [27], that
concurrent data structure is known as being linearizable.
In DCPM, a durability guarantee is additionally required for
crash consistency so that the data will be persistent and crash
resistant.

A durably linearizable concurrent data structure satisfies
the linearization property. In addition, after a full-system
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FIGURE 6. Multi future object achieving durable linerizability point.

crash, the data structure’s state must reflect a consistent sub-
history of activities that includes all operations completed
by the time of the crash. We use the term durability point
as the point in the execution history where an operation be-
comes durable, i.e., its effects are visible to other threads and
persistent. If we run the recovery process after a durability
point, the data structure will be in a consistent state and it
will be persistent. The order of execution can be expressed
in terms of durability points, with each point implying a
different sequence of operations. We do not consider dura-
bility as the same for the global FBR-tree-FG because it
follows the design principle of FBR-tree. We achieve durable
linearizability (DL) for single and multiple TLFOs as shown
in Figure 5 and 6, respectively. Figure 5 and 6 show two
examples for achieving a DL point.

Figure 5 shows an example where we achieve the DL
within a single FO by atomically updating the spatial object.
Steps @ to @ in Figure 5 show the write operation within
an TLFO. The lines labeled DLP represent the durable lin-
earizability points achieved by the insert operation by calling
FLUSH+FENCE instructions. In Figure 5, two DLPs, DLP
1 and DLP 2, are achieved. If a crash happens between DLP
1 and DLP 2 (i.e., during step @ or step @), the recovery
mechanism will be able to achieve a consistent view of the
thread-local linked-list up to DLP 1.

Figure 6 represents the use-case where we achieve the
DL between multiple FOs by atomically updating the next
pointer. At step @, we present a consistent and fully utilized
FO of a particular TLFO with durability being achieved.
At step @, a new FO is allocated as new spatial objects are
being inserted at the TLFO. Once a new FO is allocated,
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we update the next pointer atomically as shown in step @
and achieve the second durability point as shown in Figure 6.
We consider the next pointer update for newly allocated FOs
as the durability point because if a system crashes, we can
still be able to traverse the newly allocated FOs by backward
traversal. A system failure after step @ will result in potential
memory leak problem which need to be addressed. Several
mechanisms can be adopted for memory leaks such as hazard
eras [28] and the optimistic access scheme [29].

F. SPACE AND TIME COMPLEXITY

The space overhead of our proposed design is similar to the
traditional R-tree i.e., O(N) because an object is either in
the TLFO or in the fine-grained FBR-tree. Also, since the
in-memory hash table is placed in DRAM, we do not consider
its space overhead for DCPM. Though, for DRAM the hash
table space overhead is O(M), where M is the number of
objects stored in the TLFO entries at a time, 7. The time
complexity for the search operation is composed of two cases,
one where a thread is required to traverse the TLFO and the
second where a thread only looks for the object in the fine-
grained FBR-tree. In addition, the read operation needs to
traverse through the in-memory hash table. Now, if a thread
is looking for an object R it first needs to search the hash
of the object R in the hash table, which causes the best time
complexity O(1). If the object R is found in the hash table, the
thread will traverse the particular TLFO linearly and return
once the object R is found. The time complexity (7') for this
case is O(1) + O(M). For the second scenario, if the object is
not found in the in-memory hash table, the thread will directly
look for the object in the fine-grained FBR-tree. Since our
fine-grained FBR-tree is atop FBR-tree it offers lock-free
read operations.

G. NUMA-AWARENESS IN MPR-TREE

The NUMA effect on DCPM index data structures is signif-
icant and plays an important role in the overall performance
of the applications. As discussed in Section II-D, FBR-tree
causes additional remote memory access, that is, threads
allocate memory pages across the nodes. It has been observed
in previous studies that compared to local node memory
allocation for DCPM write, the peak bandwidth of the remote
node memory decreased to 59% [24]. Figure 7 shows how
we achieve NUMA-awareness in our design for a two-socket
architecture (CPU Node 0 and CPU Node N). The key
idea here is to make the design of MPR-tree NUMA-aware.
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FIGURE 7. NUMA-awareness in MPR-tree design.

We achieve NUMA-awareness in our design by bounding
the memory allocation of the TLFOs to the local memory
of CPU nodes of the application threads, as shown with
the per CPU node TLFOs in Figure 7. To further achieve
NUMA -awareness for MPR-tree, we bind the asynchronous
evaluate threads to only perform checkpointing of the local
CPU node’s TLFOs and thereby avoid accessing cross-CPU
node TLFOs, as depicted by the node-specific evaluate thread
in Figure 7.

With CPU node-local evaluate threads, we avoid unnec-
essary cross-CPU node communication. In contrast, global
evaluate threads would have to perform remote memory
accesses to checkpoint the TLFOs of the application threads
from remote CPU nodes. With controlled memory alloca-
tion and CPU-bounded asynchronous evaluate threads, our
design reduces the amount of remote memory allocations
and cross-CPU node communication and improves scal-
ability. However, the asynchronous evaluate threads still
perform remote memory accesses because of the memory
allocation scheme of the raw index data structure, which
suffers from inherent concurrency limitations (as discussed
in Section II-D). We did not bound the memory allocations
of the FBR-tree-FG because we opted not to modify the base
design of FBR-tree.

H. DISCUSSION

In this work, we mainly focused on the performance of insert
operations of state-of-the-art FBR-tree, as these operations
are responsible for all the maintenance of the FBR-tree.
Thus, we identified the limitations of the insert operation in
FBR-tree and proposed solutions to overcome these limita-
tions. First, FBR-tree is composed of a huge critical section
that limits its performance when the degree of concurrency
is high. We broke down the critical section with a top-down
approach and employed a fine-grained lock-release-lock
approach, FBR-tree-FG, and showed that our fine-grained
approach outperforms the baseline FBR-tree. For further per-
formance enhancement, we adopted the future-based per-
thread local doubly linked-list (TLFOs) atop FBR-tree-FG
and showed that it can support a high degree of paral-
lelism. Furthermore, we identified the limitation of TLFOs
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FIGURE 8. Concurrency analysis of FBR-tree-FG with FBR-tree.

on NUMA machines and proposed CPU node local TLFOs
and evaluate threads. For lookup operations, we employed
in-memory hash tables to directly access data objects stored
at TLFOs that rely on lock-free search on the FBR-tree-FG.
To address the delete operation, we relied on the baseline
mechanism proposed in FBR-tree, as delete operations do not
have a large critical section.

V. EVALUATION

In this section, we first show the experimental setup. Then,
we present the evaluation results of MPR-tree for insert and
search queries. Next, we show the effect on performance
by varying the size of the TLFOs, and finally we show the
performance of the NUMA-aware MPR-tree.

A. TEST-BED SETUP

We performed the experiments on a Linux machine (kernel
version 5.4.0) equipped with four Intel Xeon(R) E5-4640 v2
CPUs @ 2.20 GHz with 10 physical cores per node, 80 MiB
last-level cache, and 256 GiB DDR3 DRAM. We emulated
the latency of Intel DCPM as presented in [3]. We imple-
mented our proposed MPR-tree using a Persistent Memory
Development Kit (PMDK) [30]. We allocated a single mem-
ory pool for index and call pmemobj_alloc () for each
tree node inside the pool. For evaluation, we used a time
series multidimensional faxi service trajectory workload that
has millions of polylines with a total of nine attributes.> A
polyline contains a list of GPS coordinates (i.e. WGS84 for-
mat). To check the concurrency performance, we performed
experiments by increasing the number of concurrent threads
for insert and lookup operations with a 500K queries 3D
workload into MPR-tree.

B. CONCURRENCY ANALYSIS

1) FBR-TREE vs FBR-TREE-FG

As discussed in section IV-C, we adopted lock-release-lock
approach for FBR-tree that we call fine-grained FBR-tree
i.e. FBR-tree-FG. As shown in Figure 8, it can be observed
that FBR-tree-FG performs 0.6x on average compared to
the baseline FBR-tree. This is because the lock-release-
lock mechanism reduces the lock contention among threads.
In FBR-tree-FG, a thread only acquires the lock on a sub-tree

2The data set can be found here: https://archive.ics.uci.edu/ml/index.php
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FIGURE 9. Scalability analysis of MPR-tree on manycore machines.
In MPR-tree, e; represents the number of asynchronous evaluate threads.

until it enlarges the parent node (if it needs to) and checks
the corresponding child node, where the new spatial object
will be inserted. If the child node requires an SMO within
the parent node’s lock, the thread will perform an SMO, and
after the split/merge is done, the thread will release the lock
on the parent node and acquire the lock on the child node
to complete the insert operation. On the other hand, if the
corresponding child node does not require an SMO, the thread
will release the lock on parent nodes and acquire the lock on
the child node and complete the insert operation. This gives
other threads the opportunity to concurrently acquire the lock
and perform operations on the sub-tree. However, the per-
formance of FBR-tree-FG does not scale after crossing the
NUMA boundary, as shown in Figure 8. This is due to two
reasons; first, the inherent lock contention as shown in Fig-
ure 1(b). Even though FBR-tree-FG adopted the fine-grained
locking mechanism, it still suffers from lock contention. Sec-
ond, the threads perform remote memory accesses, which
sharply drops the memory bandwidth. We can observe that
FBR-tree-FG gives some extra space to achieve better perfor-
mance than baseline FBR-tree and reduces the lock acquire
time among threads when the number of threads is small.

2) FBR-TREE vs MPR-TREE ATOP FBR-TREE-FG

Figure 9 depicts the results of our concurrency analysis.
We varied the asynchronous evaluate threads in this exper-
iment from 1 to 4 to show the impact on performance.
We can clearly observe that MPR-tree outperforms FBR-
tree ranging from 1.7x to 2.1x by varying the number of
threads from 1 to 40 on Log10 scale. It can also be seen that
MPR-tree’s performance saturates as the number of threads
increases in CPU node, i.e., after 10 threads. The reason is
twofold. First, since our experiments were run on a NUMA
machine, threads tend to perform memory allocations to their
local CPU nodes, which leads to remote memory accesses.
Second, with an increasing number of threads, the pressure
on evaluate threads creates a contention and thus leads to
limited performance. Notably, all different numbers of eval-
uate threads showed a scalable trend for threads within a
single CPU node. Due to the overhead of remote memory
accesses, performance suffers when threads cross the CPU-
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FIGURE 10. Impact of Thread-local future object (TLFO) size on
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node barrier. The dominant factor in performance degradation
is remote memory accesses with the asynchronous evaluate
threads because evaluate threads frequently read the future
objects from remote memory and write them to global FBR-
tree-FG.

C. TLFOS PERFORMANCE IMPACT

TLFOs are the main component of our design, and play a
significant role in application performance. We showed the
performance impact of TLFOs by limiting the number of
TLFOs. Figure 10 shows the performance impact of varying
the size of TLFOs. In this experiment, we limited the number
of future objects, i.e., the numbers of nodes in linked-list to
100, 500, and 1000 shown as MPR-tree(100), MPR- tree(500)
and MPR-tree(1000), respectively. We only used four asyn-
chronous evaluate threads for this experiment. We can clearly
observe in Figure 10 that the degree of concurrency of our
proposed system is limited by the number of future objects,
i.e., the size of TLFOs. This is because the application threads
(producers) spend most of their time waiting for the evaluate
threads (consumers) to checkpoint the data from TLFOs to
the FBR-tree-FG. Furthermore, we can also observe that
MPR-tree with No Limits on TLFOs, where we do not
limit the number of future objects, has the best overall per-
formance. FBR-tree(1000) shows nearly comparable perfor-
mance to FBR-tree(No limit), as the number of TLFOs is less
than the threshold of 1000 future objects, and it does not block
the producers during the entire execution of our application.

D. MPR-TREE WITH NUMA CONSIDERATION

In this subsection, we present the results of evaluating MPR-
tree NUMA-aware compared to FBR-tree and other variants
of MPR-tree. For a fair investigation of NUMA’s impact on
MPR-tree, we evaluated FBR-tree performance with three
variants of MPR-tree based on different memory allocations
and physical core pinning policies. For the baseline, we used
FBR-tree without pinning the application threads to the phys-
ical CPU core and let the compiler decide the thread and
memory allocation. We denoted it as simple FBR-tree, and
the same policy was applied to MPR-tree. Next, we bound
the application threads to only perform memory allocation to
the memory devices of local CPUs, that is, a thread running
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on CPU 1 will only perform allocations at CPU 1’s memory
modules. We refer to it as FBR-tree (NL). Lastly, the memory
allocation policy is the same as that of MPR-tree-NL and
we additionally introduced NUMA -awareness to our evaluate
threads as described in section IV-G. We bound these memory
allocations using numactl [31].

Figure 11 depicts the performance for the NUMA-aware
MPR-tree (MPR-tree-N). We performed the experiment
by increasing the number of concurrent NUMA boundary
threads with insert operations. On average, MPR-tree-N out-
performs FBR-tree by 2 x on logl0 scale and MPR-tree
by 2 x. That is because MPR-tree-N performs node local
memory allocations, while MPR-tree relies on the compiler’s
memory allocation policy. Additionally, evaluate threads in
MPR-tree-N are only bounded to checkpoint CPU local TLP-
FOs. This minimizes cross-CPU node communication and
reduces the cache coherence overhead (cache ping-pong [8],
[32]) of shared data. Furthermore, Figure 11 also shows
a zoom-in comparison of MPR-tree and MPR-tree-N for
throughput in KIOPS. It can be observed that MPR-tree-N
outperforms MPR-tree, as the number of threads increase for
MPR-tree-N.

Figure 12 represents the percentage of remote memory
accesses for the NUMA-aware MPR-tree. We compared the
remote memory accesses with FBR-tree and MPR-tree vari-
ants explained above. For all MPR-tree variants, we limited
the number of evaluate threads to four. It can be seen in
Figure 12 that MPR-tree-N exhibits the lowest percentage
of remote memory accesses due to its node-local memory
allocation. However, it can also be observed that MPR-tree-
N and MPR-tree-NL still perform remote memory accesses
due to all the allocations being performed in the reserved
memory pool as described in section V-A. We think user-level
applications cannot do much to prevent NUMA issues in the
interleave mode since it is beyond the application’s scope to
control the memory pool.

E. LOOK UP PERFORMANCE

We performed experiments for search queries where 1M
objects were inserted into the global FBR-tree and then
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FIGURE 13. Search performance analysis on manycore machines.

500K objects were searched to determine the overhead of
TLFOs, as depicted in Figure 13. We compared FBR-tree
with our proposed MPR-tree (with Hash), which includes the
in-memory hash table and MPR-tree (No Hash) which does
not contain the in-memory hash table. For this experiment,
we placed the initial 80% of the loaded 1M objects to the
global FBR-tree-FG while left the remaining 20% to the
TLFOs. MPR-tree with “No Hash” had the worst read perfor-
mance because every read operation has to traverse linearly
over the TLFOs first, and if the object is found it will return
and if the object is not found, it then searches the global tree.
In contrast, MPR-tree with its in-memory hash table showed
very negligible performance overhead as compared to FBR-
tree. This is because MPR-tree with hash first has to check the
hash table and then look for the object in the corresponding
TLFOs

F. REALISTIC WORKLOAD

We simulate a realistic workload scenario where an applica-
tion performs a mixed workload of insert, delete and search
operations. For this experiment, we used time series multi-
dimensional taxi service trajectory polylines workload con-
taining GPS coordinates. During the experiments, threads
were divided into 500K insert operations with 50% warm-
up data, 250K lookup and 12K delete operations performed
on MPR-tree. Figure 14 (a) shows that the MPR-tree-N with
NUMA outperforms MPR-tree and FBR-tree and improved
performance around 1.6 x and 13 x, respectively when the
number of threads increase. This is due to high-performing
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FIGURE 14. Realistic workload analysis on manycore machines with 500K insert, 250K lookup, and 12K delete operations.

insert operations of the MPR-tree where the application
threads only write to the TLFOs and the in-memory hash
table improves the performance for search operations. Fur-
thermore, Figure 14 (b) shows the execution time of the
FBR-tree, MPR-tree and MPR-tree-N. It can be observed that
MPR-tree-N outperforms FBR-tree by a considerable margin
while it manages to achieve faster execution times as compare
to MPR-tree.

VI. RELATED WORK

A. R-TREE INDEXING DATA STRUCTURES

R-tree indexing data structures have been extensively stud-
ied [15], [33], [34]. The R-tree [35] is a dynamic index
suited for multi-dimensional data objects. Guttman [35] has
proposed three methods to split a R-tree node: (1) the exhaus-
tive method, (2) the quadratic method, and (3) the linear
method. In the quadratic algorithm, two initial objects are
first identified. For each of the remaining objects, compute
the difference of the increase in the area of the covering
rectangles if that object were to be added to each of the two
partitions. The object with the most noticeable difference
is picked out and allotted to the partition with the smaller
rectangle enlargement. In the Linear R-tree algorithm, two
seed objects are identified, and the remaining objects are
assigned to each partition with a minimum increase in the area
of the bounding rectangle.

One drawback of the above algorithms is their lack of
optimizing the size of the overlapping regions among the
split partitions. Thus, if a query range intersects any of these
overlapping regions, multiple sub-trees have to be descended
to answer the query. The overlap has been reduced or perhaps
completely eliminated using algorithms. There are several
studies that introduce new R-tree variations and the accom-
panying algorithms, e.g., [15], [33], and [34].

The R*-tree adopts a combined optimization that mini-
mizes both the areas and the overlap between the enclosing
rectangles [16]. Upon a split, the R*-tree generates several
candidate distributions and computes three goodness mea-
sures: the area, the margin, and the overlap. By optimizing
these measures, the R*-tree reduces the number of paths to
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traverse during a search. By re-inserting the object that is
furthest from the bounding rectangle’s center into another
node inside the same tree level, the R*-tree delays a node
split.

The Revised R*-tree (RR*-tree) [16] enhances the R*-tree
in several ways. The reinsertion policy of the R*-tree is aban-
doned. Also, the R*-tree has a relatively expensive overlap
optimization that is only performed in the lowest non-leaf
level (the one above the leaf nodes). With a redesigned algo-
rithm, overlap optimization can be applied to all non-leaf
levels in the RR*-tree. Also, the balance of the splitting pages
is added as an optimization criterion, and another improve-
ment is in high-dimensional data. Since it is possible that
bounding boxes with zero volume occur when using high-
dimensional data, volume-based optimization becomes less
effective. In such situations, a lower dimension perimeter-
based optimization is used.

Since the adoption of manycore machines in various facil-
ities, index data structures, adopted in various system-level
applications such as spatial databases, are expected to
have capabilities to exploit the performance characteris-
tics of these manycore machines. However, most of the
tree-based multi-dimensional index data structures suf-
fer from inherent concurrency issue, such as lock over-
head. To overcome this limitation, we proposed MPR-Tree
which exploits the performance characteristics of many-
core machines by adopting thread-local future objects and
fine-grained lock-release-lock mechanism for state-of-the-art
FBR-Tree. Our proposed solution can be adopted to spatial
database and filesystems that deal with multi-dimensional
data.

Further, it has been in discussion by the Intel that they
will be winding down their Optane Memory [36]. However,
Intel has also mentioned that they will keep supporting their
already in use Intel Optane Machines and server families.
Since this announcement, there have been several major
updates announced by the Intel to their Persistent Memory
Development Kit. Additionally, our proposed solution can
be adopted to any high performance memory device such as
CXL supported memory devices [37].
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B. NUMA-AWARE SYSTEM APPLICATIONS AND DATA
STRUCTURES

There have been several studies to introduce NUMA-
awareness to file systems and system-level applications.
nCache [38] investigated the adoption of range locks on
shared files in manycore servers to execute concurrently and
proposed a novel file metadata cache framework by ensuring
consistent updates. Several studies have been conducted to
identify the NUMA impact on system-level software and
data structures with DCPM [4], [9], [24]. All these studies
conclude that there is a need to design NUMA-aware data
structures that can use NUMA-based manycore machines
efficiently. Several recent prominent studies, including [3],
[39], highlighted the importance of NUMA’s impact. Daase
et. al [40] investigated OLAP-related workload interactions
across NUMA regions. June-Hyung Kim et al. [4] proposed
fine-grained range-based locks to improve the scalability
of NOVA [41] with NUMA architectures. NAP [24] estab-
lished black-box NUMA-aware counterparts for the index
data structure for DCPM.

VII. CONCLUSION

In this paper, we presented MPR-tree, a highly concur-
rent persistent R-tree for DCPM-based manycore machines.
To achieve concurrency, we adopted fine-grained locking
over the state-of-the-art FBR-tree, an R-tree variant for
DCPM. Furthermore, MPR-tree achieves scalability and high
write concurrency by adopting thread-local future objects
(TLFOs) atop FBR-tree-FG. TLFOs are checkpointed to the
global FBR-tree-FG in an asynchronous manner based on
a tunable time and size-based threshold. Search queries are
optimized by employing a volatile in-memory hash table.
We introduced NUMA -awareness to our MPR-tree by bound-
ing the memory allocations of TLFOs to local DCPM nodes
and evaluate threads to CPU node. We showed experimental
proof that MPR-tree has relatively better performance for its
counterpart FBR-tree with 2 x improvement in scalability on
alogl0 scale, and by carefully adopting a memory allocation
policy we reduced 1.3 x remote memory access in MPR-tree.
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