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Abstract
Emerging manycore servers with Intel DC persistent memory (DCPM) are equipped with hundreds of CPU cores on

multiple CPU sockets. Such servers are designed to guarantee high performance and scalability. Several recent studies

proposed persistent fault-tolerant indexes for DCPM. Fast & Fair (F&F) is the state-of-the-art concurrent variant of the B?-

tree for DCPM. However, its adoption on manycore servers is hampered by scalability limitations due to lengthy, lock-

based synchronization including structure modification operations. The lack of NUMA awareness induces further per-

formance overhead from remote memory accesses. In this paper, we propose F3-tree, a concurrent, NUMA-aware and

persistent future-based B?-tree for DCPM servers. F3-tree relies on per-thread local future objects and a global B?-tree. To

introduce NUMA awareness and minimize remote memory accesses, F3-tree adopts per-socket dedicated asynchronous

evaluation threads to checkpoint future objects to the global B?-tree. F3-tree employs an in-memory hash table to mitigate

the read overhead of key searches over the future objects. We implemented F3-tree atop F&F and evaluated its performance

on Linux using both synthetic and realistic workloads. Our evaluation shows that F3-tree outperforms F&F on average by

3.4� and 5� without and with NUMA awareness, respectively.
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1 Introduction

Big data and cloud environments [1] are facing unprece-

dented challenges due to the enormous data and the number

of applications that must be handled. Therefore, many

cloud providers have deployed multi-socket manycore

machines1 to provide high performance and reduce the

total cost of ownership (TCO) by consolidating multiple

users within a single server. However, the recent inclusion

of Intel DCPM in manycore machines introduces persis-

tency at memory level [2, 3] but severely degrades appli-

cation scalability. Manycore machines constitute NUMA

architectures that provide high memory bandwidth at the

cost of irregular memory access latencies (called the

NUMA effect) [4–6]. DCPM aggravates NUMA effects

because of its limited bandwidth and higher access latency

compared to DRAM [7].

Applications running on cloud services include data-

bases and file systems that manage user-generated data [8].

These applications rely heavily on index data structures

such as B-trees, hash tables, radix trees, and R-trees for fast

data access. Several indexing methods have been proposed

for DCPM [9–12]. The B?-tree is one of the most popular

index data structures used in databases and file systems.

Few studies used B?-trees on DCPM [10, 11, 13], but none

of the prior work investigated scalability on manycore

machines.

F&F [11] is the state-of-the-art concurrent variant of the

B?-tree studied on DCPM. However, its adoption on

manycore machines is hampered by scalability limitations.

The write operation in F&F needs to obtain a lock to ensure

mutual exclusion, which becomes a point of contention

when multiple threads attempt to access a B?-tree node.

Structural modification operations (SMOs) such as node

splitting and merging increase contention when a thread

triggers a chain of SMOs from a leaf to the root of the B?-

tree. This chain requires the acquisition of per-node locks

from the leaf to the root node, which is generally highly

contended. Lock optimization techniques such as

MCS [14], FC-MCS [15], and HMCS [16] cannot solve

the inherent scalability limitations of B?-trees (for details

we refer to Sect. 3.1).

DCPM-based data structures such as F&F have not been

designed for NUMA architectures and are therefore highly

susceptible to performance degradation from NUMA

effects. NUMA effects are further amplified because per-

sistent data structures rely on pairs of

FLUSH?FENCE instructions to write back data from the

cache (volatile domain) to the DCPM (persistent domain).

This eviction of cache lines has a profound effect on the

cache coherence overhead: with volatile data structures, a

cache line of a shared data item that is cached on one core

can be directly served from that core’s cache to another

core that requests the data item. But with persistent shared

data, modifications must be followed by FLUSH?FENCE

to persist the modified data to the DCPM, and the next

request (from the same or another core) is then required to

fetch the modified data from the DCPM. Thereby the traffic

to and from the DCPM and hence the associated NUMA

effects from non-local memory accesses increase, thus,

limiting the scalability of the DCPM-based data structures.

To address the scalability issue of B?-trees, we employ

scalable future objects (FOs) [17]. FOs have been proposed

to improve the performance of shared data structures. FOs

are data objects that promise to deliver the results of an

operation once the results become available. The opera-

tions represented by FOs are applied to the shared data

structure when their evaluate method is called by the

respective thread. FOs can be maintained thread-locally,

which we refer as per-thread local future objects (PTFOs).

As implied in the name, with PTFOs each thread is

responsible for the allocation and evaluation of its own

FOs. Several approaches can be adopted to checkpoint FOs

to a shared data structure. For instance, threads can accu-

mulate pending future operations to process all PTFOs in a

single batch operation on the shared data structure. Oper-

ations may cancel each other out before a batch operation

takes effect. To achieve NUMA-awareness and to reduce

the cross CPU node communication, NAP [7] extends the

node replication technique [18] which has proven effective

for DRAM-only data structures on manycore architectures.

With the node replication technique, a replica of the data

structure is maintained per CPU node. A shared log is

adopted for lazy synchronization of the replicas. However,

this approach suffers from a huge memory overhead

incurred by the replicas.

Adopting PTFOs for indexing data structures such as

B?-trees can improve their insertion performance, but this

comes with its own challenges:

1. Integrating DRAM-based PTFOs with a DCPM-based

B?-tree raises two consistency issues. First, the place-

ment of PTFOs in DCPM requires a durability

guarantee; Otherwise, after a crash, PTFOs may be in

an inconsistent state, e.g., from missing pointers

between PTFOs. Second, the evaluate method must

incorporate operations from PTFOs to the shared B?-

tree in a crash-resilient manner. Otherwise, data loss

may occur, leaving the B?-tree in an inconsistent state.

2. PTFOs can severely degrade the read performance of a

B?-tree. The read operations have to traverse the

PTFOs to search for updated keys, which incurs

additional read overhead.
1 We refer to multi-socket manycore machines as manycore machi-

nes hereafter.
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3. Moreover, FOs and the evaluate method are not

NUMA-aware by nature and incur considerable

cross-CPU communication overhead when executed

on a manycore machine (for details we refer to

Sect. 3.2). The main culprit for the remote memory

accesses is the evaluate method which has to access the

PTFOs across CPU nodes to checkpoint to the shared

data structure.

To address the aforementioned challenges, we propose F3-

tree, a NUMA-aware concurrent persistent B?-tree for

DCPM-based manycore platforms. Our F3-tree design

relies on two key properties, namely (1) DCPM-based

PTFOs, and (2) a shared, global B?-tree based on

F&F [11]. This approach is inspired by the producer-con-

sumer design principle where application threads are only

allowed to update PTFOs (as producers), while dedicated

asynchronous threads are privileged to perform update

operations on the global tree (as consumers). We convert

DRAM-based PTFOs to persistent PTFOs and rely on

durable linearizability as the correctness condition to

guarantee crash consistency. Although our PTFOs improve

the scalability of the DCPM-based B?-tree, scalability is

still affected by NUMA-effects. To achieve NUMA-

awareness, we bind the memory allocation of PTFOs to the

local memory of a CPU node, and we associate asyn-

chronous evaluate threads with CPU nodes to restrict

checkpoint operations to local PTFOs.

This work makes the following specific contributions:

• We evaluate the state-of-the-art F&F B?-tree on

DCPM-based manycore machines and identify scala-

bility limitations such as increased lock contention

when multiple threads wait to acquire the lock of a

particular leaf node.

• We propose F3-tree which adopts scalable future

objects to overcome the lock contention limitation of

F&F for application threads. We design a per-thread

linked list data structure that accommodates the insert

operations from the application and evaluates (or

checkpoints) those operations to the global B?-tree

through dedicated asynchronous threads.

• We further improve the F3-tree by incorporating

NUMA-awareness for our per-thread linked list and

bind the dedicated evaluate threads to only checkpoint

the CPU node local linked list to the global B?-tree.

• To achieve correctness and crash resiliency for the

thread-local linked list, we adopt durable linearizability.

• We adopt a hash table for the per-thread local linked list

to avoid the linear traversal of linked list nodes.

• We evaluate the scalability of F3-tree against the state-

of-the-art F&F using a set of synthetic benchmarks on a

40-core platform. We employ one million 8-byte key-

value pairs with sequential and random key distribu-

tions. Our evaluation shows that F3-tree outperforms

F&F on average by a factor of 3.4� and 5� without and

with NUMA-awareness, respectively. Our NUMA-

aware node-local memory allocation and CPU-bound

asynchronous evaluate threads reduce cross CPU node

memory accesses by 50%.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the relevant background on F&F and the

state-of-the-art NUMA-awareness techniques. Section 3

presents our investigations on the scalability and NUMA

awareness of DCPM-based data structures. Section 4 pre-

sents the design and implementation details of our pro-

posed system. Section 5 provides the experimental results.

Section 6 discusses the related work and Sect. 7 draws our

conclusions.

2 Background

In this section, we present the required background on the

F&F B?-tree, followed by a detailed discussion of state-of-

the-art NUMA-awareness techniques adopted for DRAM

and DCPM-based index data structures.

2.1 Fast & Fair: B1-tree

A recent study, F&F, proposed a DCPM-based durable and

concurrent B?-tree that provides lock-free reads [11]. F&F

avoids the logging overhead by transforming a B?-tree to

another consistent state or a transient inconsistent state that

readers can tolerate. Readers detect and tolerate inconsis-

tencies such as duplicated elements in a sorted list. Writers

hold a lock for mutual exclusion. When write operations

detect inconsistencies, they attempt to fix them.

F&F is composed of two algorithms, failure atomic shift

(Fast) and failure atomic in-place rebalance (Fair). Fast is

used to insert the keys within a node of the B?-tree by

performing atomic shift operations to maintain the sorted

order of the keys. Because a Bþ-tree node is an array of

entries, the shift operation is a sequence of load and store

instructions in cascading order, and it maintains the total

store order. This helps in avoiding excessive use of

FLUSH?FENCE instructions, as the updated entries within

the Bþ-tree node can be flushed together. Maintaining a

consistent view of the tree-based indexing data structure

during the structural modification operations is challenging

with respect to logging. Logging constitutes additional

overhead as it duplicates the number of pages, increases the

write traffic, and blocks the concurrent access to tree nodes.

The Fair algorithm avoids the use of logging by
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maintaining sibling pointers in the Bþ-tree nodes, and by

creating a B-link tree [19].

2.2 NUMA-aware data structures

There have been several attempts to achieve NUMA

awareness for DRAM-based data struc-

tures [16, 18, 20–22]. Node replication (NR [18]) is a

state-of-the-art approach with ideas from distributed com-

puting. NR replicates the data structure across multiple

CPU nodes and performs lazy synchronization using a

single shared log. NrOS [22] increased the scalability of

NR by using multiple shared logs and multiple per-node

combiners. A recent study, NAP [7], explores the NR

technique for DCPM-based data structures and reports two

major limitations. First, NR does not consider failure

atomicity, which is crucial for DCPM. Second, NR suffers

from severe space overhead due to per-node replicas and

shared global logs. NAP, therefore, proposes a block box

approach to convert DCPM indexes into NUMA-aware

index structures. NAP introduces a NUMA-aware layer

(NAL) that contains hot items with a non-synchronized

partial and crash-consistent per-node view in DCPM for

insert, update and delete operations. It maintains a global

and volatile view in DRAM to serve lookup operations.

However, NAP suffers from space overhead because it

maintains the hot items in the per-node partial and crash-

consistent view.

3 Motivation

In this section, we first investigate the scalability limita-

tions of F&F on manycore machines and elaborate on them

in detail. We then dive into the necessity and details of

NUMA-awareness on manycore platforms.

3.1 Scalability limitations of F&F

F&F faces scalability limitations with highly parallel write

scenarios on manycore machines. For instance, the critical

section of F&F is composed of several sub-operations, i.e.,

linear search, lock acquisition, shift, and SMOs.

Figure 1 depicts a concurrent write operation in F&F,

where two threads, T1 and T2, perform an insert operation.

Both threads look up the candidate node for key insertion,

as shown in step � of Fig. 1. Note that both threads select

node N1 as their candidate for key insertion. However,

F&F employs locks for mutual exclusion. Hence, only one

thread can acquire the lock and proceed, while the other

thread has to wait. In the scenario depicted in step ` of

Fig. 1, thread T1 wins and acquires the lock of node N1,

while thread T2 is now blocked on that same lock. As

thread T1 proceeds with the insert operation, it checks the

capacity of candidate node N1 and triggers an SMO

because it finds the capacity of the candidate node to be

exhausted. During the SMO, thread T1 allocates a new

node (N5), migrates half of the entries from node N1 to

N5, and inserts the key into the corresponding node, as

depicted in steps ´ and ˆ. In step ˜, thread T1 has

relinquished the lock of node N1 and acquired the lock of

the parent node PN to update its links accordingly.

Meanwhile, thread T2 is finally able to acquire the lock of

node N1, only to find out that node N1 has been split, and

that the key needs to be inserted in the new candidate node,

i.e., node N5. So, in step ¯, thread T2 relinquishes the lock

of node N1 and acquires the lock of the new candidate

node N5 to perform its insert operation.

The previous example shows that F&F’s blocking syn-

chronization in conjunction with long-running SMOs

drastically limits its scalability on manycore machines,

where hundreds of application threads are contending to

perform insert operations. To address the aforementioned

Fig. 1 A multi-thread insertion use case to demonstrate the scalability limitation in F&F [11]
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limitation of F&F, we propose F3-tree, a concurrent per-

sistent future-based Bþ-tree.

3.2 The lack of NUMA awareness with state-of-
the-art DCPM-based data structures

F&F has not been designed for NUMA architectures and

hence suffers from NUMA-effects on contemporary

manycore platforms, where each CPU node has attached its

own local memory [3, 7, 23]. The NUMA-effect refers to

the differences in memory latencies between the local and

remote memory of a CPU node. These irregular memory

latencies are mainly caused by cross CPU node commu-

nication, cache coherence protocol overhead, and remote

memory accesses.

To investigate these effects, we perform several exper-

iments on F3-tree [1] for an increasing number of threads

within and across the CPU nodes of a system. Our evalu-

ation platform consists of 4 CPU nodes with 10 cores per

CPU (for the details of the experimental setup we refer to

Sect. 5.1). To emulate DCPM for manycore machines, we

employ two memory allocation policies using the numactl

tool [24] to cover the interleaved and non-interleaved

modes of DCPM [3, 25]. In interleaved mode, the pages of

a memory allocation are assigned round-robin, i.e., inter-

leaved, across all the memory devices of a system. Inter-

leaving is conducted uniformly and irrespective of the

requesting CPU core. Thus in interleaved mode, each

thread of an application is able to allocate memory pages

across all memory devices in the system. In contrast, the

non-interleaved mode restricts CPU cores—and the appli-

cation threads executing on them—to allocate memory

from the local memory of the CPU.

Figure 2 depicts the percentages of non-local memory

accesses for three configurations of F3-tree executed on our

evaluation platform with 10, 20, 30, and 40 threads: Con-

figuration F 3-tree does not pin the producer and

consumer threads to physical CPU cores and uses the

default memory allocation policy, i.e., local allocation.

Configurations F 3-tree(I) and F 3-tree(NI) pin the

threads to physical CPU cores and use the interleaved and

non-interleaved policies, respectively. Our pinning

scheme populates CPU nodes consecutively, from the first

node onward. For all configurations, we limit the number

of evaluate (consumer) threads to 2, regardless of the

number of producers.

It can be observed from Fig. 2 that the F 3-tree con-

figuration performs remote memory accesses even for

10 threads, which is within the NUMA boundary of our

evaluation platform. This is due to the fact that with the F
3-tree configuration, threads are not pinned to physical

CPU cores and hence the OS schedules threads across all

CPUs. The default (local) memory allocation policy allo-

cates the PTFOs from the thread’s local memory, which

will be the memory on the CPU the respective thread is

executing. However, configurations F 3-tree(I) and F 3-

tree(NI) with 10 threads exhibit little cross socket

communication because threads are pinned to the physical

CPU cores of the first CPU and all threads perform local

memory allocations for the PTFOs.

On the other hand, remote memory accesses increase

considerably for 20, 30, and 40 threads because these

thread configurations exceed the NUMA boundary of our

evaluation platform. The remote memory accesses are

mainly due to the checkpointing of PTFOs to the global

Bþ-tree, conducted by the evaluate threads. Configura-

tion F 3-tree(NI) suffers largely from remote memory

accesses when the number of CPU nodes increases because

the evaluate threads are always pinned to the first CPU

node and to checkpoint the PTFOs, evaluate threads have

to perform remote memory accesses. Although configura-

tion F 3-tree(I) has the evaluate threads pinned to the

first CPU node, it nevertheless employs the interleaved

memory allocation policy which to some degree mitigates

Fig. 2 F3-tree cross socket

memory accesses (lower is

better) on the 4-socket

evaluation platform

Cluster Computing (2023) 26:2865–2881 2869

123



the lack of NUMA awareness. Thus, F 3-tree(I) expe-

riences fewer remote memory accesses than F 3-

tree(NI). However, the general message from Fig. 2 is

clear: irrespective of the particular configuration, this

DCPM-based data structure is severely affected by its lack

of NUMA awareness, as exemplified by the large per-

centage of remote memory accesses.

4 F3-tree: design and implementation

In this section, we present our design overview, operational

flow, and the space and time complexity of our proposed

design.

4.1 Design overview

The key design goals of F3-tree include scalability,

NUMA-awareness, crash resilience, and maintaining the

read performance. We achieve the first three goals by

extending future objects [17] and the last goal by using an

in-memory hash table, as shown in Fig. 3. Our design is

inspired by the asynchronous computation design principle,

i.e., the producer-consumer model. Producers only update

the FOs while consumers perform the operations on the

shared data structure. FOs can be allocated thread-locally

and by binding their memory allocations to the local

memory nodes, we achieve scalability and NUMA-aware-

ness. Converting DRAM-based FOs to be persistent

requires a durability guarantee in case of a power failure or

full system crash. We achieve crash resilience by relying

on durable linearizability as the correctness condition. To

minimize the search overhead for keys residing in thread-

local FOs, we employ an in-memory hash table.

4.2 A scalable and NUMA-aware F3-tree

Figure 3 shows the design overview of our proposed F3-

tree. Our design is comprised of three major components:

per-thread-local future objects (PTFOs), a shared global

Bþ-tree, and a DRAM-based hash table. PTFOs act as

thread-local buffers and allow application threads (as pro-

ducers) to perform write operations locally. We maintain

FOs as thread-local doubly linked-lists.2 Because PTFOs

are thread-local, application threads do not require any

locking mechanism for mutual exclusion and thereby

achieve higher scalability.

Concurrently to the producer’s thread-local work,

PTFOs are checkpointed to the shared global Bþ-tree
through the evaluate function, where a dedicated work pool

of asynchronous threads serves as consumers. The global

Bþ-tree is the base design of F&F [11] with no modifica-

tions. To achieve NUMA awareness, we bind the memory

allocations of the PTFOs to the local memory of CPU

nodes of the application threads, as shown with the per

CPU node PTFOs in Fig. 3. We bind the asynchronous

evaluate threads to only perform checkpointing for the

local CPU node PTFOs and thereby avoid accessing cross

CPU node PTFOs, as depicted by the per CPU node

NUMA-Eval() method in Fig. 3.

With CPU node-local evaluate threads, we avoid

unnecessary cross CPU node communication. In contrast,

global evaluate threads would have to perform remote

memory accesses to checkpoint the PTFOs of the appli-

cation threads from remote CPU nodes. With controlled

memory allocation and CPU-bound asynchronous evaluate

threads, our design reduces the amount of remote memory

Fig. 3 Design overview and operation flow of proposed NUMA-aware F3-tree. The red arrows show the insert operation flow while black arrows

present delete and search operations

2 For simplicity, from here onward we refer to thread-local doubly-

linked lists of FOs as PTFOs.
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allocations and cross CPU node communication and

improves scalability. However, the asynchronous evaluate

threads still perform remote memory accesses because of

the memory allocation scheme of the global Bþ-tree, which
suffers from inherent scalability limitations (as discussed in

Sect. 3.1). We did not bound the memory allocations of the

global Bþ-tree as we opted not to modify the base design of

F&F.

Figure 3 shows how we achieve NUMA awareness in

our design for a two-socket architecture (CPU Node 0 and

CPU Node 1). The circled numbers represent the steps

performed for write operations by application threads and

the asynchronous evaluate threads (the detailed operational

flow follows in Sect. 4.3). In step �, threads from CPU

Node 0 and Node 1 perform write operations to their cor-

responding PTFOs and once the data is written durably,

entries are updated in the hash table in step `. Step ´

pertains to the NUMA-Eval() method where dedicated

asynchronous evaluate threads checkpoint the entries from

the local CPU nodes’ PTFOs to the global Bþ-tree.

4.3 Operation flow

We show the operation flow of F3-tree for the insert,

search, and delete operations in Fig. 3. The red encircled

steps show the insert operation flow. The insert operation

will first insert the key-value pair into the thread-local

buffers, i.e., into the thread’s PTFOs. Once the key is

successfully written, it is pushed to the hash table. Algo-

rithm 1 shows the pseudo code of the insert operation at

PFTOs from Line 4 to Line 20. Note that the delete and

search operations use a different path compared to insert.

Both delete and search perform a hierarchical key lookup,

i.e., (i) a lookup in the hash table; If the key is not found,

then (ii) a lookup is performed in the corresponding thread-

local linked list followed by (iii) the global Bþ-tree. Note
that the lookup complexity increases as the search opera-

tion progresses to higher hierarchies because of the

increased search space.

The evaluate operation works as follows: each evaluate

thread is responsible for a particular thread-local linked list

and it checkpoints each linked list’s PTFOs to the global

Bþ-tree, once it meets a given threshold. We define two

thresholds for the checkpoint of PTFOs, (i) time-based and

(ii) based on the number of KV pairs. A PTFO is accessed

using the tail pointer of the linked list by the evaluate

threads when either one of the thresholds is met. Once a

PTFO is checkpointed, the tail pointer is updated atomi-

cally to the previous node. Lines 21 to 31 of Algorithm 1

show the pseudo code of the evaluate operation.

A significant factor that affects performance is the size

of the PTFOs. If there is no limit to their size, then

producers do not get blocked by consumers that checkpoint

those FOs to the global Bþ-tree. On the contrary, limiting

the number of PTFOs would degrade the performance of

the producer threads. Once the threshold of future object

allocation is met, the producer thread has to wait for the

consumer threads to checkpoint the data to the global Bþ-
tree, so that the producer thread can service further

requests. Producer threads are blocked for two major rea-

sons. First, a too-small number of consumer threads limits

the scalability of the producers. Second, if we increase the

number of consumer threads, the evaluate operation

eventually meets the inherent scalability limitation of the

global Bþ-tree.
During the recovery phase after a system crash, the

asynchronous evaluate threads will checkpoint the PTFOs

from before the crash to the global tree. In addition, for

application threads, new PTFOs and a hash table will be

allocated in DCPM and DRAM, respectively. This will

allow the application to resume its execution without

waiting for the recovery process to finish.
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4.4 Thread-local future objects

A future is a data object that promises to deliver the results

of an operation when ready [17]. In this work, a future

object constitutes an array of keys, an entry count, and the

next and previous FO pointers, as depicted in Fig. 3. Every

thread maintains its thread-local FOs stitched together by a

doubly-linked list.

The reasons to use a doubly-linked list are as follows.

First, it mitigates the contention between the producers and

the asynchronous consumers, and we only allow producers

to modify the linked list from the head pointer while the

consumers flush from the tail of the linked list, as shown in

Fig. 3. Second, for checkpointing all the entries to the

global Bþ-tree even after a crash. For instance, if a crash

happens in between updating the head pointer to the newly

allocated FO, as shown in step ` and step ˆ of Fig. 4b,

then the recovery mechanism will still be able to access the

new FO by traversing the thread-local linked list through

the tail pointer.

With PM, providing a consistent view of PTFOs is

critical. Note that we do not rely on any existing locking

mechanism while consuming data from PTFOs. Therefore,

we adopt durable linearizability to ensure that each PTFO

takes effect in sequential order.

4.5 Durable linearizability (DL)

A concurrent data structure is linearizable if each operation

takes effect in between the method’s invocation and

response [26]. With DCPM, a durability guarantee is

additionally required because the data will be persistent

and need to be crash resilient. A durably linearizable

concurrent data structure satisfies the linearization

property. In addition, after a full-system crash (i.e., all

threads crash), the state of the data structure must reflect a

consistent sub-history of operations that includes all oper-

ations completed by the time of the crash. We use the term

durability point as the point in the execution history where

an operation becomes durable, i.e., its effects are visible to

other threads and persistent. After a durability point, if we

execute the recovery mechanism, then the data structure

will be in a consistent state. The durability order of exe-

cution can be elaborated in terms of durability points,

where each durability point implies an order on the

operations.

We achieve durable linearizability for PTFOs as shown

in Fig. 4. We do not consider the same for the global Bþ-
tree because it follows the design principle of F&F. Fig-

ure 4 shows two examples for achieving a DL point. Fig-

ure 4a shows an example where we achieve the DL within

a single FO by atomically updating the key-value pairs.

Steps � to ˆ in Fig. 4a show the write operation within an

FO. The lines labeled DLP represent the DL points

achieved by the insert operation by calling FLUSH?-

FENCE instructions. In Fig. 4a, there are two DLPs

achieved, DLP 1 and DLP 2. If a crash happens between

DLP 1 and DLP 2 (i.e., during step ` and step ´), the

recovery mechanism will be able to achieve a consistent

view of the thread-local linked list up to DLP 1.

Figure 4b shows an example where a new FO is added

to the thread-local linked list. Steps ` to ˆ show the

allocation of a new FO in the thread-local linked list. In this

scenario, the DLP is achieved once the next-pointer of the

newly allocated FO is updated atomically, followed by the

FLUSH?FENCE instructions. We call the FLUSH?FENCE

instruction pair right after updating the next pointer of the

new FO so that if a crash happens after the DLP, we are

(a) (b)

Fig. 4 Durable linearizability examples. DLP represents the DL point achieved. (a) shows a single FO achieving DLP while (b) shows a multi-

FO DLP
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able to access the new FO by a backward traversal. If a

crash happens before DLP 2, our recovery mechanism will

be able to achieve the consistent state of the thread-local

linked list up to DLP 1. There is a potential memory leak

that needs to be addressed if a crash happens in between

steps `and ´. Several mechanisms can be adopted for

memory leaks such as hazard eras [27] and the optimistic

access scheme [28].

4.6 Space and time complexity

The space overhead of our proposed design is similar to the

traditional Bþ-tree, i.e., O(N), because a key is either in the

PTFO or in the global Bþ-tree. Also, the in-memory hash

table is placed in DRAM and not DCPM, so we do not

consider its space overhead for DCPM. Though, for

DRAM the hash table space overhead is O(M), where M is

the number of keys stored in the PTFO entries at a par-

ticular point of time.

The time complexity for the lookup operation is com-

posed of two cases, one where a thread is required to tra-

verse the PTFO and second where a thread only looks for

the key in the global Bþ-tree. In addition, the read opera-

tion has to go through the in-memory hash table. Now, if a

thread is looking for a key it has to first search the hash of

the key in the hash table, which is of time complexity O(1).

If the key is found in the hash table then the thread will

traverse the particular PTFO linearly and return once the

key is found. The time complexity (T) for this case is

Oð1Þ þ OðMÞ. For the second scenario, if the key is not

found in the hash table, then the thread will directly look

for the key in the global F&F tree. F&F offers lock-free

read operations that are also based on linear search.

5 Evaluation

5.1 Testbed setup

We performed our experiments on a Linux machine (ker-

nel version 5.4.0) equipped with 4 Intel Xeon(R) E5-4640

v2 CPUs @ 2.20GHz with 10 physical cores per node,

80MiB last-level cache, and 256GiB DDR3 DRAM. We

enabled hyper-threading to increase threads for the scala-

bility evaluation. We emulated the latency of Intel DCPM

as presented in [3]. We implemented the F3-tree atop F&F

in C??11. All source code was compiled with g?? ver-

sion 9.3.0 using optimization level -O3. We employed the

numactl utility [24] to pin threads to CPU cores, populating

CPU nodes consecutively from the first node onward. In

our evaluation, we compared the following

implementations:

• F&F: The baseline concurrent variant of the DCPM-

based Bþ-tree. We utilized the public implementation

of F&F available at [29].

• F3-tree: The variant of F3-tree without NUMA-aware-

ness [1]. We evaluated two different versions of F3-tree

without NUMA-awareness, i.e., key-based (F3-K) and

node-based (F3-N). With F3-K, the evaluate thread

consumes the keys from the PTFOs in sequential order

and checkpoints them one-by-one to the global Bþ-tree.

In contrast, F3-N benefits from batching, i.e., a single

PTFO consists of multiple keys and the evaluate thread

checkpoints the entire FO to the global Bþ-tree in a

single operation.

• F3-tree (N): The NUMA-aware variant of F3-tree where

we bound the memory allocations to the local CPU

node and the evaluate threads to checkpoint per CPU

node PTFOs.

Table 1 provides the details of the benchmarks used in our

evaluation. We adopted the synthetic benchmark to eval-

uate our proposed solution which is the same from F&F

approach and their work. Furthermore, the synthetic

benchmark simulates the workload pattern of a standard

benchmark, such as Yahoo Cloud Serving Bench-

mark [30]. It generates workloads that can be of either

uniform distribution or random/skewed distribution.

5.2 Evaluation results of F3-tree

In this subsection, we present the evaluation results of F3-

tree using the synthetic benchmark with sequential and

random key distributions, the effect on performance when

varying the size of the PTFOs, and the evaluation of F3-tree

using a simulated realistic workload.

5.2.1 Sequential workload analysis

Figure 5a depicts the performance for sequential work-

loads. We observe that on average F3-N outperforms F3-K

by a factor of 1.3�, and F&F by a factor of 3.3�. The

reasons are manifold. First, F3-N benefits from the

sequential order of keys within the workload and does not

Table 1 Benchmark and workload description

Benchmark Workload Workload size

Synthetic W1: write only 1 M 8B keys

W2: read only

Realistic Composite 1 M write (8B keys)

12.5 K Delete (8B keys)

2 M Search Ops
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explicitly perform sorting. Second, F3-N checkpoints the

whole PTFO to the global F&F tree, which leads to fewer

shift operations and SMOs on the global tree. Third, F3-N

incurs less thread synchronization and communication

overhead with foreground threads. Similarly, F3-K out-

performs the F&F tree on average by a factor of 2.4� due

to its PTFO design. We observed a scalable trend in F&F

performance with varying threads for sequential workloads

because F&F does not perform frequent shift operations

due to the sequential key order. Moreover, the workload is

equally distributed among threads, reducing the contention

for individual Bþ-tree nodes.

Notably, we observed a scalable trend by all approaches

for threads within a single CPU node. However, perfor-

mance degrades with threads crossing the CPU-node

boundary due to the overhead of remote memory accesses.

Although the F3-tree writes to PTFOs still the asyn-

chronous threads read the PTFOs and checkpoint them to

the global tree and thus suffer from remote memory

accesses and performance saturation. We address this issue

with F3-tree(N), a NUMA-aware solution for Bþ-trees (see
Sect. 5.3.1). Figure 5a shows a similar trend for throughput

when the number of consumer (evaluate) threads varies.

5.2.2 Random workload analysis

Figure 5b shows the results of the random workload. We

observed that F3-K outperforms F3-N because of two

major reasons. First, F3-N traverses the whole global tree

to check if the key-value pairs within the local future object

overlap with the key-value pairs of any of the global tree

nodes. Second, F3-N performs a double shift operation, i.e.,

on the PTFO and the global tree.

With the random workload, F&F performance saturates

as the number of threads increases, i.e., after eight threads.

This is due to the excessive amount of shift operations

during non-SMOs and SMOs, and the increasing con-

tention when locking tree nodes. With a smaller number of

threads, we observed that shifting is the dominant operation

of F&F because it has the highest execution-time contri-

bution. Whereas, when the number of threads increases,

contention to acquire the per-tree-node locks and shifting

become the dominant factors for the performance satura-

tion of F&F.

The F3-tree suffers from remote memory accesses in the

random workload as well. This is because with the random

workload the keys are distributed randomly between

PTFOs, unlike with the sequential workload. The asyn-

chronous evaluate threads suffer from remote memory

accesses and because the underlying global tree is F&F, it

suffers from the same limitations explained above.

Although we limit the asynchronous evaluate threads to

four, the major factor in performance degradation are

remote memory accesses to read the PTFOs.

5.2.3 Varying future objects

Figure 6 shows the performance impact of varying the

PTFO size. We limit the number of future objects to 100,

500, and 1000, shown as F3-K (100), F3-K (500), and F3-K

(1000). We limit the number of evaluate threads to only

four and compared them with the performance of F&F with

four threads only. We observe in Fig. 6 that the scalability

of our proposed system is limited by the number of future

objects. Meanwhile, the application threads (producers)

spend most of their time waiting for the evaluate threads

(consumers) to checkpoint the data from PTFOs to the

global Bþ-tree. Furthermore, we observe that F3-K (No

Limit), where we do not limit the number of future objects,

has the best overall performance. F3-K (1000) shows

equivalent performance to F3-K (No Limit) for 40 threads

because the number of PTFOs is less than the threshold of

1000 future objects, and so the producers are not blocked

during the entire execution.

5.2.4 Realistic workload analysis

We simulate a realistic workload scenario where an

application performs a mixed workload of read and write
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operations. For this experiment, we used a random key

distribution and the key-based operation mode of the F3-

tree. During this experiment, each thread alternates

between four insert queries, 16 search queries, and one

delete query, as performed in F&F. Figure 7 shows that the

F3-tree outperforms F&F and gains a speedup of about

2.6� when the number of threads increases. This is due to

high performing insert operations of the F3-tree and the in-

memory hash table for search operations. Supporting range

queries for the F3-tree is challenging because range queries

fetch multiple key-value pairs. The range of keys in the F3-

tree can overlap between PTFOs and the global Bþ-tree.
Within PTFOs, range query performance degrades even

after using the in-memory hash table because it does not

support range queries.

5.3 Results of NUMA-aware F3-tree

In this subsection, we present the evaluation results of F3-

tree (N) against F3-tree. We present the results with

sequential and random key distributions and show the

reduced cross CPU node communication with F3-tree (N).

5.3.1 Write performance

In this subsection, we present the evaluation results of our

NUMA-aware F3-tree in comparison to the F3-tree without

NUMA-awareness and F&F. We employ workload W1 of

the synthetic benchmark from Table 1 unless stated

otherwise. We only utilize the key-based approach for the

evaluate threads to checkpoint the PTFOs. We limit the

number of evaluate threads in F3-tree to two whereas the

number of F3-tree (N) evaluate threads increases by two

with each CPU node (i.e., we employ two evaluate threads

per CPU node). We restrict the number of threads to the

number of physical CPU cores. As F3-tree (N) bound the

evaluate threads to only checkpoint the local PTFOs and

our system is based on four physical CPU nodes with

10 cores each, we performed our experiments for up to

40 threads only. Figure 8a depicts the performance for the

sequential distribution of the keys. On average, F3-tree (N)

outperforms F3-tree by 1.3� and F&F by 5�. The reasons

are manifold. First, F3-tree (N) does not allocate non-local

memory (i.e., all allocations are conducted on the local

CPU node), and the evaluate threads only checkpoint the

local CPU nodes’ PTFOs. This minimizes the cross CPU

node communication and reduces the cache coherence

overhead (cache ping-pong [31]) of shared data. Second,
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F3-tree and F3-tree (N) both benefit from the sequential

order of keys within the workload and do not explicitly

perform sorting.

Figure 8b shows the performance under a random dis-

tribution of the keys. F3-tree (N) outperforms F3-tree due

to its local memory allocations and the CPU node-bound

evaluate threads. F3-tree performance drops once the

threads cross the NUMA boundary due to high cross-CPU

node communication overhead caused by the evaluate

threads. However, with F3-tree (N), the evaluate threads

are only allowed to checkpoint their local PTFOs, which

reduces the cross CPU node communication overhead and

enables our F3-tree (N) to scale beyond NUMA

boundaries.

Furthermore, Fig. 8 shows the execution times of the

F&F, F3-tree and F3-tree (N). It can be observed that F3-

tree (N) outperforms F&F by a significant margin while it

manages to achieve faster execution times in comparison to

F3-tree.

Figure 9 depicts the percentages of remote memory

accesses for F3-tree (N). We compare the remote memory

accesses with F3-tree for an increasing number of con-

sumer (evaluate) threads per CPU node. With F3-tree (N),

the number of evaluate threads increases by two with each

CPU node, while with F3-tree (N2) we limit the number of

evaluate threads to two. Moreover, F3-tree (NI) represents

the non-interleaved memory allocation policy as explained

in Sect. 3.2. It can be observed from Fig. 9 that F3-tree (N)

exhibits the lowest percentage of remote memory accesses

due to its node-local memory allocation and evaluate

threads. However, it still performs remote memory acces-

ses due to the global Bþ-tree as we did not modify the

memory allocation scheme of the global Bþ-tree. Overall,
we can observe that 50% of the remote memory accesses

are reduced in comparison to F3-tree (NI).

5.3.2 Read performance

We perform experiments with read workloads to determine

the overhead of PTFOs, as depicted in Fig. 10. We com-

pare F&F with our proposed F3-tree, which includes the in-

memory hash table, F3-tree without the in-memory hash

table, and F3-tree (N). We use the synthetic benchmark

with workload W2 detailed in Table 1. For this experi-

ment, we place 20% key-value pairs in PTFOs while 80%

key-value pairs are placed in the global F&F tree. F3-tree

‘‘No Hash’’ has the worst read performance because every

read operation has to go over the PTFOs first and if the key
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is not found, it then searches the global tree. In constrast,

F3-tree with its hash table shows equivalent performance to

F&F with negligible overhead to check the hash table first

and then look for the key in the corresponding PTFOs.

Additionally, we observe that F3-tree (N) maintains the

read performance of F3-tree.

5.4 Real-world applications of F3-tree

As our proposed F3-tree is an index data structure we argue

that our proposed solution can be adopted for all system-

level applications where index data structures play a vital

role. Additionally, we argue that our proposed solution

would have the best performance where applications deal

with write intensive workload patterns. An example

application of our proposed F3-tree would be key-value

stores.

6 Related work

Data structures based on persistent memory: Existing

PM-based KV-stores can be broadly classified into hash

and tree-based data structures. HiKV [32] creates a hybrid

index including DRAM and PM to efficiently support a

range of key-value operations. Using the persistent hash

index structure allows fast index searches and for range

queries it utilizes a volatile B?-tree. The tree-based CDDS

B?-tree [33] was one of the early persistent B?-tree data

structures. For failure consistency, CDDS B?-tree adopted

the global versioning control technique but the scalability

suffers with increasing number threads trying to change the

global version number. RNTree [34] takes advantage of

hardware transactional memory (HTM). To reduce the

sorting overhead it uses a new slot array approach. There

have been various other studies to provide optimal persis-

tent data structures such as B?-trees [9, 10, 35], a hashing

scheme [36], and a radix tree [37]. Recent work [2]

proposed group-split-merge (GSM), a persistent index data

structure atop of PMEMKV for scientific indexing and

querying. Many of those propose write optimal techniques

while delivering consistency of the data structures with

8-byte failure atomic writes in persistent memory. Fast and

Fair [11] proposed a B-link-tree for persistent memory

using failure-atomic in-place operations, shifting and re-

balancing. Consistency is achieved using the previous

sorted shift node entries. Further, it performs split node

operations without logging by taking advantage of the

B-link-tree sibling pointers.

6.1 B1-tree indexing data structures

Recent studies on B?-tree indexing data structures can be

classified into hybrid (DRAM-PM) B?-trees [10, 13, 38]

and PM-only B?-trees [9, 11, 33]. With PM-only variants,

data resides entirely in PM, allowing nearly instant

recovery. For hybrid indexes, DRAM is used for auxiliary

data that is rebuilt on recovery. DRAM has lower latency

than PM, and this scheme usually results in improved

performance at the cost of longer recovery time. But most

of these studies have either compromised the basic design

of the B?-tree for the sake of performance, such as

allowing unsorted entries within B?-tree nodes [33], or

lack concurrency support [9]. F&F is the state-of-the-art

persistent B?-tree variant that maintains the basic prop-

erties of B?-trees while supporting concurrent operations.

However, none of the existing PM-based B?-tree write

operations scale on manycore machines with hundreds of

threads. In this work, we proposed F3-tree, a highly con-

current persistent Bþ-tree for DCPM-based manycore

machines. We adopted future-based data structures for

asynchronous computations [17] over F&F and achieve

higher performance on manycore machines. Futures have

not yet been adopted for indexing data structures, and this

is the first work that has adopted future-based data struc-

tures for B?-tree indexing data structures.
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6.2 NUMA-aware system applications and data
structures

There have been several studies to introduce NUMA

awareness to file systems and system-level applications.

nCache [39] investigated the adoption of range locks on

shared files in manycore servers to execute concurrently

and proposed a novel file metadata cache framework by

ensuring consistent updates. Several studies have been

conducted to identify the NUMA impact on system-level

software and data structures with DCPM [4, 7, 40]. All

these works conclude that there is a need to design NUMA-

aware data structures that can efficiently utilize NUMA-

based manycore machines. Several recent prominent

studies, including [3, 41], highlighted the importance of

NUMA impact. Daase et al. [42] investigated OLAP-re-

lated workload interaction across NUMA regions. June-

hyung Kim et al. [4] proposed fine-grained range-based

locks to improve the scalability of NOVA [43] with

NUMA architectures. NAP[7] established black-box

NUMA-aware counterparts for index data structure for

DCPM. All those studies explore NUMA awareness in data

structures but none of them is directly applicable to FOs.

For instance, the NAP approach focuses on crash consis-

tency and failure atomicity inspired by node replica-

tion [18] but suffers from space amplification as it

maintains hot items in each node. In the proposed work, we

focus on achieving scalability and NUMA awareness for

persistent FOs without space overhead.

7 Conclusion

In this paper, we presented F3-tree, a highly concurrent

persistent Bþ-tree for DCPM-based manycore machines.

F3-tree achieves scalability and high write concurrency by

adopting thread-local future objects (PTFOs). PTFOs are

checkpointed to the global Bþ-tree in an asynchronous

manner based on a tunable time and size-based threshold.

Search queries are optimized by employing a volatile in-

memory hash table. We evaluated F3-tree on a manycore

Linux machine with emulated DCPM. The results show

that F3-tree achieves high scalability (3.4� on average)

compared to F&F. We introduced NUMA-awareness with

our F3-tree design and observed significant performance

improvements and a reduction in remote memory accesses

with the NUMA-aware variant of F3-tree. Experimental

results show that our NUMA-aware F3-tree improves the

performance over F3-tree without NUMA-awareness on

average by a factor of 1.3� for workloads with both

sequential and random key distributions. Our NUMA-

aware F3-tree reduces remote memory accesses by 50%

and outperforms F&F on average by 5� and 3� for wor-

loads with random and sequential key distributions,

respectively.
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