
Enabling a Network Key-Value Store with a Key-Value
Storage Interface Using the SPDK

Yeohyeon Park1, Chang-Gyu Lee1, Kyungpyo Kim2, Sung-Soon Park2, Youngjae Kim1∗
1Sogang University, Seoul, South Korea, 2Gluesys

1 INTRODUCTION
A key-value store fundamentally stores and retrieves val-
ues using a key-based lookup mechanism instead of a tra-
ditional Logical Block Address (LBA) interface. Numerous
key-value storage/database platforms such as RocksDB, Mon-
goDB, and Cassandra, despite implementations for efficient
key-value stores, still require avoiding heavy software layer
overheads(e.g., file system in the OS). Consequently, recent
implementations of key-value SSDs [2, 3] provide low I/O
latency and high throughput. Despite the superiority of the
key-based lookup mechanism, on the other hand, in a disag-
gregated storage environment, network storage such as SAN
and NAS lacks research to adopt a key-value interface, so it
is still saddled heavy software layer overheads. Therefore, in
this study, we design a network key-value store that has a
key-value interface, completely avoids the OS’s file system,
and allows clients to access <key, value> tuples on the com-
puter network as if they were local key-value storage. We
finally reveal its implementation feasibility.
2 PROPOSED DESIGN
Figure 1 shows various structures of software stacks in a
distributed database built on various disaggregated storage
architectures. Note that the underlying storage interfaces
with the DB in diverse ways through a key-value store. In
Figure 1(a)(b), the server exports disk volumes or file systems
to clients, stacking the file system and key-value store on top.
Either way, a client’s key-value request inevitably entails
the OS’s file system overhead. Figure 1(c)(d) describes our
proposed architectures. Both adopt Intel SPDK [1]-based key-
value store implementations (SPDK-based KVS), eliminating
the OS’s file system from the software stack. In Figure 1(c),
each client runs SPDK-based KVS on the mounted volume.
So, key-value requests are processed on the client-side, but
the LBA-based NVMe-oF protocol is still used between the
remote volume and the client. Unlike Figure 1(c), Figure 1(d)
runs SPDK-based KVS on the server and uses the extended
NVMe-oF protocol for KV interface support (KV NVMe-oF
protocol). Comparing Figure 1(c) and (d), the server-side
implementation of SPDK-based KVS offers higher ease of
use, manageability, and data sharing of key-value stores than
the client-side implementation.

Implementation:We took the server-side approach (Fig-
ure 1(d)) for preliminary evaluation of SPDK-based KVS. We
implemented the SPDK-based KVS using a simple hash data
structure to index <key, value> tuples. The hash table man-
ages corresponding LBAs for the key, and the bitmap arrays
keep track of the free logical blocks in the storage.

Operation Flow for I/O:The client-side application sends
a key-value request to SPDK-based KVS running on the

∗Y. Kim is the corresponding author.

Vol I Vol II Vol III

Network

FS I FS II FS III

KVStore KVStore KVStore

Distributed DB

Network

NFS I NFS II NFS III

KVStore KVStore KVStore

Distributed DB

FS I FS II FS III

NFS I NFS II NFS III

RAIDs of HDDs/SSDs RAIDs of HDDs/SSDs

(a) Disk volume export (b) File system export

Network

Distributed DB

SPDK KVS
Vol I Vol II Vol III

RAIDs of HDDs/SSDs

(d) SPDK-based KVStore
on the server

Network

Distributed DB

RAIDs of HDDs/SSDs

(c) SPDK-based KVStore
on the client

SPDK KVS SPDK KVS SPDK KVS

SPDK KVS SPDK-based KVStore
KV NVMe-oF protocol

Vol I Vol II Vol III

Vol I Vol II Vol IIIVol I Vol II Vol III

Vol I Vol II Vol III Vol I Vol II Vol III

Figure 1: A description of software stacks in a distributed database
built on various disaggregated storage architectures.

server via the KV NVMe-oF protocol. Ahead of all, SPDK-
based KVS runs the hash function on the received key. For
Put(), SPDK-based KVS refers to the bitmap array (for the
first write) and allocates the space for the value. Once the
value is written to allocated LBAs then the bitmap and hash
table are updated accordingly. At last, SPDK-based KVS sends
the completion messages back to the client then the NVMe
driver on the client-side notifies the application of its com-
pletion. For Get(), SPDK-based KVS gets the LBAs of the
requested key by referring to the hash table for the key’s
hash value. Then, the value is read via ordinary NVMe block
read. Note that SPDK employs a userspace NVMe driver;
thus, both operations are also handled in the userspace.
3 EVALUATION
We used two servers connected via 10 Gbps Ethernet, each
equippedwith 10 cores and running Linux. Samsung 970 EVO
500 GB NVMe SSD was used on the storage server. SPDK-
based KVS was implemented using SPDK v21.10. We evalu-
ated SPDK-based KVS compared to the baseline as shown
in Figure 1(a) where RocksDB runs upon the EXT4 file sys-
tem. Both architectures are tested with the write workload
“Fillsequential” with a 32 KB value of RocksDB’s db_bench.

Table 1: Evaluation Results
Put() Latency 99𝑡ℎ Percentile Throughput

Baseline 1,835 us 21,224 us 255 MB/s
SPDK-based KVStore 735 us 1,853 us 638 MB/s
We found that SPDK-based KVS reduced average latency

by 60%, tail latency by 91% for 99𝑡ℎ percentile, and increased
throughput by 183%.

Acknowledgement: This research was funded by the Institute of Infor-
mation and Communications Technology Planning and Evaluation (IITP),
Korea government (MSIT) under Grant 2020–0–00104.

REFERENCES
[1] 2022. SPDK. https://spdk.io/.
[2] C. Lee et. al. 2019. iLSM-SSD: An Intelligent LSM-Tree based Key-Value

SSD for Data Analytics. In MASCOTS ’19.
[3] J. Im et. al. 2020. PinK: High-speed In-storage Key-value Store with

Bounded Tails. In USENIX ATC ’20.


	1 Introduction
	2 Proposed Design
	3 Evaluation
	References

