Enabling a Network Key-Value Store with a Key-Value
Storage Interface Using the SPDK

Yeohyeon Park', Chang-Gyu Lee!, Kyungpyo Kim2, Sung-Soon Park2, Youngjae Kim'

"Dept. of Computer Science and Engineering, Sogang Universitym, Seoul, South Korea

ABTHE D 2Gluesys
SOGANGUNIVERSITY {yeohyeon, changgyu, youkim}@sogang.ac.kr, {kpkim, sspark}@gluesys.com ra GLUESYS
Key-Value Store Limitations in SPDK-based KVStore

A Disaggregated Storage Environment clont Somor

SPDK |
= Key-value stores (KVStore/KVS) are widely used due to its simple ! NVMo-oF Target]| fPRictesed PP S ———
key-based lookups to store and retrieve large amounts of data. SPDiCbased VS| | (data, Key) [;‘:i}nashpuw ﬁf"{:mashf_lllm
. . . Key-Value Request| LBA Allocate ! ' :
= However, research on adopting key-value interfaces in a T (dat, L) e SR P
disaggregated storage environment is still lacking. 9”;:;;’ ’°°“’° il o e e A owe
! © Allocate LBA| '
) U 1 +|Hast
= We found that when applying key-value storage to network storage | | (=3 o [~ 1 HoshTable1s «==-0 Hosh AAA
@ Transmit, Block 1/0 [T] TR = @ Find LBA
such as SAN and NAS, the overhead of heavy software layers such 14 —I
as the OS's file system is inevitably unavoidable. [“VMe"’F""“:Ic‘ (data, LBA)

@ Transmit KV NVMe-oF protocol

Figure 3. < I/O operation flow of SPDK based KVStore >

Various Software Stacks of

A Distributed Key-Value Platform
_ SPDK-based KVStore

KV NVMe-oF protocol

= SPDK-based KVS is implemented with two shared data structures.
1) The hash data structure indexes a <key, value> tuple and

Distributed DB manages the LBAs of the value of the key.
[kvstore | [Kustore | [KVStore] (_Distributed DB) —pistriputed DB 2) Bitmap array manages free logical blocks on the storage.

* Processing steps for 1/0O operation flow

Network @ A user-level application on the client send key-value requests to
the server using the KV NVMe-oF protocol.
[voii | [volni | [velmi | [Volt | [Volt] [voitn] [Volt | [VoIt | [Vol | [VoIt][Vel][volur] @ In SPDK-based KVS, hash function generates a hash value of the
S —— e — e —] e —— received key.
© sPDK-based KVS operates for each type of KV request.
(a) Disk volume export (b) File system export (c) SPDK-based KVStore (d) SPDK-based KVStore o Put().' An unused LBA is allocated by referring to the bitmap
on the client on the server array, and the hash data structure is updated with the key and
Figure 1. < Software stacks of a distributed key-value platform > corresponding LBAs.
= Figure 1(a)(b) depicts the software stacks of a distributed key-value o Get(): Get the LBAs corresponding to the key in the hash data
platform on a SAN or NAS, respectively. structure.
= Figure 1(a) exports the server’s disk volume to the client and stack @ The request is converted into Block 1/0 by obtaining LBAs and
the file system and key-value store. then transmitted to the user-level NVMe Driver.
= Figure 1(b) exports the server’s file system to the client via NFS @ The NVMe driver notifies the client after writing the value to the
and stacks a key-value store on top of it. NVMe SSD.

= Either way, a key-value request from a client inevitably entails the N
0S’s file system overhead. Evaluation

= Figure 1(c)(d) describes our proposed architectures, where both

— SPDK-based KVS Baseline
adopt Intel SPDK-based key-value store implementations (SPDK- 1.0
based KVStore). 0.8 100
= We chose Figure 1(d) because it provides higher easy of use, L0.6 099
manageability, and data sharing through centralization of the key- 8 0.95
value store. 0.4
- - 0.2 0-90103 10% 10°
Proposed Design and Implementation 0.0—— . L . . .
: 102 103 104 10° 106 107
NVMo-oF Target Latency (us)
/' =)N Figure 4. < Performance evaluation of SPDK-based KVS >
§ = We used two servers connected via 10 Gbps Ethernet, each server
ﬂ ? Processed by reactor equipped with 10 cores and running Linux (Ubuntu 20.04).
Cf_j = The storage server is equipped with Samsung 970 EVO 500 GB
i NVMeSSD.
Moy S - ~ J = SPDK-based KVS was implemented using SPDK v.21.10.
53 et rereom et * We used the write workload “Fillsequential” with a 32KB value of
—c» Callback Function for Completion RocksDB’s db bench benchmark.
Figure 2. < Architecture of the SPDK-based key-value store OCKS - . .
implementation (KV BDEV) in the server (Figure 1(d)) > " \éV\t/as(;ompared Figure 1(a) (Baseline) and Figure 1(d) (SPDK-based

= We propose a SPDK-based KVS that does not require a file system.

» SPDK is a user level device driver designed to provide high
performance.

1) Baseline: RocksDB runs upon EXT4 on the client in Figure 1(a)
2) SPDK-based KVS: our proposed approach of Figure 1(d)

)) = SPDK-based KVS reduced average latency by 60%, tail latency by
- SPDK provides BDEV, a user-definable module. 91% for 99th percentile, and increased throughput by 183%.
- BDEV can be inserted into the 1/O path.

- Each core is assigned an event loop, and the event loop consists ACknOWIedgement

of a reactor and an event queue. This research was funded by the Institute of Information and
- Reactors handle events with threads in the core. Communications Technology Planning and Evaluation (IITP), Korea
- BDEV is inserted into the event queue in the form of an event government (MSIT) (Development of low-latency storage module for

and executed. I/0 intensive edge data processing) under Grant 2020—0-00104.

