
§ We used two servers connected via 10 Gbps Ethernet, each server 
equipped with 10 cores and running Linux (Ubuntu 20.04).

§ The storage server is equipped with Samsung 970 EVO 500 GB 
NVMeSSD.

§ SPDK-based KVS was implemented using SPDK v.21.10.
§ We used the write workload “Fillsequential”  with a 32KB value of 

RocksDB’s db_bench benchmark.
§ We compared Figure 1(a) (Baseline) and Figure 1(d) (SPDK-based 

KVS). 
1) Baseline: RocksDB runs upon EXT4 on the client in Figure 1(a)
2) SPDK-based KVS: our proposed approach of Figure 1(d)

§ SPDK-based KVS reduced average latency by 60%, tail latency by 
91% for 99th percentile, and increased throughput by 183%.

§ We propose a SPDK-based KVS that does not require a file system.
§ SPDK is a user level device driver designed to provide high 

performance.
- SPDK provides BDEV, a user-definable module. 
- BDEV can be inserted into the I/O path.
- SPDK allocates and processes events to the core.
- Each core is assigned an event loop, and the event loop consists 

of a reactor and an event queue.
- Reactors handle events with threads in the core.
- BDEV is inserted into the event queue in the form of an event 

and executed.

§ Figure 1(a)(b) depicts the software stacks of a distributed key-value
platform on a SAN or NAS, respectively.

§ Figure 1(a) exports the server’s disk volume to the client and stack 
the file system and key-value store.

§ Figure 1(b) exports the server’s file system to the client via NFS
and stacks a key-value store on top of it.

§ Either way, a key-value request from a client inevitably entails the 
OS’s file system overhead. 

§ Figure 1(c)(d) describes our proposed architectures, where both 
adopt Intel SPDK-based key-value store implementations (SPDK-
based KVStore).

§ We chose Figure 1(d) because it provides higher easy of use, 
manageability, and data sharing through centralization of the key-
value store.
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§ Key-value stores (KVStore/KVS) are widely used due to its simple 
key-based lookups to store and retrieve large amounts of data.

§ However, research on adopting key-value interfaces in a 
disaggregated storage environment is still lacking. 

§ We found that when applying key-value storage to network storage 
such as SAN and NAS, the overhead of heavy software layers such 
as the OS's file system is inevitably unavoidable.

Key-Value Store Limitations in 
A Disaggregated Storage Environment

Proposed Design and Implementation

§ SPDK-based KVS is implemented with two shared data structures.
1) The hash data structure indexes a <key, value> tuple and 

manages the LBAs of the value of the key.
2) Bitmap array manages free logical blocks on the storage.

§ Processing steps for I/O operation flow
1. A user-level application on the client send key-value requests to 

the server using the KV NVMe-oF protocol. 
2. In SPDK-based KVS, hash function generates a hash value of the 

received key. 
3. SPDK-based KVS operates for each type of KV request.
o Put(): An unused LBA is allocated by referring to the bitmap 

array, and the hash data structure is updated with the key and 
corresponding LBAs.

o Get(): Get the LBAs corresponding to the key in the hash data 
structure.

4. The request is converted into Block I/O by obtaining LBAs and 
then transmitted to the user-level NVMe Driver.

5. The NVMe driver notifies the client after writing the value to the 
NVMe SSD.

SPDK-based KVStore

Figure 3. < I/O operation flow of SPDK based KVStore >

Figure 1. < Software stacks of a distributed key-value platform >
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Figure 4. < Performance evaluation of SPDK-based KVS >

Figure 2. < Architecture of the SPDK-based key-value store 
implementation (KV BDEV) in the server (Figure 1(d)) >
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