
§ We used two servers connected via 10 Gbps Ethernet, each server
equipped with 10 cores and running Linux (Ubuntu 20.04).

§ The storage server is equipped with Samsung 970 EVO 500 GB
NVMeSSD.

§ SPDK-based KVS was implemented using SPDK v.21.10.
§ We used the write workload “Fillsequential” with a 32KB value of

RocksDB’s db_bench benchmark.
§ We compared Figure 1(a) (Baseline) and Figure 1(d) (SPDK-based

KVS).
1) Baseline: RocksDB runs upon EXT4 on the client in Figure 1(a)
2) SPDK-based KVS: our proposed approach of Figure 1(d)

§ SPDK-based KVS reduced average latency by 60%, tail latency by
91% for 99th percentile, and increased throughput by 183%.

§ We propose a SPDK-based KVS that does not require a file system.
§ SPDK is a user level device driver designed to provide high

performance.
- SPDK provides BDEV, a user-definable module.
- BDEV can be inserted into the I/O path.
- SPDK allocates and processes events to the core.
- Each core is assigned an event loop, and the event loop consists

of a reactor and an event queue.
- Reactors handle events with threads in the core.
- BDEV is inserted into the event queue in the form of an event

and executed.

§ Figure 1(a)(b) depicts the software stacks of a distributed key-value
platform on a SAN or NAS, respectively.

§ Figure 1(a) exports the server’s disk volume to the client and stack
the file system and key-value store.

§ Figure 1(b) exports the server’s file system to the client via NFS
and stacks a key-value store on top of it.

§ Either way, a key-value request from a client inevitably entails the
OS’s file system overhead.

§ Figure 1(c)(d) describes our proposed architectures, where both
adopt Intel SPDK-based key-value store implementations (SPDK-
based KVStore).

§ We chose Figure 1(d) because it provides higher easy of use,
manageability, and data sharing through centralization of the key-
value store.

Enabling a Network Key-Value Store with a Key-Value
Storage Interface Using the SPDK

Yeohyeon Park1, Chang-Gyu Lee1, Kyungpyo Kim2, Sung-Soon Park2, Youngjae Kim1

1Dept. of Computer Science and Engineering, Sogang Universitym, Seoul, South Korea
2Gluesys

{yeohyeon, changgyu, youkim}@sogang.ac.kr, {kpkim, sspark}@gluesys.com

§ Key-value stores (KVStore/KVS) are widely used due to its simple
key-based lookups to store and retrieve large amounts of data.

§ However, research on adopting key-value interfaces in a
disaggregated storage environment is still lacking.

§ We found that when applying key-value storage to network storage
such as SAN and NAS, the overhead of heavy software layers such
as the OS's file system is inevitably unavoidable.

Key-Value Store Limitations in
A Disaggregated Storage Environment

Proposed Design and Implementation

§ SPDK-based KVS is implemented with two shared data structures.
1) The hash data structure indexes a <key, value> tuple and

manages the LBAs of the value of the key.
2) Bitmap array manages free logical blocks on the storage.

§ Processing steps for I/O operation flow
1. A user-level application on the client send key-value requests to

the server using the KV NVMe-oF protocol.
2. In SPDK-based KVS, hash function generates a hash value of the

received key.
3. SPDK-based KVS operates for each type of KV request.
o Put(): An unused LBA is allocated by referring to the bitmap

array, and the hash data structure is updated with the key and
corresponding LBAs.

o Get(): Get the LBAs corresponding to the key in the hash data
structure.

4. The request is converted into Block I/O by obtaining LBAs and
then transmitted to the user-level NVMe Driver.

5. The NVMe driver notifies the client after writing the value to the
NVMe SSD.

SPDK-based KVStore

Figure 3. < I/O operation flow of SPDK based KVStore >

Figure 1. < Software stacks of a distributed key-value platform >

102 103 104 105 106 107
Latency (us)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SPDK-based KVS Baseline

103 104 105
0.90

0.95

0.99
1.00

Figure 4. < Performance evaluation of SPDK-based KVS >

Figure 2. < Architecture of the SPDK-based key-value store
implementation (KV BDEV) in the server (Figure 1(d)) >

3

4

2

1

5

Evaluation

This research was funded by the Institute of Information and
Communications Technology Planning and Evaluation (IITP), Korea
government (MSIT) (Development of low-latency storage module for
I/O intensive edge data processing) under Grant 2020–0–00104.

Acknowledgement

Various Software Stacks of
A Distributed Key-Value Platform

Vol I Vol II Vol III

Network

FS I FS II FS III
KVStore KVStore KVStore

Distributed DB

Network

NFS I NFS II NFS III
KVStore KVStore KVStore

Distributed DB

FS I FS II FS III

NFS I NFS II NFS III

RAIDs of HDDs/SSDs RAIDs of HDDs/SSDs

(a) Disk volume export (b) File system export

Network

Distributed DB

SPDK KVS
Vol I Vol II Vol III

RAIDs of HDDs/SSDs

(d) SPDK-based KVStore
on the server

Network

Distributed DB

RAIDs of HDDs/SSDs

(c) SPDK-based KVStore
on the client

SPDK KVS SPDK KVS SPDK KVS

SPDK KVS SPDK-based KVStore
KV NVMe-oF protocol

Vol I Vol II Vol III

Vol I Vol II Vol IIIVol I Vol II Vol III

Vol I Vol II Vol III Vol I Vol II Vol III

Server
SPDK

NIC

Kernel
User

NVMe SSD

NVMe Driver

NVMe-oF Target

Client

Application

NVMe-oF Driver

NIC

Key-Value Request

Transmit KV NVMe-oF protocol 1

(data, Key)

(data, LBA)
LBA Allocate

(data, Key)

(data, LBA)

Hash F111AAAA

SPDK-based KVS Put SPDK-based KVS Get

Hash
func

. . .
111

Hash Table 15

Bitmap Array 15

Node

Hash AAAA
LBA 0000

0000

0. . . 12 031

Hash F111AAAA
Hash
func

. . .
111

Hash Table 15
Node

Hash AAAA
LBA 0000

2 2Generate a hash value Generate a hash value

3

3 Find LBA

Allocate LBA

SPDK-based KVS

Transmit Block I/O4

Transmit Block I/O5

Per-core Event Loop

…

Callback
Functions

I/O Device

Poller
HW Queue
Abstraction

Event Queue

Reactor 1
Submit

Fetch
Polling

K

N

N
NK

K

Submit Event to Event QueueS
Fetched by ReactorF
Callback Function for CompletionC

PCIe-connected
NVMe SSD

NVMe-oF Target

NVMe Driver

Packet NVMe
Command

KVS BDEV
NVMe

KV
CMD

KV Storage Engine
<Key to LBA Mapping>

NVMe
Block
CMD

KVS BDEV EventK

NVMe Driver EventN

NVMe Command
Submission

NVMe Completion
by Polling

F

S

F

S

C

Processed by reactor
C

