
BTS: Exploring Effects of Background
Task-Aware Scheduling for Key-Value CSDs

Yeohyeon Park, Chang-Gyu Lee, Seungjin Lee,

Inhyuk Park, Soonyeal Yang, Woosuk Chung, Youngjae Kim

7th International Parallel Data Systems Workshop (PDSW’22)

Outline

❑ Background
❑ Computational Storage Device (CSD)

❑ Intel SPDK

❑ Motivation

❑ Proposed Architecture
❑ BTS : Background Task-Aware Scheduler

❑ Execution Flow

❑ Evaluation

❑ Conclusion and Q&A

Background

Computational Storage

❑ What is computational storage device (CSD)?

Computational Storage

❑ What is computational storage device (CSD)?
➢ Computational storage devices (CSD) can run computational tasks inside the storage device,

reducing data transfer between the host and the device.

Computational Storage

❑ What is computational storage device (CSD)?
➢ Computational storage devices (CSD) can run computational tasks inside the storage device,

reducing data transfer between the host and the device.

❑ CSD without OS ❑ CSD with OS

Computational Storage

❑ What is computational storage device (CSD)?
➢ Computational storage devices (CSD) can run computational tasks inside the storage device,

reducing data transfer between the host and the device.

▪ Samsung SmartSSD
▪ INSIDER [1]
▪ PolarDB [2]

❑ CSD without OS ❑ CSD with OS

[1] Z. Ruan et. al., “INSIDER: Designing In-Storage Computing System for Emerging High-Performance Drive,” USENIX ATC ’19
[2] W. Cao et. al., “POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native Relational Database,” FAST ’14

Flash
Flash

DRAMCPU

FPGA

Host Machine

PCIe Interface

Computational Storage

▪ SK hynix KV-CSD
▪ NGD System

Newport SSD

▪ Samsung SmartSSD
▪ INSIDER [1]
▪ PolarDB [2]

❑ CSD without OS ❑ CSD with OS

[1] Z. Ruan et. al., “INSIDER: Designing In-Storage Computing System for Emerging High-Performance Drive,” USENIX ATC ’19
[2] W. Cao et. al., “POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native Relational Database,” FAST ’14

❑ What is computational storage device (CSD)?
➢ Computational storage devices (CSD) can run computational tasks inside the storage device,

reducing data transfer between the host and the device.

▪ Samsung SmartSSD
▪ INSIDER [1]
▪ PolarDB [2]

Flash
Flash

DRAMCPU

FPGA

Host Machine

PCIe Interface

Flash
Flash

DRAMCPU

Host Machine

PCIe Interface

Operating
System

CPU

CSD with OS

❑ Pros
➢ Programmability, and manageability

❑ Cons
➢ OS overhead due to frequent interrupts and context switches

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

CSD with OS

[1] Intel. SPDK. https://spdk.io/.

❑ Pros
➢ Programmability, and manageability

❑ Cons
➢ OS overhead due to frequent interrupts and context switches

To reduce OS overhead, CSD can adopt Intel SPDK[1].

https://spdk.io/

CSD with OS

[1] Intel. SPDK. https://spdk.io/.

❑ Pros
➢ Programmability, and manageability

❑ Cons
➢ OS overhead due to frequent interrupts and context switches

Flash
Flash

Flash

Operating
System

CSD

I/O

CSD

To reduce OS overhead, CSD can adopt Intel SPDK[1].

https://spdk.io/

CSD with OS

Flash
Flash

Flash

Operating
System

Intel SPDK

I/O

[1] Intel. SPDK. https://spdk.io/.

❑ Pros
➢ Programmability, and manageability

❑ Cons
➢ OS overhead due to frequent interrupts and context switches

Flash
Flash

Flash

Operating
System

CSD

I/O

CSD

To reduce OS overhead, CSD can adopt Intel SPDK[1].

https://spdk.io/

NVMe Driver

Kernel

Overhead

NVMe SSD

User space

Kernel space

User Applications

Traditional I/O Stack

❑ Kernel-level NVMe Driver

Context Switch

Interrupt

User Applications

SPDK

NVMe SSD

User space

Kernel space

Intel SPDK[1]

[1] Intel. SPDK. https://spdk.io/.

❑ User-level NVMe Driver

https://spdk.io/

User Applications

SPDK

NVMe SSD

User space

Kernel space

Intel SPDK[1]

[1] Intel. SPDK. https://spdk.io/.

❑ User-level NVMe Driver

1. User level NVMe device driver

https://spdk.io/

User Applications

SPDK

NVMe SSD

User space

Kernel space

Thread1 Thread2

Intel SPDK[1]

[1] Intel. SPDK. https://spdk.io/.

❑ User-level NVMe Driver

1. User level NVMe device driver

2. Binds I/O at the core

https://spdk.io/

User Applications

SPDK

NVMe SSD

User space

Kernel space

Thread1 Thread2

Polling

Intel SPDK[1]

[1] Intel. SPDK. https://spdk.io/.

❑ User-level NVMe Driver

1. User level NVMe device driver

2. Binds I/O at the core

3. Uses polled mode

https://spdk.io/

User space

Kernel space

User Applications

NVMe SSD

SPDK

Use Case

❑ Storage Applications

User space

Kernel space

User Applications

NVMe SSD

SPDK

Database / Filesystem

Use Case

❑ Storage Applications

User space

Kernel space

User Applications

NVMe SSD

SPDK

Dedup / Compression

Use Case

User Applications

NVMe SSD

SPDK

❑ Storage Applications ❑ Storage Services (Deduplication)

Database / Filesystem

However, SPDK has a problem in that foreground I/O and
background service tasks compete for CPU cores.

Research Problem

Contention of these tasks for CPU cores increases the
response time of foreground I/O.

Research Problem

However, SPDK has a problem in that foreground I/O and
background service tasks compete for CPU cores.

Motivation

Executing Background Tasks in SPDK

SPDK

SSD

Write I/O

Foreground I/O F

DRAMCPU
Host

Machine

CSD

Executing Background Tasks in SPDK

SPDK

NVMe SSD

Write I/O

Background task

Foreground I/O

B
F

Dedup

In SPDK, background tasks are derived from foreground I/O.

DRAMCPU

CSD

Host
Machine

Experimental Setup

DRAMCPU

Write I/O

Host
Machine

I/O Benchmark

❑ Host machine
❑ Running a db_bench

(Two I/O threads issue write I/Os)
❑ I/O request size = 16KB

❑ CSD
❑ 4 Core device
❑ Running a Linux OS using Intel SPDK

❑ Background task
❑ Offline deduplication
❑ Fingerprinting using a SHA-1 hash algorithm
❑ Light deduplication : 1KB chunk size, SHA1 16 times
❑ Heavy dedulication : 0.5KB chunk size, SHA1 32 times

❑ Comparisons
❑ Only foreground I/O
❑ Foreground I/O + Background task (light)
❑ Foreground I/O + Background task (heavy)

Experimental Setup

SPDK

NVMe SSD

F

4 CPUs

DRAMCPU

Write I/O

CSD

Host
Machine

I/O Benchmark

❑ Host machine
❑ Running a db_bench

(Two I/O threads issue write I/Os)
❑ I/O request size = 16KB

❑ CSD
❑ 4 Core device
❑ Running a Linux OS using Intel SPDK

Experimental Setup

❑ Host machine
❑ Running a db_bench

(Two I/O threads issue write I/Os)
❑ I/O request size = 16KB

❑ CSD
❑ 4 Core device
❑ Running a Linux OS using Intel SPDK

❑ Background task
❑ Offline deduplication
❑ Fingerprinting using a SHA-1 hash algorithm
❑ Light deduplication : 1KB chunk size, SHA1 16 times
❑ Heavy dedulication : 0.5KB chunk size, SHA1 32 times

SPDK

NVMe SSD

Write I/O

B

F

Dedup

Background tasks
Foreground I/O

4 CPUs

DRAMCPU
Host

Machine

CSD

I/O Benchmark

Experimental Setup

❑ Host machine
❑ Running a db_bench

(Two I/O threads issue write I/Os)
❑ I/O request size = 16KB

❑ CSD
❑ 4 Core device
❑ Running a Linux OS using Intel SPDK

❑ Background task
❑ Offline deduplication
❑ Fingerprinting using a SHA-1 hash algorithm
❑ Light deduplication : 1KB chunk size, SHA1 16 times
❑ Heavy dedulication : 0.5KB chunk size, SHA1 32 times

❑ Comparisons
❑ Only foreground I/O
❑ Foreground I/O + Background task (light)
❑ Foreground I/O + Background task (heavy)

SPDK

NVMe SSD

Write I/O

B

F

Dedup

Background tasks
Foreground I/O

4 CPUs

DRAMCPU
Host

Machine

CSD

I/O Benchmark

Only Foreground

Motivation

NVMe SSD

SPDK

Foreground I/O

Fo
re

g
ro

u
n
d
 I
/O

 L
a
te

n
cy

 (
μ
s)

120

160

200

240

40

0

80

DRAMCPU
Host

Machine

I/O Benchmark

178

Only Foreground

Motivation

NVMe SSD

SPDK

120

160

200

240

40

0

80

Offline Dedup
(light)

Foreground I/O + Background task (light)

12% increase

Fo
re

g
ro

u
n
d
 I
/O

 L
a
te

n
cy

 (
μ
s)

Foreground I/O

DRAMCPU
Host

Machine

I/O Benchmark

178

200

12% increase

Only Foreground

Motivation

NVMe SSD

SPDK

120

160

200

240

40

0

80

Offline Dedup
(Heavy)

33% increase

Foreground I/O + Background task (light)

Foreground I/O + Background task (heavy)

Fo
re

g
ro

u
n
d
 I
/O

 L
a
te

n
cy

 (
μ
s)

Host
Machine

Foreground I/O

DRAMCPU

I/O Benchmark

178

200

234

12% increase

0

1

2

3

4

B
u
sy

 C
o
re

 (
#
)

Only Foreground

Motivation

Fo
re

g
ro

u
n
d
 I
/O

 L
a
te

n
cy

 (
μ
s)

120

160

200

240

80

40

0

33% increase

Foreground I/O + Background task (light)

Foreground I/O + Background task (heavy)

178

200

234

12% increase

0

1

2

3

4

Unused core

B
u
sy

 C
o
re

 (
#
)

Only Foreground

Motivation

Idle core

Fo
re

g
ro

u
n
d
 I
/O

 L
a
te

n
cy

 (
μ
s)

120

160

200

240

80

40

0

Only two cores are fully-utilized.
That is, the remaining cores are under-utilized.

33% increase

Foreground I/O + Background task (light)

Foreground I/O + Background task (heavy)

178

200

234

Problem Definition

① SPDK is not aware of background tasks.

② SPDK cannot perform dynamic task scheduling considering

the load of each CPU core.

→ BTS : Background Task-aware Scheduler

BTS : Background Task-Aware
Scheduler

SPDK

Foreground I/O

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3CSD

DRAMCPU
Host

Machine

SPDK

Foreground I/O

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

SPDK

Foreground I/O

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

Thread2 Queue

F

F

F

F

B

F

F

B

SPDK

Foreground I/O

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

Thread2 Queue

B

Background task

F

B

F

F

B

Thread2 Queue

SPDK

Foreground I/O

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

B

Background task

The SPDK places a background task on the core where the foreground
I/O is being processed.

Therefore, the two tasks compete for the same core.

F

B

F

F

B

Thread2 Queue

SPDK

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

B

SPDK does not schedule flexible relocation of tasks to idle CPU core.
Therefore, idle CPU cores cannot be utilized.

F

B

F

F

B

Thread2 Queue

SPDK

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

schedule

B

SPDK

NVMe SSD

F

SPDK Problem

Thread1 Thread2 Thread3

DRAMCPU
Host

Machine

F

F

F

Thread2 Queue

B

Thread3 Queue

B

B

BTS dynamically schedules background tasks to relocate to idle CPU
cores. This allows the SPDK to actively utilize idle CPU cores.

Background Task-aware Scheduler

BTS Scheduler

(1) Monitoring module

Background Task-aware Scheduler

Monitoring module

BTS Scheduler

(1) Monitoring module (2) Core selection module

Background Task-aware Scheduler

Monitoring module

BTS Scheduler

SPDK

Monitoring
module Active coreIdle core

Time Window1 array

Idle core

Thread1 Thread2 Thread3

Thread1 Thread2 Thread3

❑ Monitors the utilization of each core

❑ Because SPDK randomly changes the core that handles foreground I/O

1) Monitoring Module

B

B

F

F

F

SPDK

Monitoring
module Active coreIdle core

Time Window1 array

Idle core

Thread1 Thread2 Thread3

Thread1 Thread2 Thread3

❑ Monitors the utilization of each core

❑ Because SPDK randomly changes the core that handles foreground I/O

❑ The monitoring module periodically tracks the utilization of active cores

❑ Active core is CPU core that processes at least one foreground I/O

1) Monitoring Module

B

B

F

F

F

SPDK

Active coreIdle core

Time Window1 array

Idle core

Thread1 Thread2 Thread3

Thread1 Thread2 Thread3

❑ Selects a core with low utilization and move background task to that core

❑ Builds an idle core group (G) based on the CPU utilization of each core

2) Core Selection Module

Core selection
module

Group G1

Thread1

Thread3

Monitoring
module

B

B

F

F

F

Thread1 Thread2 Thread3

=2) Core Selection Module

SPDK

B

B

❑ Selects a core with low utilization and move background task to that core

❑ Builds an idle core group (G) based on the CPU utilization of each core

❑ Selects idle cores to execute background tasks from the idle core group (G)

F

F

F

Thread1 Thread2 Thread3

=2) Core Selection Module

SPDK

B
B

❑ Selects a core with low utilization and move background task to that core

❑ Builds an idle core group (G) based on the CPU utilization of each core

❑ Selects idle cores to execute background tasks from the idle core group (G)

F

F

F

Group G1

Thread1

Thread3

Implementation

Core 1 executes the I/O scheduler vbdev for foreground I/O1

SPDK

I/
O

 s
ch

e
d
u
le

r
V
B
D

E
V

Thread2 Thread3 Thread4Thread1

Thread2 Thread3 Thread4Thread1

Foreground I/O

Foreground I/O

Thread 1

Implementation

SPDK provides a pluggable module API
called BDEV for implementing virtual
block devices that interface with block
storage devices.

SPDK

I/
O

 s
ch

e
d
u
le

r
V
B
D

E
V

Thread2 Thread3 Thread4Thread1

Thread2 Thread3 Thread4Thread1

Foreground I/O

Foreground I/O

Thread 1

Implementation

BTS

1. Monitoring

Core 2 : idle
Core 4 : idle

2. Core Selection

Group G

Core 2
Core 4 : selected

2 Select idle cores to execute background tasks

SPDK

I/
O

 s
ch

e
d
u
le

r
V
B
D

E
V

Thread2 Thread3 Thread4Thread1

Thread2 Thread3 Thread4Thread1

Foreground I/O

Foreground I/O

Thread 1

Implementation

BTS

1. Monitoring

Core 2 : idle
Core 4 : idle

2. Core Selection

Group G

Core 2
Core 4 : selected

33

Foreground I/O Background I/O

Thread 4Thread 1

Schedule foreground I/O and
background tasks to cores

SPDK

I/
O

 s
ch

e
d
u
le

r
V
B
D

E
V

Thread2 Thread3 Thread4Thread1

Thread2 Thread3 Thread4Thread1

Foreground I/O

Foreground I/O

Thread 1

Implementation

BTS

1. Monitoring

Core 2 : idle
Core 4 : idle

2. Core Selection

Group G

Core 2
Core 4 : selected

Foreground I/O Background I/O

Thread 4Thread 1

4
Thread 4 runs

background task

Thread 1 runs
foreground I/O

4

Evaluation

Experimental Setup

xNVMe SSD

xNVMe-oF Driver

x

db_bench benchmark

Host machine
SPDK

CSD(emulated using x86 server)

10G Ethernet

1~30 host I/O threads

NVMe-oF CSD

10 cores 6 cores

Experimental Setup

xNVMe SSD

xNVMe-oF Driver

x

db_bench benchmark

Host machine
SPDK

NVMe-oF Target

NVMe Driver

KV
Background

(dedup)

CSD(emulated using x86 server)

10G Ethernet

1~30 host I/O threads

NVMe-oF CSD

10 cores 6 cores

I/O scheduler (BTS)

Experimental Setup

❑ Comparisons

➢ Case1: Only foreground I/O

➢ Case2: Foreground I/O + Deduplication without BTS

➢ Case3: Foreground I/O + Deduplication with BTS

Put() Performance

Case 1 : Only foreground I/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

Good
Performance

Case-3

Case-2

Case-1
L
a
te

n
c
y
 (
μ

s
)

0

500

1000

1500

2000

2500

3000

Number of I/O Threads

0 5 10 15 20 25 30

Case-3

Case-2

Case-1
L
a
te

n
c
y
 (
μ

s
)

0

500

1000

1500

2000

2500

3000

Number of I/O Threads

0 5 10 15 20 25 30

Put() Performance

Case 1 : Only foreground I/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

Good
Performance

Case-3

Case-2

Case-1
L
a
te

n
c
y
 (
μ

s
)

0

500

1000

1500

2000

2500

3000

Number of I/O Threads

0 5 10 15 20 25 30

Put() Performance

Case 1 : Only foreground I/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

Good
Performance

Case-3

Case-2

Case-1
L
a
te

n
c
y
 (
μ

s
)

0

500

1000

1500

2000

2500

3000

Number of I/O Threads

0 5 10 15 20 25 30

Put() Performance

Case 1 : Only foreground I/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

BTS reduced latency by an average of 47.8% when the number

of host I/O threads was less than 10.

Good
Performance

Client I/O threads <= 21

Put() Performance

Case-3

Case-2

Case-1
L
a
te

n
c
y
 (
μ

s
)

0

500

1000

1500

2000

2500

3000

Number of I/O Threads

0 5 10 15 20 25 30

Case 1 : Only foreground I/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

Migration
overhead

Good
Performance

Client I/O threads >21

Put() Performance

Case-3

Case-2

Case-1
L
a
te

n
c
y
 (
μ

s
)

0

500

1000

1500

2000

2500

3000

Number of I/O Threads

0 5 10 15 20 25 30

Case 1 : Only foreground I/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

Under heavy load, the migration overhead for background
tasks outweighs the performance gains.

Good
Performance

Migration
Overhead

Client I/O threads >21

Conclusion

❑ We have identified a problem with SPDK where background tasks increase the
response time of foreground I/O in CSD using SPDK

❑ We proposed a Background Task-Aware Scheduler (BTS) in SPDK for CSD

❑ Comprehensive evaluation showed that the BTS scheduler is effective when core
utilization is rather low

Conclusion

❑ We have identified a problem with SPDK where background tasks increase the
response time of foreground I/O in CSD using SPDK

❑ We proposed a Background Task-Aware Scheduler (BTS) in SPDK for CSD

❑ Comprehensive evaluation showed that the BTS scheduler is effective when core
utilization is rather low

❑ BTS can be applied to any storage system using SPDK

Thank you!
Yeohyeon Park

yeohyeon@sogang.ac.kr

mailto:safdar@sogang.ac.kr
mailto:yeohyeon@sogang.ac.kr

