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O What is computational storage device (CSD)?
» Computational storage devices (CSD) can run computational tasks inside the storage device,
reducing data transfer between the host and the device.
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Traditional |/O Stack
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Write 1/0O
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A
Background task

SPDK | Dedup |

NVMe SSD

In SPDK, background tasks are derived from foreground 1/O.
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. Only Foreground
[ Foreground 1/O + Background task (light)
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o

Only two cores are fully-utilized.

That is, the remaining cores are under-utilized.



Problem Definition

@ SPDK is not aware of background tasks.

@ SPDK cannot perform dynamic task scheduling considering

the load of each CPU core.

- BTS : Background Task-aware Scheduler
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The SPDK places a background task on the core where the foreground

/O is being processed.
Therefore, the two tasks compete for the same core.
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SPDK does not schedule flexible relocation of tasks to idle CPU core.
Therefore, idle CPU cores cannot be utilized.
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BTS dynamically schedules background tasks to relocate to idle CPU

cores. This allows the SPDK to actively utilize idle CPU cores.
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1) Monitoring Module

O Monitors the utilization of each core

O Because SPDK randomly changes the core that handles foreground 1/0O

SPDK
Time Window1 array
Monitoring __I{’%f?_d_’_ ______ wﬂ_-“%"
module Idle core Active core Idle core

: Thread?2,




1) Monitoring Module

O Monitors the utilization of each core
O Because SPDK randomly changes the core that handles foreground 1/0O
O The monitoring module periodically tracks the utilization of active cores

[ Active core is CPU core that processes at least one foreground 1/O

SPDK
Time Window1 array
Monitoring __I{’%f?_d_’_ ______ wﬂ_-
module Idle core Active core

Thread3

Idle core

| Thread?2 :




2) Core Selection Module

O Selects a core with low utilization and move background task to that core

O Builds an idle core group (G) based on the CPU utilization of each core

SPDK
| Time Window1 array
|
Monitoring : | Ahreadl ThreadZz  Thread3
module : Idle core Active core Idle core
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2) Core Selection Module

O Selects a core with low utilization and move background task to that core

O Builds an idle core group (G) based on the CPU utilization of each core

O Selects idle cores to execute background tasks from the idle core group (G)
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O Comparisons
» Casel: Only foreground 1/O
» Case2: Foreground I/O + Deduplication without BTS

» Case3: Foreground I/O + Deduplication with BTS
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utilization is rather low
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0 We have identified a problem with SPDK where background tasks increase the
response time of foreground I/O in CSD using SPDK

0 We proposed a Background Task-Aware Scheduler (BTS) in SPDK for CSD

O Comprehensive evaluation showed that the BTS scheduler is effective when core
utilization is rather low

 BTS can be applied to any storage system using SPDK
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