. .c ‘.
L]
el e, .’
e %20 0°%°%°,
. 0099T@0e, °
. .)
° ® °
.. I ...
o X] ®
° ®°
...... \. @
ce0® °
R

hpc
TX|accelerates.

\ \g Effects of Background
hec ullng for Key-Value CSDs

A SOGANG UNIVERSITY SK’P

Outline

O Background
0 Computational Storage Device (CSD)
O Intel SPDK

d Motivation

O Proposed Architecture
O BTS : Background Task-Aware Scheduler
O Execution Flow

O Evaluation

L Conclusion and Q&A

Background

Computational Storage

O What is computational storage device (CSD)?

Computational Storage

O What is computational storage device (CSD)?
» Computational storage devices (CSD) can run computational tasks inside the storage device,
reducing data transfer between the host and the device.

Computational Storage

O What is computational storage device (CSD)?
» Computational storage devices (CSD) can run computational tasks inside the storage device,
reducing data transfer between the host and the device.

Q CSD without OS Q CSD with OS

Computational Storage

O What is computational storage device (CSD)?
» Computational storage devices (CSD) can run computational tasks inside the storage device,
reducing data transfer between the host and the device.

Q CSD without OS Q CSD with OS

= Samsung SmartSSD Host Machine
= |INSIDER [1]

= PolarDB [2] [-][A J

PCle Interface

[FPGA]

Flash

[1] Z. Ruan et. al., “INSIDER: Designing In-Storage Computing System for Emerging High-Performance Drive,” USENIX ATC '19
[2] W. Cao et. al., “POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native Relational Database,” FAST 14

Computational Storage

O What is computational storage device (CSD)?
» Computational storage devices (CSD) can run computational tasks inside the storage device,
reducing data transfer between the host and the device.

d CSD without OS d CSD with OS

= Samsung SmartSSD Host Machine = SK hynix KV-CSD Host Machine

= INSIDER [1] = NGD System

= PolarDB [2] Newport SSD

[DRAM J DRAM
PCle Interface PCle Interface
Operating
System

[FPGA ‘

J

ARy Al
[_L Flash il Flash J
J

[1] Z. Ruan et. al., “INSIDER: Designing In-Storage Computing System for Emerging High-Performance Drive,” USENIX ATC '19
[2] W. Cao et. al., “POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native Relational Database,” FAST 14

CSD with OS

4 Pros
» Programmability, and manageability

d Cons
» OS overhead due to frequent interrupts and context switches

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

CSD with OS

d Pros
» Programmability, and manageability

Q Cons
» OS overhead due to frequent interrupts and context switches

To reduce OS overhead, CSD can adopt Intel SPDKIM,

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

CSD with OS

d Pros
» Programmability, and manageability

Q Cons
» OS overhead due to frequent interrupts and context switches

To reduce OS overhead, CSD can adopt Intel SPDKIM,

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

CSD with OS

d Pros
» Programmability, and manageability

Q Cons
» OS overhead due to frequent interrupts and context switches

To reduce OS overhead, CSD can adopt Intel SPDKIM,

Operating

L System

7

KJE[Flash b KH Fl

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

Traditional |/O Stack

L Kernel-level NVMe Driver

User Appllcatlons

User space

Kernel space Context SW|tch

Kernel
NVMe Drlver 0 verhead

NVMe SSD

Intel SPDK!]

O User-level NVMe Driver

[User Applications }

User space

Kernel space

NVMe SSD

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

Intel SPDK!]

O User-level NVMe Driver

[User Applications }

1. User level NVMe device driver

User space

Kernel space

NVMe SSD

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

Intel SPDK!" /14-_'4.,—

O User-level NVMe Driver

[User Applications }

SPDK | : l :
L hreai:y’ 7 Z'hreaal:/Z

L : : 1. User level NVMe device driver
| |
User space . N
""""""""""""""""""""""""" 2. Binds 1/0 at the core
Kernel space

NVMe SSD

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

z/

A=

Intel SPDKI™ {{-_:;.,77

O User-level NVMe Driver

[User Applications }

SPDK | : l :
L hreai:y’ 7):'hreaal:/Z

I |) 1. User level NVMe device driver

User space

""""""""""""""""""""""""" 2. Binds 1/0 at the core
Kernel space
@ @Polli 4l 3. Uses polled mode

NVMe SSD

[1] Intel. SPDK. https://spdk.io/.

https://spdk.io/

Use Case

O Storage Applications

{ User Applications }

User space

Kernel space

NVMe SSD

Use Case

O Storage Applications
4

User Applications

1 1
Database / Filesystem

User space

Kernel space

NVMe SSD

Use Case

O Storage Applications O Storage Services (Deduplication)
4

N
User Applications { User Applications]

I I
Database / Filesystem

Dedup / Compression

! {
User space

Kernel space

NVMe SSD NVMe SSD

Research Problem

However, SPDK has a problem in that foreground 1/O and
background service tasks compete for CPU cores.

Research Problem

However, SPDK has a problem in that foreground 1/O and

background service tasks compete for CPU cores.

Contention of these tasks for CPU cores increases the
response time of foreground 1/0O.

Motivation

Executing Background Tasks in SPDK

| @ (oww)

Write 1/0O

Executing Background Tasks in SPDK

5| @) (oww] |

Write 1/0O

Foreground 1/O 'G

A
Background task

SPDK | Dedup |

NVMe SSD

In SPDK, background tasks are derived from foreground 1/O.

Experimental Setup

L Host machine

O Running a db_bench /O Benchmark
(Two 1/O threads issue write 1/Os)
d 1/O request size = 16KB Host h
Machine [CPU]{ DRAM })
d CSD
0 4 Core device Write 1/0

O Running a Linux OS using Intel SPDK

O Background task
a Offline deduplication
O Fingerprinting using a SHA-1 hash algorithm
O Light deduplication : 1KB chunk size, SHA1 16 times
O Heavy dedulication : 0.5KB chunk size, SHA1 32 times

O Comparisons
Q Only foreground I/O
Q Foreground I/O + Background task (light)
O Foreground I/O + Background task (heavy)

Experimental Setup

0 Host machine

(Two 1/O threads issue write 1/Os)
Q 1/0 request size = 16KB Host)
Machine -[DRAM])
Q CSD

O 4 Core device
O Running a Linux OS using Intel SPDK

Write 1/0

NVMe SSD

Experimental Setup

L Host machine

O Running a db_bench /O Benchmark
(Two 1/O threads issue write 1/Os)
d 1/O request size = 16KB Host h
Machine [CPU][DRAM })
d CSD
0 4 Core device Write 1/0

O Running a Linux OS using Intel SPDK

SPDK
O Background task Foreground 1/0 0 A
Q Offline deduplication G Background tasks

O Fingerprinting using a SHA-1 hash algorithm
O Light deduplication : 1KB chunk size, SHA1 16 times 4 CPUs
O Heavy dedulication : 0.5KB chunk size, SHA1 32 times

NVMe SSD

CsD

Experimental Setup

L Host machine

O Running a db_bench /O Benchmark
(Two 1/O threads issue write 1/Os)
d 1/O request size = 16KB Host h
Machine [CPU](DRAM })
d CSD
0 4 Core device Write 1/0

O Running a Linux OS using Intel SPDK

SPDK
O Background task Foreground 1/0 0 ° A

Q Offline deduplication Eackgronndltasks
O Fingerprinting using a SHA-1 hash algorithm

O Light deduplication : 1KB chunk size, SHA1 16 times 4 CPUs

O Heavy dedulication : 0.5KB chunk size, SHA1 32 times

O Comparisons NVMe SSD
Q Only foreground 1/0 CSD
Q Foreground I/O + Background task (light)
O Foreground I/O + Background task (heavy)

Motivation

/O Benchmark

oo (@) oram | |

240

200

SPDK

160

120

@)
o

Foreground 1/O Latency (us)

NVMe SSD

N
o

(@)

. Only Foreground

Motivation

/O Benchmark

oo (@) oram | |

SPDK
Foreground 1/0

Offline Dedup
(light)

NVMe SSD

Foreground |/O Latency (us)

240

200

160

120

80

40

. Only Foreground
[Foreground 1/O + Background task (light)

12% increase

178

Motivation

/O Benchmark

oo (@) oram | |

SPDK
Foreground 1/0

Offline Dedup
(Heavy)

NVMe SSD

Foreground |/O Latency (us)

240

200

160

120

80

40

. Only Foreground
[Foreground 1/O + Background task (light)

I Foreground 1/0 + B task (heavy)

33% increase >34

12% j<<Crease

200

Motivation

. Only Foreground
[Foreground 1/O + Background task (light)

I Foreground 1/0 + B task (heavy)

4 R 33% increase 534
>
. < 12% rease
3 & 200
) 8
—
S 2 Q 160
P ©
2 :
D 1 O 120
(@))]
D
(@)
0 L 80

40

Motivation

. Only Foreground
[Foreground 1/O + Background task (light)

Unused core I Foreground 1/0 + B task (heavy)

240

Iid\fe cc:bre:r

N
I
I
I
|

33% increase

Busy Core (#)
) w

—_—

Foreground |/O Latency (us)

o

Only two cores are fully-utilized.

That is, the remaining cores are under-utilized.

Problem Definition

@ SPDK is not aware of background tasks.

@ SPDK cannot perform dynamic task scheduling considering

the load of each CPU core.

- BTS : Background Task-aware Scheduler

BTS . Background Task-Aware

Scheduler

SPDK Problem

ool (@) (v] |

| Thread? |

NVMe SSD

SPDK Problem

ool (@) (oraw] |

Thread1' | Thread2'

NVMe SSD

SPDK Problem

Host Thread2 Queue
Machine{ - [DRA'V'} J

|
— — F

SPDK Problem

Host Thread2 Queue
Machine{ - [DRAM} J

F
SPDK |
I I B
| I I I
Foreground I/0> < :
|

I : : :
I : :

: I I B
1 Thread1 : Thread? :

SPDK Problem

Host Thread?2 Queue
Machine{ - [DRAMJ J

F
[: Yy 0 T B
| I | I I !
Foreground I/0> <Background task .
: : : : |
| L : : B
 Thread1| 1 ThreadZ|, | Thread3'
NVMe SsD | F

The SPDK places a background task on the core where the foreground

/O is being processed.
Therefore, the two tasks compete for the same core.

SPDK Problem

Host Thread?2 Queue
Machine{ - [DRAMJ J

: ! B
I |

|
: p ﬁ I F
I |
- k(B '

|
: Thread1 | ' | Thread?' Thread3 ! B

SPDK does not schedule flexible relocation of tasks to idle CPU core.
Therefore, idle CPU cores cannot be utilized.

SPDK Problem

Host Thread2 Queue
Machine{ - [DRA'V'} J

SPDK Problem

Hos.t - [DRAM J _Thread2 Queue Thread3 Queue
Machine

| Thread? |

NVMe SSD

BTS dynamically schedules background tasks to relocate to idle CPU

cores. This allows the SPDK to actively utilize idle CPU cores.

BTS Scheduler

Background Task-aware Scheduler

BTS Scheduler

Background Task-aware Scheduler

(1) Monitoring module

BTS Scheduler

Background Task-aware Scheduler

(1) Monitoring module (2) Core selection module

1) Monitoring Module

O Monitors the utilization of each core

O Because SPDK randomly changes the core that handles foreground 1/0O

SPDK
Time Window1 array
Monitoring __I{’%f?_d_’_ ______ wﬂ_-“%"
module Idle core Active core Idle core

: Thread?2,

1) Monitoring Module

O Monitors the utilization of each core
O Because SPDK randomly changes the core that handles foreground 1/0O
O The monitoring module periodically tracks the utilization of active cores

[Active core is CPU core that processes at least one foreground 1/O

SPDK
Time Window1 array
Monitoring __I{’%f?_d_’_ ______ wﬂ_-
module Idle core Active core

Thread3

Idle core

| Thread?2 :

2) Core Selection Module

O Selects a core with low utilization and move background task to that core

O Builds an idle core group (G) based on the CPU utilization of each core

SPDK
| Time Window1 array
|
Monitoring : | Ahreadl ThreadZz Thread3
module : Idle core Active core Idle core
I
: Group G1
I 4)
1

Core selection : Thread1

module Thread3
L J

| Thread?2 :

2) Core Selection Module

O Selects a core with low utilization and move background task to that core
O Builds an idle core group (G) based on the CPU utilization of each core

O Selects idle cores to execute background tasks from the idle core group (G)

2) Core Selection Module

O Selects a core with low utilization and move background task to that core

O Builds an idle core group (G) based on the CPU utilization of each core

O Selects idle cores to execute background tasks from the idle core group (G)

Group G1

-

_

Thread1
Thread3

~N

J

Implementation

Implementation
SPDK

Thread71 Thread?2 Thread4

Foreground I/0

Core 7 executes the l/O scheduler vbdev for foreground 1/O

Foreground 1/0O

Thread 1

1/0 scheduler VBDEV

SPDK provides a pluggable module API
called BDEV for implementing virtual |
block devices that interface with block

storage devices.

ST N T Threadi TN Thread? Thread3 Lliznen

Implementation

Foreground I/O BTS o Select idle cores to execute background tasks

Thread 1 | 1. Monitoring . 2. Core Selection —
Group G

Core 2 : idle Core 2
Core 4 : idle Core 4 : selected

>
L
(a]
0
>
S
Rt
>
o
Q
<
v
(%]
®)
=

Thread?2 Thread3

Implementation

SPDK

Thread71 Thread4

L
L
Foreground I/O | 1|
L

Foreground 1/0O

Thread 1 . Monitoring a« 2. Core Selection —

Group G Schedule foreground /0 and
Core 2 - idle o 2 background tasks to cores

Core 4 : idle Core 4 : selected *
Foreground 1/0 Background 1/0

1/0 scheduler VBDEV

Thread 1 Thread 4

Thread1 Thread?2

Implementation

Foreground 1/0O

Thread 1 . Monitoring a« 2. Core Selection

Group G

l Core 2 : idle Core 2
Core 4 : idle Core 4 : selected

Foreground 1/0 Background 1/0

1/0 scheduler VBDEV

Thread 1 Thread 4

Thread 1 runs
foreground [/O

Thread 4 runs
background task

Thread?2 Thread3 Thread4

Evaluation

Experimental Setup

Host machine CSD(emulated using x86 server)
SPDK

db_bench benchmark

1~30 host I/O threads

NVMe-oF

NVMe-oF Driver _l

10G Ethernet

NVMe SSD

10 cores 6 cores

Experimental Setup

Host machine CSD(emulated using x86 server)
SPDK

db_bench benchmark NVMe-oF Target

1~30 host I/O threads

|/O scheduler (BTS)

szuzzum
Qv Background
NVMe-oF (dedup)

. | NVMe Driver
NVMe-oF Driver ‘

10G Ethernet

NVMe SSD

10 cores 6 cores

Experimental Setup

O Comparisons
» Casel: Only foreground 1/O
» Case2: Foreground I/O + Deduplication without BTS

» Case3: Foreground I/O + Deduplication with BTS

Put() Performance

Case 1 : Only foreground 1/O
Case 2 : Foreground I/O & Dedup without BTS
Case 3 : Foreground I/O & Dedup with BTS

3000
2500

- Case-1

- Case-2

t 14

- Case-3

Latency (us)
P RN
o o1 o
o o o
o o o

Good 500

Performance

0) 5 10 15 20 25 30

Number of I/O Threads

Put() Performance

Case 1 : Only foreground 1/O
Case 2 : Foreground I/O & Dedup without BTS
Case 3 : Foreground I/O & Dedup with BTS

3000
2500

- Case-1 —&—
- Case-2 —&
- Case-3 —o—

Latency (us)
P RN
o o1 o
@) o o
o o o

Good 5007

Performance

0] 5 10 15 20 25 30

Number of I/O Threads

Put() Performance

Case 1 : Only foreground 1/O
Case 2 : Foreground I/O & Dedup without BTS
Case 3 : Foreground I/O & Dedup with BTS

!

/ |

3000
2500

- Case-1

- Case-2

t 14

- Case-3

Latency (us)
P RN
o o1 o
o o o
o o o

Good 500+

Performance

0] 5 10 15 20 25 30

Number of I/O Threads

Put() Performance

Case 1 : Only foreground 1/O
Case 2 : Foreground I/O & Dedup without BTS
Case 3 : Foreground I/O & Dedup with BTS

!

3000 case-1 —o- ‘ 'l
2500

Case-2 —& Client 1/O threads <= 21

Case-3 —o—

Latency (us)
P RN
o o1 o
o o o
o o o

Good 500 -

Performance

BTS reduced latency by an average of 47.8% when the number

of host I/O threads was less than 10.

Put() Performance

Good
Performance

3000
2500

Latency (us)
P RN
o o1 o
o o o
o o o

500 -

Case 1 : Only foreground 1/O

Case 2 : Foreground I/O & Dedup without BTS

Case 3 : Foreground I/O & Dedup with BTS

!

- Case-1

/ ,

——
- Case-2 &
- Case-3 —o—

| ‘ | ‘ | ‘ i ‘ | ‘ i

0 5 10 15 20 25 30

Number of I/O Threads

Migration
overhead

CIient /O threads >21
—0—0—0—0—0—0—0—0

Put() Performance

Good
Performance

Case 1 : Only foreground 1/O

Case 2 : Foreground I/O & Dedup without BTS
Case 3 : Foreground I/O & Dedup with BTS

!

/ ,

3000
2500

- Case-1 —&—
- Case-2 —&
- Case-3 —o—

Latency (us)
P RN
o o1 o
o o o
o o o

500 | -

—0—0—0—0—0—0-0-¢

0 5 10 15 20 25 30

Under heavy load, the migration overhead for background

tasks outweighs the performance gains.

Migration
Overhead

CIient /O threads >21

Conclusion

0 We have identified a problem with SPDK where background tasks increase the
response time of foreground I/O in CSD using SPDK

0 We proposed a Background Task-Aware Scheduler (BTS) in SPDK for CSD

O Comprehensive evaluation showed that the BTS scheduler is effective when core
utilization is rather low

Conclusion

Y/ y
\ I/
v y
A
I/
y
I/
A

0 We have identified a problem with SPDK where background tasks increase the
response time of foreground I/O in CSD using SPDK

0 We proposed a Background Task-Aware Scheduler (BTS) in SPDK for CSD

O Comprehensive evaluation showed that the BTS scheduler is effective when core
utilization is rather low

 BTS can be applied to any storage system using SPDK

Thank youl

Yeohyeon Park
yeohyeon@sogang.ac.kr

mailto:safdar@sogang.ac.kr
mailto:yeohyeon@sogang.ac.kr

