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Abstract—A computational storage device (CSD) using Intel
SPDK guarantees low latency and high throughput. The CSD
must aid background tasks for the storage service applications
(background tasks) without harming user I/O performance (fore-
ground I/0) since the CSD is also a storage device. However,
in practice, SPDK often increases foreground I/0 latencies and
underutilizes CPU cores in the CSD. These problems proceed
from allocating foreground I/Os and background tasks to the
same CPU core because SPDK processes them as the same
request without distinguishing them. To tackle this, we propose a
Background Task-aware Scheduler (BTS) for CSDs built using
SPDK. BTS solves the following problems: (i) idle CPU cores
in the CSD are not used, and (ii) the latency of foreground
I/O increases due to interference with background tasks. For
evaluation, we implemented a key-value interface CSD using
SPDK. With BTS, the results show that idle CPUs are properly
used to process background tasks by guaranteeing the low
latency of foreground I/O when the background tasks are set
to deduplication.

Index Terms—High Performance I/0, Intel SPDK, Computa-
tional Storage Device (CSD)

I. INTRODUCTION

High-Performance Computing (HPC) is starting to carefully
look at the potential of Computational Storage Device (CSD)
for fast data retrieval and analysis with data generated from
simulations. CSDs reduces the transfer of data between host
and device by moving computation tasks formerly performed
by the host into the storage device, thereby improving overall
system performance [1]-[17]. Recently, Los Alamos National
Lab. (LANL) and SK Hynix demonstrated the world’s first
key value CSD (KV-CSD) to accelerate the analysis of HPC
scientific applications [3]. Typically, scientific applications
in HPC entail analysis of the output data produced after a
simulation. In LANL’s use case, a portion of the analysis tasks,
particularly point and range queries for data retrieval, were
carried out by storage devices due to the indexing and the
searching capabilities of KV-CSD.

The typical hardware architecture of a CSD embeds an
accelerator or processor such as an embedded CPUs in the
storage device to perform computations. There are two major
approaches to the internal software of a CSD up to date
as follows. First, devices such as Samsung’s SmartSSD [4],
Insider [18], and PolarDB [19] execute computation tasks
directly in firmware or FPGA without operating system (OS)
support, like bare-metal applications in embedded systems.

On the other hand, devices such as Willow [20] and New-
port SSD [21] of NGD system, and DragonFire Card [22]
have an embedded OS inside. These devices run offloaded
computation tasks as a user-mode process on top of the OS.
Compared to the bare-metal application approach, the CSD
with an embedded OS has advantages in programmability and
manageability. For example, offloaded tasks can benefit from
OS features such as existing libraries, easier multitasking,
and well-defined hardware abstraction via API and OS device
drivers. However, incorporating OS in a CSD comes with costs
such as user-kernel mode switching, interrupt handling, and
context switching overheads.

The aforementioned OS overheads are not only the CSD’s
problem. Intel SPDK is one of the state-of-the-art projects that
solve OS problems. SPDK implements a user-mode NVMe
driver that employs a polled-mode that uses polling instead of
expensive interrupts to communicate with low-latency SSDs.
The SPDK also emphasizes a lock-less and asynchronous
design with per-core event loops to minimize communication
overhead between two CPU cores, such as locking or cache
coherence protocols. These design choices made by Intel —
user-mode, polled mode, lock-less NVMe driver, and per-
core event loops — also cover similar problems from a high-
performance perspective, not computational storage [23]. A
CSD may not have the powerful hardware where the SPDK is
typically employed, such as ultra-low latency SSDs and tens of
enterprise-class CPU cores, but CSDs with an OS can benefit
from the SPDK’s design effort to minimize the OS overhead.
By directly adopting core design principles or SPDK, a CSD
with an OS can mitigate the OS overhead.

However, there is still a critical problem in SPDK’s design
when it comes to executing offloaded computation tasks.
SPDK limits the I/O request to be processed by a dedicated
CPU core to avoid any overheads induced by communication
between CPU cores. More specifically, in SPDK, when a CPU
core receives an I/0 request and starts to process it, that CPU is
responsible for handling it all the way to sending completion to
the client. This core binding is critical to the CSD, particularly
when the task offloaded has long latency because the task will
block all I/O requests and any subroutines derived from I/O
pending on that specific CPU. Furthermore, this core binding
not only increases overall I/O latency but cannot use other
CPU cores even if they are idle.
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Fig. 1. Depiction of the software stack of a block-based CSD using SPDK
and the I/O flow from the host to the CSD.
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In this paper, we build a CSD with a key-value interface as
the KV-CSD [3] model but use SPDK on top of the CSD with
an OS. The computational storage capability is implemented
inside SPDK as a background storage service. The background
storage service generates background tasks that are not limited
to only computation without any extra I/O, but it also includes
possible I/O originating from I/O data from the client. To
tackle the OS overhead problem occurring in our CSD model,
we propose a background task-aware scheduler (BTS). The
BTS specifically solves the following problems: (i) SPDK
does not distinguish between foreground I/O and background
tasks. Therefore it binds the same core for both requests
and causes resource contention in that CPU core (execution
thread!). (ii) SPDK can not use idle resources/CPU core due
to the inability to flexibly relocate any requests to idle cores.

To emulate KV-CSD with a BTS, we configured two
machines connected to 10 Gbps Ethernet and took one server
for the NVMe-oF target using SPDK. The NVMe-oF target
is seen as KV-CSD with BTS to another server. Experiments
have shown that the BTS minimizes the latency overhead on
foreground I/O due to the background tasks and actively uses
idle cores.

II. BACKGROUND AND MOTIVATION
A. Computational Storage Device Using Intel SPDK

The SPDK block device layer is BDEV, the C library
equivalent to the OS block storage layer. BDEV provides a
pluggable module API for implementing block devices that in-
terface with block storage devices. Users can use the available
BDEV modules or create VBDEV (virtual BDEV) modules
that build block devices on an existing BDEV. Thus, storage
developers can easily implement storage service applications
such as compression and deduplication using their VBDEV in
the SPDK.

Figure 1 depicts the software stack of an SPDK-based CSD.
We call the device a CSD because it runs a software stack
related to the NVMe driver and SPDK on the device side. As
shown in Figure 1, SPDK provides essential functions such
as NVMe-oF target and NVMe driver to operate as a device
driver as a BDEV module. Users can insert custom storage
functions using the VBDEV module. Therefore, they can build

Hereafter, we denote an OS thread bound to a CPU core for processing
foreground 1I/0 requests and background tasks as an execution thread.
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Fig. 2. Illustration of each foreground I/O slowing down due to interference
from background tasks.

high-performance storage applications by configuring the I/O
path with VBDEV and BDEV with the necessary functions.

SPDK abstracts the CPU core into threads, event queues,
and pollers. When I/O is delivered to the CPU core, the
execution thread handles the I/0. I/O and the BDEV infor-
mation to be processed are delivered to the event queue by an
SPDK event, and a thread processes I/O by fetching an event
from the event queue and executing the BDEV function. The
poller periodically checks whether 1/O to the storage device is
completed, and when I/O is completed, it notifies BDEV and
the host of I/O completion through a callback.

Figure 1 shows an example of how a write I/O request is
processed along the 1/O path defined by the user. @ The SPDK
occupies the storage device, and the user/host application will
access the storage device through the SPDK. @ Host and CSD
are connected through the NVMe-oF protocol to communicate,
and the host application sends a write request to the NVMe-
oF driver through the file system. € The NVMe-oF driver
converts the received write into an NVMe command and sends
it to the CSD using the NVMe-oF protocol. @ The NVMe-
oF target receives the NVMe command via the NVMe-oF
protocol, selects one of the cores activated in the SPDK,
and delivers it. The execution thread of the core starts /O
processing in units of BDEV and VBDEV. They are inserted
into the event queue and then executed in order. To this end,
the execution thread executes the NVMe-oF target BDEV
and converts the NVMe command into a BDEV request, and
the BDEV request is submitted to the event queue along
with the VBDEV information to be executed next. @ The
execution thread executes the VBDEV (if any) defined by the
user included in the I/O path along the specified order. Then,
when the processing of the last VBDEV is completed, it is
responsible to submits an I/O request to retrieve actual data
from the device for NVMe BDEV to the event queue. ® The
NVMe driver BDEV transfers I/O to the NVMe SSD, and
then the NVMe SSD serves that I/O. @ Since SPDK uses
polling, not the interrupt mechanism for communicating with
the device, the poller keeps polling the NVMe completion
queue for I/O completion. Then, a callback function registered
for that I/O is invoked to inform the completion of I/O to
(V)BDEVs.

B. Motivation

We found that SPDK places foreground I/O and background
tasks derived from the foreground I/O on the same core. So
they compete for use of the cores, and there is interference
between them, resulting in the following problems:
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Fig. 3. Depiction of the software stack of key-value CSD.

First, the response time of the user’s I/O request (foreground
I/O operation) is increased. Figure 2(a) describes this situation
well. The background task derived from the foreground I/O is
bound to the core on which the foreground I/O runs. Therefore,
in the end, the foreground I/O and background task compete
for the same CPU core. Figure 2(a) depicts a problem that
occurs in a situation where our proposed BTS scheduler is
not applied. Assume that the execution time of each task is
1 unit in Figure 2(a). Then, the average response time of the
foreground 1/O tasks in Figure 2(a) increases by about 31%
due to resource contention with the background task.

Second, the background tasks originating from the fore-
ground I/O increase the CPU load of the core that the original
I/O started. However, the placement of the coming I/O request
occurs without any knowledge about background tasks in
SPDK. As a result, the I/O processing of each active core
may be overloaded. In other words, idle cores are not used
appropriately unless the foreground I/O or background task is
distributed evenly over the CPU cores considering their loads.

On the other hand, Figure 2(b) depicts a situation where
our proposed BTS scheduler is applied and foreground 1/O
tasks and background tasks do not compete for cores. In
this case, the BTS allocated background tasks to Core3 for
their background storage service other than Corel and Core2,
which are used for foreground I/Os. This way, it is possible to
prevent an increase in the average response time of 31% for
the foreground I/O that occurred in Figure 2(a).

ITI. KEY-VALUE CSD
A. Architecture for Key-Value CSD using Intel SPDK

Figure 3 shows the design of two CSDs using Intel SPDK.
Figure 3(a) uses a block-based CSD that exposes the CSD to
the host as a block device to run the key-value store using the
file system on the host. On the other hand, Figure 3(b) is a
key-value CSD that implements indexing corresponding to the
storage engine in the key-value store in the CSD, and the host
accesses it using the key-value API. Figure 3(b) shows the
design of KV-CSD in which the CSD implements the storage
engine managing indexes for data inside the device, just like
the design of iLSM-SSD [24]. KV-CSD bypasses the host’s
kernel stack, minimizing I/O software overhead.

In Figure 3(a), the user’s key-value request is performed
as follows. @ An application passes a put or get key-value
request to the key-value store. @ The key-value store converts
the key-value requests into file I/O requests and forwards them

to the kernel-space file system. @ The file system converts
file I/O requests into block I/O requests and passes them to
the NVMe-oF driver. @ The NVMe-oF driver converts block
I/O into NVMe commands and sends them to the CSD using
the NVMe-oF protocol. €@ The CSD uses the SPDK to run
the NVMe-oF target and NVMe driver in the user space. The
NVMe command the CSD receives is delivered to the NVMe-
oF target in the SPDK. Then, the NVMe-oF target passes
block I/O to the BDEYV, and the BDEV requests the userspace
NVMe driver. @ The NVMe driver makes block I/O requests
to the NVMe SSD. After that, when the NVMe SSD completes
block I/O processing, it notifies completion to the application
through the same path.

In Figure 3(b), the user’s key-value request is performed as
follows. @ Since KV-CSD implements the key-value store’s
storage engine (index manager for data) as KV VBDEV using
SPDK VBDEYV, the host does not require the key-value store
or file system on its side. Thus, unlike Figure 3(a), key-value
requests are directly passed to KV-CSD. For the KV-CSD’s
storage engine, we selected a hash-based index for ease of
implementation. @ The NVMe-oF driver converts the key-
value request into a key-value NVMe command and then
forwards it to the KV-CSD using the NVMe-oF protocol. @
KV-CSD transfers the received key-value NVMe command to
KV VBDEV in SPDK. @ Note that we implemented a hash-
based key-value store engine. KV VBDEV calculates the hash
value for the key in the received NVMe command. Then, KV
VBDEYV searches the hash table with the value to obtain the
LBA with the same hash value (for get requests) or assigns a
new LBA (for put requests). KV VBDEV converts key-value
NVMe commands into block I/O and passes them to NVMe
BDEV. The NVMe BDEV requests the received block 1/O
to the user space NVMe driver. @ The NVMe driver delivers
block I/O to the NVMe SSD. When the NVMe SSD completes
block I/O processing, it notifies completion to the application
through the same path.

B. Key-Value API and NVMe Command Extensions

To enable user-level applications to make key-value requests
to KV-CSD using the NVMe protocol, we implemented a key-
value API library using the NVMe I/O passthrough command.
The key-value API stores the key in the starting LBA of
the NVMe command and stores the addresses of the pages
corresponding to the value using the PRP list. Refer to the
key-value API of iLSM-SSD [24] for related implementation.

IV. BACKGROUND TASK-AWARE SCHEDULING
A. Implementation for BTS scheduler

BTS is implemented using SPDK VBDEV and consists of
a monitoring module and a core selection module.

Monitoring Module: When the SPDK starts up, all cores
are idle. When a client I/O request (foreground I/O) arrives in
the SPDK, the SPDK core scheduler selects a core to handle
the requested I/0O. In SPDK, the CPU core that processes
at least one foreground I/O is called an active core. Then,
the SPDK core scheduler adjusts the number of active cores
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Fig. 4. Description of the interaction between the monitoring module and the
core selection module.

according to the number of foreground I/O requests. The
number of active cores changes over time. The monitoring
module is responsible for periodically tracking which cores are
active. Also, it periodically tracks the utilization of all cores in
an array format for every W request (time window). As long
as the monitoring module does not update the CPU utilization
array too often, the monitoring overhead is not large.

Core Selection Module: The core selection module is
responsible for building a group of idle cores based on the
CPU utilization array tracked by the monitoring module and
selecting cores that process background tasks. For this, the
core selection module first selects A idle cores for every W
among all N cores in the KV-CSD and constructs an idle
core group ((7), assuming that the total number of cores in
KV-CSD is N, and M is less than or equal to N. Second, the
core selection module randomly selects one core from G for
the idle core selection request if G is not empty. Otherwise,
it sorts the cores according to CPU utilization and selects the
core with the lowest utilization. Moreover, background task
migration is undesirable if all cores are too busy. It is because
the migration overhead may outweigh the performance benefits
of the migration. Thus, the BTS can implement an algorithm
to determine whether a background task is migrated based on a
certain threshold. This threshold can be set using information
such as the average and standard deviation of utilization of all
cores tracked by the monitoring module. The specific design
of the controller for dynamic task migration is left for future
work.

Figure 4 describes how the monitoring module of BTS
and the core selection module work. Assume that in time
window 1 (W1), the active cores (processing foreground I/O)
are cores 2, 4, and 5, and the non-active cores (idle cores) are
cores 1, 3, and 6. Here, an idle core means a core that does
not process foreground I/O; thus, core utilization is 0.

@ The monitoring module periodically tracks the utilization
of cores [1-6]. @ The core selection module builds the group
G in time window W1. Here, cores 1, 3, and 6 are included
in group G. And the cores in group G are used as cores to
execute background tasks in time window W2. @ The core
selection module runs background tasks on the cores in group
G created in time window W2. At this time, the core to be
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used in group G is selected randomly. @ Group G is rebuilt
in every time window. The utilization rate of each core can
change over time. In Figure 4, in time window W2, core 3 in
group G is removed and core 4 is newly included in group G.
Then, the cores of group G built in time window W2 become
cores 1, 4, and 6. @ Cores in group G built in time window
W2 are used as cores to execute background tasks in time
window W 3.

The BTS scheduler is implemented as I/O scheduler VB-
DEV and connected between the NVMe-oF target VBDEV
and KV VBDEY, which is described in detail in Section III-A.
The background service is implemented as a background
VBDEV. The foreground I/0O executed by the I/O scheduler
VBDEV can derive background tasks. The background VB-
DEV executes background tasks received from I/O scheduler
VBDEV. The background VBDEYV is connected between the
I/O scheduler VBDEV and the NVMe driver VBDEV.

Figure 5 describes the execution process of background
tasks in detail. @ The NVMe-oF target BDEV extracts in-
formation such as opcode, data buffer, key, and data size from
the foreground I/O and puts it in a BDEV request. Information
about the core currently executing this foreground I/O (core
number) is stored in the BDEV request. The core/thread
handling the foreground I/O creates an event with the BDEV
request and information/function name about the I/O scheduler
VBDEV that will process it next, and inserts it into its
own event queue. @ The 1/0 scheduler VBDEV derives
background tasks while handling foreground I/Os. The core
executing the foreground I/O creates a new BDEV request and
an event including key-value VBDEV information (function
name), and inserts it into its own event queue. © The derived
background task is converted to a BDEV request, and then
created as an event and inserted into the event queue of
the core selected by the I/O scheduler VBDEV for future
processing. The core selection algorithm used by the I/O
scheduler VBDEYV is executed by the core selection module of
BTS described in the previous section. @ Each core runs KV
VBDEYV and background VBDEV. @ When all processing is
completed, the foreground I/O notifies NVMe driver BDEYV,
KV BDEY, I/O scheduler VBDEYV, and client using a callback
function. The background task notifies the completion of the
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NVMe driver BDEV, background VBDEY, and I/O scheduler
VBDEV.

B. Background Storage Service Application

Offline deduplication was implemented as a representative
background storage service application using the background
VBDEV described earlier. The I/O scheduler VBDEV sends
background tasks to the background VBDEV (Dedup VB-
DEV) with the key and value’s memory address as a BDEV
request. Dedup VBDEV splits the data buffer into chunks of
a certain size and then calculates a hash value for each chunk.
Dedup VBDEV references a deduplication table that stores
hash information of each chunk. If no chunks have the same
hash value, the chunk’s location and hash value are stored,
otherwise Dedup VBDEV increments the chunk’s reference
count to indicate that the chunk is duplicated.

V. EVALUATION
A. Experimental Setup

We emulated a KV-CSD using SPDK v.21.1, connected to a
server via 10 Gbps Ethernet. KV-CSD communicates with the
host through NVMe-oF. The host system and KV-CSD use the
same machine with the same specifications (Refer to Table I),
but the number of CPU cores used was limited to 10 and 6,
respectively. We also implemented hash-based indexer BDEV
and offline deduplication VBDEV. Deduplication VBDEV
uses a chunk size of 128 bytes and a SHA-1 cryptographic
hash algorithm. The monitoring module is set up to track the
CPU utilization of all cores for every 60 requests. The cost of
updating the CPU utilization array mentioned in Section IV-A
is 90 us.

We used “Fill sequential” and “Read sequential” of the
RockDB dbbench benchmark [25] for put (write) and get
(read) workloads respectively and with key-value pairs (4B
key and 16KB value). This size was set in consideration of

TABLE I
HARDWARE/SOFTWARE SPECIFICATIONS FOR HOST AND CSD

CPU Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz
(Host machine: 10 cores, CSD: six cores)
Memory 32GB DDR4
Disk 500 GB Samsung 970 EVO SSD
CSD interface NVMe-oF (10 Gbps Ethernet)
Software Ubuntu 20.04, SPDK v.21.10, RocksDB v.6.23

Case-1—¢— /'
2500
Case-2 ¢
)
22000 Ccase-3 —o— /
2 A
% 1500 ‘Ml—q—‘
§ 1000 ¢
Aww._‘/
500 < PO DD DD S
O v eyvw v v
0 5 10 15 20 25 30
Number of Threads
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scheduler with respect to the increased number of threads in the workload.
Each thread runs the dbbench’s “Fill sequential” workload.

the page size of NAND flash. NAND flash based SSD is a
block device that can be written and read in units of pages
(eg, 16KB). Reading and writing of key-value pairs smaller
than this size causes I/O amplification. Therefore, we assume
that the host can read/write key-value pairs in a page unit after
buffering small key-value pairs.

B. Performance Evaluation of KV-CSD

We evaluated how much KV-CSD reduces the host’s I/O
stack overhead through kernel bypass. For this, we compared
the following two systems.

e RocksDB: This is a key-value store that runs RocksDB with
32MB buffer on the host’s file system.

e KV VBDEYV: This is a system using KV-CSD equipped
with a hash structure-based storage engine.

Figure 6(a)&(b) shows the change in latency and throughput
as the amount of I/O requested increases. Figure 6(a) is a
performance comparison for the put workload. For more than
six threads, KV VBDEV outperforms RocksDB. KV-CSD
minimizes the I/O stack overhead by bypassing the kernel of
the host. However, under six threads, RocksDB shows better
performance than KV VBDEV, which is presumably due to
the performance gain from RocksDB’s internal 32MB buffer.
Figure 6(b) is a performance comparison for the get workload.
The two systems show almost similar performance. However,
RocksDB has slightly lower latency and higher throughput for
all cases, which is presumably due to the effect of the host’s
OS cache.

C. Performance Evaluation of the BTS Scheduler

We compared performance for the following three cases
with respect to the increased number of threads issuing I/O
in the benchmark. We experimented with put-only workloads
and considered offline deduplication described in Section IV-B
as a background task. Figure 7 shows the results of experi-
menting with a put workload to account for a situation where
background tasks require some computation time.

e Case 1: This implementation is a case in which only
foreground I/O is processed without a background task
service.



e Case 2: The background task is handled with foreground
I/0O, but without the BTS scheduler.

e Case 3: The background task is handled with foreground
I/0 and the BTS scheduler is used.

In all cases, the latency increases as the foreground I/O
requests increase. Case 1 has the lowest latency, while Case
2 and Case 3 have high latency. Case 1 and Case 2 increase
linearly, whereas Case 3 increases exponentially after 21 1/O
threads. In Case 3, when the number of host threads is three
or less, background task is placed in an idle thread that does
not process foreground /0, so it actively uses idle threads and
does not interfere with foreground I/O processing. Therefore,
it shows a similar delay time to Case 1. Case 3 shows lower
latency than Case 2 when the number of I/O threads is less than
21 (normal situation), whereas Case 3 shows higher latency
than Case 2 when the number of host threads is greater than 21
(overloaded situation). In the normal situation, BTS actively
uses the idle cores to take advantage of the performance
advantage, whereas in the overloaded situation, the overhead of
the BTS scheduler outweighs the performance advantage and
shows no performance gain. Therefore, the BTS scheduler can
set the threshold described in Section IV-A 21 (threads) and
eliminate performance loss due to unnecessary task migration.

VI. CONCLUDING REMARKS

In this paper, we proposed a background task-aware sched-
uler (BTS) that can actively use idle cores for processing
background tasks to minimize the slowdown of foreground I/O
in the SPDK-based KV-CSD. Extensive evaluation has shown
that BTS enables the active use of idle cores and minimizes
the increase in response time of foreground I/O when the
background task is executed together. In addition, although this
paper investigated the effect of BTS in KV-CSD, we believe
that BTS can be applied to any storage server environment. In
particular, in a storage server environment with multiple high-
performance CPU cores, the performance improvement effect
of BTS is expected to be significant. Therefore, we will further
verify the effectiveness of BTS for various hardware settings
of storage server and KV-CSD in a future study.
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