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Summary 

DENKV: Deduplication-extended Node-local LSM-tree-
based Key-value Store 

❑ HPC applications generate huge amount of redundant data

❑ Distributed key-value stores gained attention for HPC systems

❑ A node-local LSM-tree-based key-value store for HPC systems

❑ Integrate data deduplication to overcome write and space amplification 
problems

❑ Introduced asynchronous partly inline deduplication (APID)

❑ Leverages background thread pool 

❑ Maintained performance while reducing 4x write and 8x space amplification
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❑ Emerging storage technologies have opened new opportunities for 
the use of KV stores in HPC
❑ The use-case includes storing intermediate results

Background 

Distributed Key-Value Stores in HPC
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Background 

Distributed Key-Value Stores in HPC

❑ A variety of distributed KV stores have been developed.

❑ Emerging storage technologies have opened new opportunities for 
the use of KV stores in HPC
❑ The use-case includes storing intermediate results
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Background 

HPC applications 

Photo credit: https://eventhorizontelescope.org/blog/astronomers-reveal-first-image-black-hole-heart-our-galaxy

❑ Compute and data intensive → Solve complex problems

❑ Execution time in weeks → Simulate world-class scenarios 

❑ Generate huge amount of data
❑ In terms of terabytes to petabytes

❑ 4 petabytes of data generated for single image 

❑ High IO bandwidth demand

https://eventhorizontelescope.org/blog/astronomers-reveal-first-image-black-hole-heart-our-galaxy
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Background 

Log-Structured Merge Tree-based Key-Value Stores

❑ Log-Structed merge (LSM) tree-based KV stores
❑ Highly write-optimized

❑ Suitable candidates for node-local NVMe SSDs or burst buffers in HPC 
environment

Put Op
KV Pair

State Change 
(MT     IMT     SST) 
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Background 

Log-Structured Merge Tree-based Key-Value Stores

❑ Log-Structed merge (LSM) tree-based KV stores
❑ Highly write-optimized

❑ Suitable candidates for node-local NVMe SSDs or burst buffers in HPC 
environment

Put Op
KV Pair

State Change 
(MT     IMT     SST) 

❑ Limitations of LSM-tree
➢ High write amplification (WA) – more writes than application intended

➢ High space amplification (SA) – more space utilization than 
application required
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Background 

Log-Structured Merge Tree-based Key-Value Stores

❑ Log-Structed merge (LSM) tree-based KV stores
❑ Write and Space amplification problems

KV Pair
State Change 

(MT     IMT     SST) 

Invalid key-value pairUpdated key-value pair
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Background 

Log-Structured Merge Tree-based Key-Value Stores

❑ Log-Structed merge (LSM) tree-based KV stores
❑ Write and Space amplification problems

KV Pair
State Change 

(MT     IMT     SST) 

❑ Unclaimed invalid key-value pairs lead to space amplification

Invalid key-value pairUpdated key-value pair
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Background 

Log-Structured Merge Tree-based Key-Value Stores

❑ Log-Structed merge (LSM) tree-based KV stores
❑ Write and Space amplification problems

KV Pair
State Change 

(MT     IMT     SST) 

Merge-sort
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Background 
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Background 

Log-Structured Merge Tree-based Key-Value Stores

❑ Log-Structed merge (LSM) tree-based KV stores
❑ Write and Space amplification problems

KV Pair
State Change 

(MT     IMT     SST) 

Merge-sort❑ This Merge-Sort operatoin lead to high number of  internal writes 

❑ Storage optimization technique, data deduplication, can be 
adopted to reduce WA and SA.
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Deduplication in HPC 

Deduplication 101

0. User Data
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Deduplication in HPC 

Deduplication 101

0. User Data

1. Chunking



17

Deduplication in HPC 

Deduplication 101

0. User Data

1. Chunking

2. Fingerprinting
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Deduplication in HPC 

Deduplication 101

0. User Data

1. Chunking

2. Fingerprinting

3. Duplicate Lookup

Deduplication

Management

Metadata
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Deduplication in HPC 

Deduplication 101

0. User Data

1. Chunking

2. Fingerprinting

3. Duplicate Lookup

4. Update Deduplication 

Metadata 

Deduplication

Management

Metadata
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Deduplication in HPC 

Classification of Deduplication

❑ Inline Deduplication
❑ Performs deduplication during the write process (within critical section)

❑ Normally increased write latency

❑ Helps improve write endurance problem

❑ Immediate improvement of storage

❑ Offline Deduplication
❑ Performs deduplication after the write process finishes (outside of critical 

section)

❑ Lowers write latency compared to inline deduplication

❑ Requires temporal storage space to acquire the duplicate data



Deduplication in HPC
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Deduplication in HPC

Deduplication in HPC applications datasets

❑ Korean Institute of Science and Technology Information (KISTI) 
host 5th Supercomputer, Nurion

❑ A petaflop machine ranked 11th in 2018 by Top500

❑ Peak performance of 25.3 petaflops

❑ Cray CS500 with 8,305 compute nodes

❑ 21 Petabytes of Storage

❑ Lustre File system
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Deduplication in HPC

Deduplication in HPC applications datasets

❑ Collected Top 10 applications dataset at Nurion
supercomputer[*]

❑ Sample of data is collected for only 10 minutes copying

❑ Implemented in-house deduplication analysis tool

❑ Analyzed the deduplication ratio
❑ Deduplication ratio – amount of data that can be removed

[*]. https://www.ksc.re.kr/eng/resource/nurion

https://www.ksc.re.kr/eng/resource/nurion
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Deduplication in HPC

Deduplication in HPC applications datasets

❑ Collected Top 10 applications dataset at Nurion
supercomputer[*]

❑ Sample of data is collected for only 10 minutes copying

❑ Implemented in-house deduplication analysis tool

❑ Analyzed the deduplication ratio
❑ Deduplication ratio – amount of data that can be removed

[*]. https://www.ksc.re.kr/eng/resource/nurion

❑ HPC applications generate highly redundant data [SC’12].

https://www.ksc.re.kr/eng/resource/nurion
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Deduplication in HPC

Deduplication in LSM-tree

❑ Novel way to minimize WA and SA

❑ Incorporating value-based deduplication
❑ Can help reduce the actual size of KV store

❑ Adopting deduplication at tradition LSM-tree

Performance overhead of inline dedup at MemTable

Breaks structural constraints at SSTables

(Single instance of valid KV Pairs)

Complex compaction operation
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Deduplication in HPC

Deduplication in LSM-tree

❑ Adopting deduplication at tradition LSM-tree

Performance overhead of inline dedup at MemTable
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Deduplication in HPC

Deduplication in LSM-tree

❑ Adopting deduplication at tradition 
LSM-tree

Breaks structural constraints at SSTables
(Single instance of valid KV Pairs)

Complex compaction operation



Proposed Architecture
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Proposed Architecture

DENKV: Deduplication-extended Node-local LSM-tree-
based Key-value Store 

❑ Design Goals
❑ Maintain performance characteristics of LSM-tree

❑ Minimum deduplication overhead for client operations

❑ Reduce write and space amplification

❑ Maintain the structural constraint of LSM-tree
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DENKV: Design Overview

Proposed Architecture

KV Pair State Change (MT —> IMT —> SST) Chunk Values

…
IMT

Writing value 
chunks in UVLMeta-SSTs

K, Ptr list

➢ Asynchronous
• Background 

thread pool 

➢ Partly inline
• Out of critical 

section
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DENKV: Write Operation Flow

Proposed Architecture

KV Pair
State Change 

(MT —> IMT —> SST) 

Chunk Values

Put Op

MT

K, Ptr list

Writing value 
chunks in UVL
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DENKV: Read Operation Flow

Proposed Architecture

GET Op

IMT

KV Pair
State Change 

(MT —> IMT —> SST) 

Chunk Values
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DENKV: Read Operation Flow

Proposed Architecture

GET Op

IMT

KV Pair
State Change 

(MT —> IMT —> SST) 

Chunk Values

Refer Manuscript

❑Garbage Collection

❑Crash Consistency of Chunk Information Table



Evaluation



35

Evaluation

System configuration 

❑ System Setup

❑ Benchmark
❑ In-house simulation of dedup patterns of HPC application

❑ Varying value sizes: 4KB and 1MB

❑ Fixed size keys 16 bytes

❑ 1 Million KV pairs for 4KB

❑ 100 thousand KV pairs for 1MB

CPU 
Intel(R) Xeon(R) CPU E5-4640 v2 @ 2.20GHz

4 CPU nodes (10 cores per node)

DRAM 256 GB DDR3 DRAM

Storage Samsung SSD 970 EVO 1TB
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Evaluation

Compared systems

❑ RocksDB
❑ Vanilla LSM-Tree based KV Store

❑ Follows the traditional LSM-Tree structure

❑ BlobDB
❑ KV separation design atop of RocksDB

❑ Optimized for write and read operations

❑ DENKV
❑ Our proposed deduplication incorporated KV Store



37

Evaluation

Questions to be answered

❑ How much deduplication influence the performance in general?

❑ How much write amplification is reduced?

❑ How much space amplification is reduced?

❑ What are the bottlenecks?



38

Evaluation

Performance analysis

❑ 4 KB KV Pairs
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Evaluation

Performance analysis

❑ 4 KB KV Pairs
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❑ Performance drops due to extra deduplication steps

❑With increasing dedup ratio, performance improves
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Evaluation

Write and space amplification analysis

❑ 4 KB KV Pairs
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Evaluation

Write and space amplification analysis

❑ 4 KB KV Pairs
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❑ 4x WA reduced with small KV pairs

❑ 4.6x SA reduced with small KV pairs
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Evaluation

Performance analysis

❑ 1 MB KV Pairs
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Evaluation

Performance analysis

❑ 1 MB KV Pairs
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❑ Performance drops due to extra deduplication steps

❑Outperforms all with highest dedup ratio
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Evaluation

Write and space amplification analysis

❑ 1 MB KV Pairs
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Evaluation

Write and space amplification analysis

❑ 1 MB KV Pairs
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❑ 8x WA reduced with small KV pairs

❑ 8.9x SA reduced with large KV pairs
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Evaluation

Questions to be answered

❑ How much deduplication influence the performance in general?

❑ With small keys, performance is comparable.

❑ There is a performance drop with large KV pairs.

❑ How much write amplification is reduced?

❑ With 50% deduplication ratio, around 43% write amplification is reduced 
on average

❑ How much space amplification is reduced?

❑ With 50% deduplication ratio, on average 45% less amount of space is 
utilized

❑ What are the bottlenecks?

❑ Deduplication operation interfere the foreground IOs results in write stalls.



Conclusion
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Conclusion

Conclusion

❑ HPC applications generate significant amount of redundant 
data

❑ Distributed KV stores are gaining significant attention in HPC
❑ Distributed KV stores rely on monolithic KV stores

❑ LSM-tree-based KV stores suffer from high WA and SA

❑ DENKV introduced APID (asynchronous partly inline 
deduplication) module
❑ Reduces WA and SA while maintaining the performance



Thank you!
safdar@sogang.ac.kr

https://sites.google.com/view/safdarjamil95
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