

DENKV: Addressing Design Trade-offs of Keyvalue Stores for Scientific Applications

Safdar Jamil, Awais Khan, Kihyun Kim, Jae-Kook Lee, Dosik An, Taeyoung Hong, Sarp Oral, Youngjae Kim 7th International Parallel Data Systems Workshop (PDSW'22)

Korea Institute of Science and Technology Information

Summary

DENKV: Deduplication-extended Node-local LSM-treebased Key-value Store

- □ HPC applications generate huge amount of redundant data
- Distributed key-value stores gained attention for HPC systems
- □ A node-local LSM-tree-based key-value store for HPC systems
- Integrate data deduplication to overcome write and space amplification problems
- Introduced asynchronous partly inline deduplication (APID)
 - Leverages background thread pool
- Maintained performance while reducing 4x write and 8x space amplification

SOGANG UNIVERSITY

Outline

Background

- Distributed Key-Value stores in HPC
- □ Log-Structured Merge (LSM) Tree-based KV stores
- Deduplication 101

$\hfill\square$ Deduplication in HPC

Proposed Architecture

- DENKV: Design goals
- $\hfill\square$ Write and Read operation flow

Evaluation

□ Conclusion and Q&A

Distributed Key-Value Stores in HPC

- Emerging storage technologies have opened new opportunities for the use of KV stores in HPC
 - □ The use-case includes storing intermediate results

RocksDB

Distributed Key-Value Stores in HPC

- Emerging storage technologies have opened new opportunities for the use of KV stores in HPC
 - □ The use-case includes storing intermediate results

A fast, light-weight proxy for memcached and redis

HPC applications

 \Box Compute and data intensive \rightarrow Solve complex problems

 $\Box \quad \text{Execution time in weeks} \rightarrow \text{Simulate world-class scenarios}$

Generate huge amount of data

- In terms of terabytes to petabytes
- □ 4 petabytes of data generated for single image

High IO bandwidth demand

Photo credit: https://eventhorizontelescope.org/blog/astronomers-reveal-first-image-black-hole-heart-our-galaxy

Log-Structured Merge Tree-based Key-Value Stores

□ Log-Structed merge (LSM) tree-based KV stores

- □ Highly write-optimized
- Suitable candidates for node-local NVMe SSDs or burst buffers in HPC environment
 State Change

8

Log-Structured Merge Tree-based Key-Value Stores

- □ Log-Structed merge (LSM) tree-based KV stores
 - □ Highly write-optimized
 - Suitable candidates for node-local NVMe SSDs or burst buffers in HPC environment
 State Change

□ Limitations of LSM-tree

- ➢ High write amplification (WA) more writes than application intended
- High space amplification (SA) more space utilization than application required

Log-Structured Merge Tree-based Key-Value Stores

□ Log-Structed merge (LSM) tree-based KV stores

□ Write and Space amplification problems

Log-Structured Merge Tree-based Key-Value Stores

□ Log-Structed merge (LSM) tree-based KV stores

□ Write and Space amplification problems

State Change (MT→ IMT→ SST)

KV Pair Mill

Log-Structured Merge Tree-based Key-Value Stores

□ Log-Structed merge (LSM) tree-based KV stores

□ Write and Space amplification problems

Log-Structured Merge Tree-based Key-Value Stores

□ Log-Structed merge (LSM) tree-based KV stores

□ Write and Space amplification problems

Log-Structured Merge Tree-based Key-Value Stores

□ Log-Structed merge (LSM) tree-based KV stores

□ Write and Space amplification problems

Deduplication 101

**.....*

Deduplication 101

0. User Data 1. Chunking

А	В	В
В	С	С
В	А	D
D	D	А

Classification of Deduplication

□ Inline Deduplication

- □ Performs deduplication during the write process (within critical section)
- □ Normally increased write latency
- □ Helps improve write endurance problem
- □ Immediate improvement of storage
- □ Offline Deduplication
 - Performs deduplication after the write process finishes (outside of critical section)
 - Lowers write latency compared to inline deduplication
 - □ Requires temporal storage space to acquire the duplicate data

Deduplication in HPC applications datasets

- Korean Institute of Science and Technology Information (KISTI) host 5th Supercomputer, Nurion
- □ A petaflop machine ranked 11th in 2018 by Top500
- □ Peak performance of 25.3 petaflops
- □ Cray C\$500 with 8,305 compute nodes
- 21 Petabytes of Storage
- □ Lustre File system

Deduplication in HPC applications datasets

- Collected Top 10 applications dataset at Nurion supercomputer^[*]
- Sample of data is collected for only 10 minutes copying
- Implemented in-house deduplication analysis tool
- Analyzed the deduplication ratio
 - Deduplication ratio amount of data that can be removed

Application	Total Size	Dedup. Ratio	Application	Total Size	Dedup. Ratio
Abacus	386 GB	41.8 %	CESM	273 GB	25.7 %
Charmm	382 GB	23.1 %	Gaussian	293 GB	20.4 %
Lammps	24 GB	42.5 %	МОМ	323 GB	53.9 %
MPAS	197 GB	81.7 %	Siesta	566 GB	52.1 %
VASP	1 TB	27.3 %	ANSYS	544 GB	23.8 %

Deduplication in HPC applications datasets

- Collected Top 10 applications dataset at Nurion supercomputer^[*]
- Sample of data is collected for only 10 minutes copying
- Implemented in-house deduplication analysis tool
- Analyzed the deduplication ratio

□ HPC applications generate highly redundant data [SC'12].

Abacus	386 GB	41.8 %	CESM	273 GB	25.7 %
Charmm	382 GB	23.1 %	Gaussian	293 GB	20.4 %
Lammps	24 GB	42.5 %	МОМ	323 GB	53.9 %
MPAS	197 GB	81.7 %	Siesta	566 GB	52.1 %
VASP	1 TB	27.3 %	ANSYS	544 GB	23.8 %

[*]. https://www.ksc.re.kr/eng/resource/nurion

Deduplication in LSM-tree

Novel way to minimize WA and SA

Incorporating value-based deduplication
 Can help reduce the actual size of KV store

□ Adopting deduplication at tradition LSM-tree

Performance overhead of inline dedup at MemTable

Breaks structural constraints at SSTables (Single instance of valid KV Pairs)

Complex compaction operation

Deduplication in LSM-tree

Adopting deduplication at tradition LSM-tree

Performance overhead of inline dedup at MemTable

Put Op

YCSB Benchmark | Workload A: 100% Write | Workload B: 50% write & 50% read

Deduplication in LSM-tree

Adopting deduplication at tradition LSM-tree

Breaks structural constraints at SSTables (Single instance of valid KV Pairs)

Complex compaction operation

SOGANG UNIVERSITY

Proposed Architecture

DENKV: Deduplication-extended Node-local LSM-treebased Key-value Store

- Design Goals
 - □ Maintain performance characteristics of LSM-tree
 - Minimum deduplication overhead for client operations
 - □ Reduce write and space amplification
 - Maintain the structural constraint of LSM-tree

Proposed Architecture

DENKV: Design Overview

Proposed Architecture

DENKV: Write Operation Flow

DENKV: Read Operation Flow

32

DENKV: Read Operation Flow

Refer Manuscript Garbage Collection

Crash Consistency of Chunk Information Table

System configuration

System Setup

CPU	Intel(R) Xeon(R) CPU E5-4640 v2 @ 2.20GHz 4 CPU nodes (10 cores per node)
DRAM	256 GB DDR3 DRAM
Storage	Samsung SSD 970 EVO 1TB

Benchmark

- □ In-house simulation of dedup patterns of HPC application
- □ Varying value sizes: 4KB and 1MB
- □ Fixed size keys 16 bytes
- □ 1 Million KV pairs for 4KB
- □ 100 thousand KV pairs for 1MB

Compared systems

- RocksDB
 - Vanilla LSM-Tree based KV Store
 - □ Follows the traditional LSM-Tree structure

BlobDB

- □ KV separation design atop of RocksDB
- Optimized for write and read operations

DENKV

Our proposed deduplication incorporated KV Store

Questions to be answered

□ How much deduplication influence the performance in general?

□ How much write amplification is reduced?

□ How much space amplification is reduced?

What are the bottlenecks?

Performance analysis

□ 4 KB KV Pairs

38

Performance analysis

□ 4 KB KV Pairs

Write and space amplification analysis

□ 4 KB KV Pairs

Write and space amplification analysis

□ 4 KB KV Pairs

Performance analysis

Performance analysis

Write and space amplification analysis

Write and space amplification analysis

Questions to be answered

- □ How much deduplication influence the performance in general?
 - □ With small keys, performance is comparable.
 - □ There is a performance drop with large KV pairs.
- □ How much write amplification is reduced?
 - With 50% deduplication ratio, around 43% write amplification is reduced on average
- □ How much space amplification is reduced?
 - With 50% deduplication ratio, on average 45% less amount of space is utilized
- What are the bottlenecks?
 - Deduplication operation interfere the foreground IOs results in write stalls.

Conclusion

- HPC applications generate significant amount of redundant data
- Distributed KV stores are gaining significant attention in HPC
 - Distributed KV stores rely on monolithic KV stores
 - □ LSM-tree-based KV stores suffer from high WA and SA
- DENKV introduced APID (asynchronous partly inline deduplication) module
 - Reduces WA and SA while maintaining the performance

safdar@sogang.ac.kr

https://sites.google.com/view/safdarjamil95

