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Abstract—This paper shows mathematically and ex-
perimentally that inline deduplication is not suitable
for file systems on ultra-low latency Intel Optane DC
PM devices in terms of performance, and proposes
DeNova, an offline deduplication specially designed for
log-structured NVM file systems such as NOVA. DeN-
ova offers high-performance and low-latency I/O pro-
cessing and executes deduplication in the background
without interfering with foreground I/Os. DeNova em-
ploys DRAM-free persistent deduplication metadata,
favoring CPU cache line, and ensures failure consis-
tency on any system failure. We implement DeNova
in the NOVA file system. Evaluation with DeNova
confirms a negligible performance drop of baseline
NOVA of less than 1%, while gaining high storage space
savings. Extensive experiments show DeNova is failure
consistent in all failure scenario cases.

Index Terms—Non-Volatile Memory, File System,
Deduplication, Consistency

I. Introduction
Recent technological advancements have enabled a gen-

eration of ultra-low latency (ULL) non-volatile memory
(NVM) devices, including Intel Optane DC PM, thus
blurring the performance gap between DRAM and per-
sistent storage [1]–[4]. The Intel Optane DC PM module,
in particular, can be directly connected to the memory
bus alongside DRAM, exchanging data through the iMC.
Furthermore, there is an XPController inside, which trans-
lates small accesses to larger accesses and thus provides
comparable write latency to DRAM. For instance, the
Intel Optane DC PM module has a minimum write latency
of 60 ns, close to DRAM whereas its read latency is two
to six times higher than DRAM as shown in Table I.

In the last several years, these advancements have trig-
gered various innovations on the storage stack, including
wide adoption of NVM file systems for new generation
storage devices [4]–[9]. Several intelligent works have de-
signed NVM file systems, such as PMFS [6], Strata [7],
SplitFS [8], and NOVA [5] that guarantee high perfor-
mance and low latency. These NVM file systems aim to
minimize the software overhead incurred by traditional
file systems by revisiting the storage stack. For instance,
NOVA [5], a state-of-the-art NVM file system, adopts log-
structured file system (LFS) approach to fully benefit hy-
brid memory systems employing DRAM and NVM devices
together.

†Y. Kim is the corresponding author.

TABLE I
Read and write latency of memory devices.

Memory Device Read (ns) Write (ns) Write Endurance
DRAM 10 ∼ 60 10 ∼ 60 1018

PCM [10] 50 ∼ 300 150∼1,000 108 ∼ 1012

STT-RAM [10] 5 ∼ 30 10 ∼ 100 1015

Optane DC PM [1] 150 ∼ 350 60 ∼ 100 106 ∼ 107

However, in times of continuously growing data
sizes from modern workloads, such as neural networks,
databases, and graph processing, these NVM file systems
not only face more pressure in terms of performance and
latency but also raise serious concerns with regard to stor-
age capacity [10]. A naive approach is to expand capacity
by adding additional storage devices [11]. However, such
an approach directly increases the storage, hardware man-
agement, and maintenance costs. Another alternative is
to apply software-based capacity optimization techniques
such as data deduplication to the NVM file systems [10],
[12].
Deduplication is a specialized technique to intelligently

identify and delete copies of repeated data [13]–[16]. In
general, deduplication is performed either inline or offline.
The former processes the deduplication before the data
is stored. This directly impacts the write performance,
since all processes to identify and delete duplicate data are
performed in the write process. On the other hand, offline
first writes all the data to the storage, which is followed
by the deduplication process. This does not affect write
performance, but requires temporal buffer space in the
storage device. In addition, offline deduplication cannot
solve the write endurance problem.
NVDedup [10] and LO-Dedup [12] are state-of-the-art

NVM deduplication file systems, both designed as an
inline deduplication approach for PMFS [6]. NVDedup
proposes workload-adaptive fingerprinting and an NVM-
favored, fine-grained metadata table. NVDedup monitors
the duplicate ratio of data and selects a cost-efficient
fingerprinting method accordingly. Using this method, it
is claimed that whenever the duplicate ratio is high, NVD-
edup can outperform the baseline PMFS. LO-Dedup [12]
complements a previous study on NVDedup [10], though it
employs two-level fingerprints, where the second-level fin-
gerprint is only generated when the first-level fingerprint
matches. It also uses a fine-grained metadata management
scheme to improve performance. What these two studies
have in common is that inline deduplication is adaptively



performed according to the workload or the fingerprinting
algorithm to minimize performance degradation, which is
the fundamental problem of inline deduplication.

However, based on our observations, we claim that
state-of-the-art inline deduplication has two limitations
when deployed on Intel Optane DC PM. First, it is
poorly suited for Intel Optane DC PM which has a write
latency comparable to DRAM. In other words, as the
write latency of NVM approaches DRAM, the adaptive
inline deduplication methods proposed in previous stud-
ies can no longer prevent performance degradation. The
deduplication process is a compute-intensive and time-
consuming operation. This overhead was tolerable with
conventional storage devices with high latency. However,
due to the low write latency of Intel Optane DC PM
the deduplication process overhead becomes severe. This
outweighs the efforts NVDedup made to optimize the
inline deduplication process. Second, the DRAM-based
index structure needed to look up deduplication metadata
consumes a considerable amount of DRAM space.

Therefore, to address the limitations mentioned above,
we propose DeNova, an offline deduplication method for
NVM file systems that (i) does not degrade write perfor-
mance, (ii) uses DRAM-free, self-reordering deduplication
metadata, and (iii) provides strong consistency based on
atomic write operation and count values, with minimum
NVM access. To the best of our knowledge, DeNova is
the first study on a deduplication NVM file system that
does not use DRAM at all for deduplication metadata
management and adopts offline deduplication, which does
not cause performance degradation.

Specific contributions of the present study are as follows:
• We empirically and experimentally investigate and

claim that due to its latency overhead, the performance
degradation of inline deduplication is not tolerable in
NVM file systems with the newly emerging ultra-low
latency Intel Optane DC PM.

• By using the near-DRAM latency of NVM devices, we
construct a DRAM-free deduplication metadata man-
agement table, which is a combination of a hash ta-
ble and doubly linked list. Each entry, consisting of a
fingerprint, reference count, block address, etc., can be
loaded into a CPU cache line benefiting performance
and consistency.

• We use a count-based consistency scheme for the dedu-
plication metadata. Furthermore, by having a count
value for each entry of the deduplication metadata,
multiple updates can be performed concurrently.

• Minimizing the time consumed to perform deduplication
leads to more available resources for other foreground
processes. By employing a reordering policy in the
deduplication metadata, we have minimized the number
of NVM accesses during lookup, without DRAM index
data structures.

• We implemented DeNova on the state-of-the-art log-
structured NVM file system, NOVA and evaluated it on
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of the data pages pointed by the write entry and the number of pages
written. The numbers in the radix tree represent the file page offset.

an Intel Optane DC PM device emulated server running
Linux kernel v5.1.0. Our extensive experimental evalu-
ation and qualitative analysis showed that (i) DeNova
achieves storage efficiency with performance overhead of
less than 1% compared to native NOVA and (ii) DRAM-
free deduplication metadata management tables provide
consistent failures in all failure cases.

II. Background and Related Work
A. NOVA File System
The NOVA (NOn-Volatile Memory Accelerated) file sys-

tem is a log-structured file system for hybrid volatile/non-
volatile memory systems [5]. Although it adapts many
aspects from the conventional log-structured file system,
NOVA is specifically designed to exploit the fast random
access of hybrid memory [17], [18]. NOVA manages a per-
inode log to provide consistency. NOVA logs metadata and
uses copy-on-write (CoW) on user data pages, i.e., keeping
the log size small. Since multiple logs can be rapidly
accessed, the per-inode log structure allows high concur-
rency in file accesses and recovery processes. Furthermore,
NOVA keeps the per-inode log as a linked list of log
pages, reducing the excessive garbage collection overhead.
An invalid log page can be reclaimed without interfering
with other processes. The log pages and data pages are
allocated by a per-CPU memory page allocator (free list).
Furthermore, NOVA uses a DRAM index data structure,
radix tree, to guarantee fast access to data.

Write Flow: Figure 1 shows a write process in NOVA.
1 NOVA first allocates a sufficient number of data pages,
two data pages, to accommodate the write operation. Since
NOVA uses the CoW approach, a write process always
allocates new data pages. The allocated pages are filled
with copied data from the user buffer and data from the
previous pages that do not belong in the range of the write.
2 A write entry is logged to the inode log, which points to
the allocated pages. The write entry contains information
about the first data page’s file offset and the number of
contiguous data pages that are allocated. Since two data
pages were written starting from file page offset two, the
new write entry is represented as [2,2] in Figure 1. If there



is not enough space in the inode log to append a new write
entry, a new log page is allocated and linked to the inode
log. 3 The inode log tail is updated to the appended write
entry with an atomic 64-bit write. 4 The index structure,
radix tree, is updated to point to the new write entries
accordingly and 5 the obsolete data pages are reclaimed
by the per-CPU free page list.

File System Consistency: NOVA provides consis-
tency by using the atomic update on the inode log tail.
When a system crash occurs, NOVA scans the inode log to
recover the file and reconstruct the radix tree. If a system
crash had occurred before appending a write entry, the
allocated data pages would not be visible in the log. If a
system crash had occurred after appending the write entry
and before the inode tail update, the newly appended write
entry would be located after the tail pointer, excluding it
from the log. Therefore, in both cases the allocated data
pages will not be recovered. However, if the system had
crashed after the inode tail update, the write entry would
be accessed and recovered. Since the write operation was
either completely executed or never took place, the write
process is atomic.
B. NVM File System with Deduplication

A typical deduplication process works as follows: (Step1)
chunking the data, (Step2) fingerprinting the data with a
hash algorithm, (Step3) looking up deduplication meta-
data, and (Step4) creating or updating deduplication
metadata and storing unique data chunks. The dedu-
plication process can be divided into inline and offline
depending on the time of execution. The inline dedupli-
cation performs the deduplication process before data is
stored to the storage [10], [12], [14], [15], [19]. Since inline
deduplication is performed in the write I/O path, dedupli-
cation is inevitably accompanied by an overhead in write
performance [20]. Furthermore, this overhead, mainly fin-
gerprinting time, cannot be further reduced by software
without the use of additional hardware accelerators [21].
Since deduplication is performed on DRAM before being
written to NVM, it helps to improve the storage lifetime.
On the other hand, the offline deduplication first writes
the data and defers the deduplication process. Therefore,
the offline deduplication is not accompanied by significant
performance degradation. However, it requires buffer space
in the storage and does not help improve write endurance.

There exist two complementary works targeting inline
deduplication for file systems on persistent memory, i.e.,
NVDedup [10] and LO-Dedup [12]. Specifically, NVD-
edup [10] adopted the workload adaptive fingerprinting
method to solve the problem of write performance degra-
dation of inline-deduplication mentioned above. Through
this method, NVDedup achieved minimal write perfor-
mance degradation; in particular, in workloads with a high
duplicate ratio, NVDedup showed even higher write per-
formance than the original PMFS without deduplication.
Similarly, LO-Dedup [12] proposed a low-overhead inline
deduplication system for PMFS. Unlike NVDedup [10],

LO-Dedup adopts a fast hashing scheme and sampling
technique for duplication detection to minimize dedupli-
cation [12].
However, despite such performance optimization efforts

as NVDedup [10] and LO-Dedup [12], the inline deduplica-
tion approach with NVM file systems cannot significantly
reduce the performance overhead in real NVM devices
(e.g., Intel Optane DC PM-based storage device), where
its write latency is similar to DRAM write latency. Specif-
ically, in NVDedup, the write bandwidth of NVM was
assumed to be 1/8 times that of DRAM. However, the Intel
Optane DC PM has a far lower write latency than that of
the NVM emulation used in NVDedup. Intel Optane DC
PM has a minimum write latency of 60 ns, close to DRAM,
as shown in Table I. Therefore, in this paper, we argue that
when targeting Intel Optane DC PM, write performance
degradation due to inline deduplication in the NVM file
system is very large, so we have no choice but to adopt
offline deduplication rather than inline deduplication for
the NVM file system.

III. Problem Definition
Traditional inline deduplication file system studies have

the following two limitations.
Write Performance of Inline Deduplication with

Intel Optane DC PM: To thoroughly investigate and
analyze the performance of inline deduplication with NVM
devices such as Intel Optane DC PM, we devised a math-
ematical model and validated it with experimental proofs.
Table II lists all the notations used in the mathematical
model.
We conducted an experiment on a 40-core machine

with 64 GB of an emulated Intel Optane DC PM device.
Details about the Intel Optane DC PM device emulation
are shown in Section V. To this end, we used a NOVA
file system with inline deduplication (DeNova-Inline).
DeNova-Inline chunks the data into 4 KB, and generates
a fingerprint using the SHA-1 algorithm.
We compared the time to write data (Tw) to the time

taken to identify and remove duplicate data (Tf ). Note
that Tf consists of the data chunking time, fingerprinting
time, and duplication lookup time. Each write is chunked
into 4 KB, and a fingerprint is generated for each chunk.
For simplification, we compare only the Tw and Tf , and
exclude the additional time consumed (Ta) in the write
transaction. Figure 2 shows multiple comparisons of Tw

TABLE II
Notations used in mathematical model formulation.

Notation Description
Tw Time consumed to write data to Intel Optane DC PM
Tf Time required to perform chunking, fingerprinting, and

duplicate lookup for strong fingerprint
Ta Time required to complete write transaction excluding

Tw and Tf

Tf w Time required to perform chunking, fingerprinting, and
duplicate lookup for weak fingerprint

α Ratio of duplicates in the workload



and Tf based on the write size. With all the write sizes,
the Tw never exceeds the Tf . This is due to the low write
latency of NVM devices such as Intel Optane DC PM.
Equation (1) models such relations between Tw and Tf .

Tw << Tf (1)

The write time of a file system without inline deduplica-
tion is Tw + Ta, where Ta is the additional time needed to
complete the write transactions. On the other hand, the
write time of a NVM file system with inline deduplication
is Tf + (1 - α)Tw + Ta, where α is the duplicate ratio.
Every data chunk requires Tf for identifying duplicate
data, and only the unique data chunks will actually be
written. Equation (2) models the assumption that the
performance of a file system with inline deduplication
cannot exceed the performance of a file system without
deduplication.

Tw + Ta < Tf + (1 − α)Tw + Ta(0 ≤ α < 1) (2)

Equation (2) is simplified to Equation (3)

α ∗ Tw < Tf (0 ≤ α < 1) (3)

Since α is between 0 and 1, Equation (3) can be derived
from Equation (1).

Furthermore, NV-Dedup [10] applies a workload adap-
tive fingerprinting method. It uses a weak fingerprint if the
duplicate ratio is low. However, when a generated weak
fingerprint matches another weak fingerprint in the dedu-
plication metadata table, it generates a strong fingerprint
to definitely identify it. Equation (4) models how the worst
performance of a file system with workload adaptive inline
deduplication cannot outperform the baseline file system’s
performance. Tf w indicates the time consumed to generate
weak fingerprinting. The α ∗ Tf indicates the worst case
where all the weak fingerprints need to generate a strong
fingerprint.

Tw +Ta < Tf w + α∗Tf +(1− α)Tw +Ta(0 ≤ α < 1) (4)

Equation (4) can be simplified to Equation (5).

α ∗ Tw < Tf w + α ∗ Tf (0 ≤ α < 1) (5)

Since both α and Tf w are bigger than 0, Equation (5)
can be derived from Equation (1). Therefore, we conclude
both mathematically and experimentally, that inline dedu-
plication degrades performance in NVM file systems when
deployed on Intel Optane DC PM devices.

Dedupe Metadata DRAM Space Overhead: An-
other limitation of existing deduplication studies lies in
deduplication metadata management. The existing stud-
ies rely on DRAM either fully or partially to store the
metadata [13], [22]. For instance, DmDedup [22] uses a
DRAM-based CoW B-tree index that is flushed after a
certain threshold. However, this would require a significant
amount of DRAM space. Furthermore, in the event of a
failure, recent changes cannot be reflected in the stored
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Fig. 2. Comparing the time consumed by fingerprinting (Tf ) and
time consumed in actual writing to the NVM device (Tw). Note that
the proportion is just to compare the two times, but not the total
write time. The actual write operation would also include additional
operation time.

metadata unless they were flushed to the persistent stor-
age. Another example, NVDedup [10], only uses DRAM
as an indexing data structure and writes deduplication
metadata directly to the NVM. This provides stronger
consistency. However, the indexing data structure con-
sumes a large amount of space in DRAM. Assuming an
NVM device with N GB of storage space with 4 KB of data
blocks, the indexing data structures alone can consume
up to (N GB

4 KB × 24 B)/N GB ≈ 0.6% of NVM capacity
in DRAM [10]. For example, a server with 1 TB-NVM
and 32 GB DRAM would need 6 GB DRAM (18.75% of
total DRAM capacity), just for the dedupe indexing data
structures.
To solve this issue, we propose to build an offline dedu-

plication framework for log-structured file systems such
as the NOVA file system with a DRAM-free and failure-
consistent PM resident deduplication metadata index data
structure.

IV. DeNova File System
The motivation for DeNova is to answer a simple

question: How can we design deduplication best suitable
for file systems on NVM devices with properties like an
Intel Optane DC PM device? In this section, we describe
our key design principles, design, and implementation for
DeNova.

A. Design Goals
• High-performance Write I/O: A critical constraint
when designing DeNova is to maintain high I/O per-
formance and low latency. To minimize the performance
penalty for foreground write I/O, write requests for
deduplication are queued and data already written is
deduplicated in the background. Thus, DeNova pro-
vides an immediate offline deduplicationmechanism that
enables deduplication after data is written.

• DRAM-Free Metadata Indexing: Due to the explo-
sive growth in the production of data, servers require
a large amount of expensive DRAM to run their ap-
plications, which accounts for a high proportion of the
server’s installation and recurring costs (e.g., electricity
and maintenance costs). Therefore, another important
constraint is to minimize the use of DRAM required
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for deduplication in NVM file systems. Accordingly,
DeNova proposes a DRAM-free deduplication metadata
data structure with high-speed access.

• Deduplication Metadata with High Access
Speed: Since DeNova does not rely on DRAM-based
indexing data structures, it needs a unique way to access
a particular entry with high access speed. Furthermore,
due to a higher read latency of NVM such as Intel
Optane DC PM as compared to DRAM, searching algo-
rithms on the NVM are inefficient. Therefore, DeNova
is further optimized o (i) use both hash and linked list
data structures with a deduplication metadata table and
(ii) perform conditional reordering on the linked lists.

• Provide Consistency with Minimum Overhead:
An unclean dismount such as a system crash can occur
at any time. When a system crash occurs in the middle
of a deduplication process or a reclaiming process, the
reference count of a data chunk might not remain
consistent, leading to loss of data and contamination of
file system consistency. To prevent such cases, DeNova
adapts a count-based consistency method to prevent
such cases. Furthermore, every update to the deduplica-
tion metadata is followed by a flush operation to enforce
ordering. This might lead to a considerable overhead.
DeNova generates each metadata entry to fit into the
CPU cache line to minimize the flush operations.

B. Overview
Figure 3 shows an architectural overview of DeNova. It

mainly consists of several components, including a dedupli-
cation work queue (DWQ), deduplication daemon (DD),
and a persistent deduplication metadata data structure
called failure atomic consistent table (FACT).
1) Deduplication Work Queue: The DWQ is a dynamic

first-in-first-out (FIFO) queue maintained in DRAM,
where each node in the DWQ holds write request infor-
mation to be deduplicated. During the write path, after
appending the write entry to the file log in NOVA, the
corresponding DWQ node is enqueued. Multiple writing
threads can compete with each other since they share the
DWQ in the write path. However, since the time spent to
enqueue a node to the DWQ is extremely small as com-
pared to the time spent accessing NVM, the bandwidth
degradation is negligible. This will be discussed further in
Section V. On a normal shutdown, the entries in the DWQ

are saved to NVM and restored to DRAM after power on.
If a system failure occurs, the DWQ is rebuilt by doing a
fast scan on write entries. The dedupe-flag inside the write
entries indicates the candidates for deduplication. This is
further explained in Section IV-D.
2) Deduplication Daemon: The DD is a single threaded

daemon service that runs in the background. Its main
functions are to i) dequeue nodes from the DWQ and
perform deduplication, and ii) reorder the FACT table
for faster access. In the deduplication process, the DD
de-queues a node from the DWQ and reads the data
pages pointed by the write entry. After chunking it to 4
KB, DD generates a fingerprint using the SHA-1 hashing
algorithm. Using the generated fingerprint, DD detects
duplicate data chunks by looking them up in the FACT.
If a duplicate data chunk is detected, deduplication is
performed. Another main service of DD is the reordering of
the deduplication metadata table, FACT. The reordering
of FACT is described in Section IV-E. There are two
variables in DD that are tunable, i.e., (n, m). Each value
indicates the time interval (n msec) between each trigger-
ing point and the number of DWQ nodes (m) processed
each time. When n is set to 0, the DD aggressively polls the
DWQ and immediately executes the deduplication process
whenever a node is enqueued in the DWQ.
3) FACT: The FACT data structure is a DRAM-free

persistent deduplication metadata table containing finger-
prints, data page addresses, reference count, and count-
based consistency. All these important attributes ensure
deduplication metadata consistency and support recovery
in the event of a failure. Details about FACT are provided
in Section IV-C.
C. Failure Atomic Consistent Table (FACT)
FACT is a persistent, failure-atomic, consistent, DRAM-

free deduplication index metadata table. The conventional
approach to improve faster lookup speed is to partially
maintain a deduplication metadata table or an indexing
data structure in DRAM. However, DRAM comes with
limited capacity and is a costly resource. Therefore, we
propose to design FACT as a static linear table to provide
fast access without an additional DRAM index and store
it in NVM with high storage density.
Figure 4 provides a schematic overview of FACT. Each

FACT entry (64 Bytes) corresponds to a data block on
NVM and consists of a number of fields or attributes. The
first and second field stores the reference count (RFC) (4
B) and update count (UC) (4 B). The RFC represents
the number of write entries that are pointing to the
corresponding data block. Note that on mount, NOVA sets
the block size to the default of 4 KB. The UC indicates the
number of deduplication transactions currently targeting
the corresponding data block. A modern 64-bit processor
provides a 64-bit write to be atomic [6]. By using an
atomic update, decreasing the UC and increasing the RFC,
the deduplication process provides consistency. We discuss
how FACT ensures consistency during the deduplication
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Fig. 4. A schematic representation of the FACT data structure.

process in Section IV-D. The third field stores the finger-
print (FP) (20 B). DeNova uses the SHA-1 algorithm to
generate the 20 B FP. The fourth field stores the block
address of the corresponding data block.

Partitioning FACT into DAA and IAA: The FP
length, generated by SHA-1 in DeNova, is 160-bits. If
FACT entries are indexed with the whole 160-bits, it is
an ideal configuration in terms of average FACT access
latency. But FACT would have 2160 entries, which exceeds
NVM capacity. Therefore, FACT is divided into two areas:
a direct access area (DAA) and indirect access area (IAA).
FACT uses the prefix of FP as an index to access an entry
in FACT. The prefix length (n) of FP is set to be much
smaller than 160. The DAA area is accessed using the
prefix of the FP, and the IAA area is accessed when the
FP’s prefix conflict occurs.

An entry in DAA can be accessed without additional
hashing or indexing data structures, resulting in reduced
average FACT access latency. However, in cases where
there are two different FPs with an identical prefix, a
collision might occur. This is why IAA is needed. The new
entry that generated the collision is allocated in the IAA.
The allocated entries with the same prefix are connected
with a doubly linked list. Simply put, the DAA is a hash
table and IAA is used to save buckets for hash collision,
and the key is the prefix of the FP.

The fifth and sixth fields of FACT, i.e., the prev and
next fields, are used to build the linked list. When a lookup
is made using an FP in the deduplication process, the
prefix of the FP is used as an index to read an entry
from FACT. If the entry is not empty, the DD compares
the FP used for lookup and the FP already saved in the
FACT entry. If the values do not match, it moves on to the
entry pointed by the next field. If no matches are found
even after going through all the linked entries, the DD
determines that the data chunk is unique and appends it
to the linked list. Therefore, all the entries that are linked
in the same linked list have the same FP prefix. The prev
and next fields are set to −1 in initialization.

Setting the size of FACT: Since DAA needs exactly
one access to NVM, while IAA needs multiple accesses
to NVM, increasing the size of the DAA decreases the

average FACT access latency. The size of the DAA is
proportional to the length of the FP prefix. Therefore,
maximizing the length of the prefix minimizes the average
FACT access latency. However, as we mentioned earlier,
we cannot just increase the value of n. This is because the
NVM footprint of FACT increases. Therefore, configuring
the prefix length (n) is crucial in the design of FACT.

DeNova sets the value of n and sets the size of the
DAA and IAA areas according to the principle explained
as an example below. Assuming an NVM device with
N GB of storage space with 4 KB of data blocks, the
minimum number of entries required in the FACT is
(N GB

4 KB =)N∗218. This number is determined for the worst-
case scenario where there are no duplicate data chunks.
We have configured n =

[
log2(N ∗ 218)

]
, to make the

DAA able to comprise all N ∗ 218 entries. Ideally, all
the unique entries would be accessed with a single NVM
access. However, if there are no duplicate data chunks and
all the unique data chunks have the same prefix, all except
one of the entries would be saved in the IAA. Therefore,
we set the IAA size equal to the DAA, which is N ∗ 218

entries.
Assuming an NVM device with N GB of storage space

with 4 KB of data blocks, the proposed FACT consumes
(2× N GB

4 KB ×64 B)/N GB ≈ 3.2% of NVM capacity. While
this metadata space overhead is twice as much as that of
NVDedup [10], which is 1.6%, DeNova does not require
any additional DRAM index data structures. NVDedup
consumes an additional 0.6% of NVM capacity in DRAM,
which is explained in Section III. Since the cost of DRAM
is higher than that of NVM, DeNova is more cost-effective
compared to NVDedup.
The last field of FACT stores the delete pointer. This

field is used in the reclaiming process of a specific data
chunk. When a data page is deleted in NOVA, the free_list
reclaims the data page for future use. When a data chunk
is being reclaimed, it checks the reference count of the data
chunk in the FACT to determine whether it can actually
reclaim the data chunk. If the reference count exceeds one,
we should not reclaim the data chunk. In order to lookup
a data chunk in the FACT, we should use the prefix of the
FP. However, we do not know the FP of the data chunk
when reclaiming it. Therefore, we should first read and
generate an FP of the specific data chunk. Such a process
would significantly slow down the reclaiming process. In
order to avoid generating an FP every time the system
reclaims a data chunk, the FACT keeps a delete pointer.
The delete pointer acts as an index table that maps a

block address to the corresponding FACT entry’s index. A
FACT entry is inserted during the deduplication process
and the delete pointer is set at this point as well. Assume
a FACT entry corresponding to a data block with block
address B is inserted, where the FACT snapshot is shown
in Figure 4. The index of the saved FACT entry is A,
which is the prefix of the FP generated by the contents of
the block with block address B. In order to insert a delete
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pointer for this entry, the block address B is used as an
index to set the delete pointer field. The FACT is a static
linear table that is big enough to accommodate all the
block indexes. Using a block address would not exceed the
FACT. Therefore, A is inserted into the delete pointer field
of the FACT entry, the index of which is B. Now assume
that the system wants to reclaim a data block with block
address B. The following three steps are required to access
corresponding FACT entry of block address B. (Step 1)
Use B as an index to access the FACT. In the reclaiming
process, the FACT is not accessed by using the prefix of an
FP as an index, but by using the block address as an index.
(Step 2) Read the value saved in the delete pointer of the
accessed FACT entry. In this case it would be A. (Step 3)
Use A as an index to access the FACT, which is the FACT
entry corresponding to block address B. After accessing
the FACT entry, the reference count is decreased by one.
If the reference count is 0 after the decrease, the block can
be reclaimed. Since the reference count of block address B
is 1 after the decrease, it is not reclaimed in this example.
Simply, the delete pointer works as an indirect address.
This way, the target FACT entry can be referenced from
the NVM in exactly two reads from the NVM.

Lastly, the 4 B padding is added to make the FACT
entry exactly fit in the CPU cache line (64 Bytes). To
provide consistency between FACT entries and the actual
file data, an update to an entry should be followed by a
cache line flush and a memory fence instruction. Therefore,
making an entry size fit into a CPU cache line reduces the
maximum cache line flush and memory fence to only once,
which improves performance.

D. Consistency Management
The FACT is accessed only in the following two cases: (i)

to lookup FP during the deduplication process and (ii) to
look up a data page during the reclaiming process. Since
both cases modify the FACT and file logs, they should
provide consistency in the event of system failures. In the
remainder of this section, we discuss how the FACT is
accessed and how DeNova provides consistency within
it.
1) Failures in Deduplication: The deduplication in

DeNova adapts the write process of NOVA. If a duplicate
data page is detected, a new write entry is appended
to the log that points to the old duplicate data page.

The detected duplicate data page is reclaimed afterwards.
Hence, the deduplication process includes (i) updating the
tail of a file log and (ii) updating the reference count of the
corresponding FACT entry. To provide consistency, there
should be a method to make these two updates atomic.
For instance, assume that the RFC is updated after

the tail update. NOVA provides an atomic write only
to update the log tail. Therefore, a system failure can
occur after the tail update and before updating the RFC.
Since the tail is updated, deduplication is done in terms
of the file point of view. However, this transaction has
not been applied to the FACT. The RFC may be smaller
than the actual number of write entries pointing to the
corresponding data chunk. Such a situation may lead to
data loss, i.e., there is a possibility to reclaim the data
page even when some file is using it. Only when the RFC
is 0, the data page should be reclaimed.
2) Deduplication Process with Consistency: To

indicators are used by DeNova to provide consistency in
deduplication.
• update count: As discussed earlier, this refers to the
number of deduplication transactions currently in pro-
cess to a specific FACT entry. At the beginning of the
transaction, an atomic update increases the UC. After
the transactions become persistent, an atomic update
decreases the UC and increases the RFC. This prevents
the inconsistency of the RFC when the transaction fails.

• dedupe-flag: This is an 8-bit value incorporated inside
the write entry. The dedupe-flag is used not only to
indicate candidates for deduplication, but also to define
candidates for recovery in a system failure. The dedupe-
flag has the following three states: “dedupe_needed”,
“in_process”, and “dedupe_complete”. When a new
write entry is appended to a normal write, its initial
dedupe-flag is “dedupe_needed”. For the write entries
appended during the deduplication process and cur-
rently targeted for deduplication, its dedupe-flags are
set to “in_process”. When the deduplication process is
finished, the dedupe-flags are set to “dedupe_complete”.
The dedupe-flag is updated in place with an atomic
write operation. Figure 5 shows the state transition of
the dedupe-flag.
Deduplication Path: Figure 6 is a description of the

deduplication process in DeNova. Most part of the dedu-
plication process overlaps with the write process explained
in Section II-A. 1 Dequeue an entry from the DWQ.
The write entry dequeued, noted as the target entry, has
dedupe-flag set to “dedupe_needed.” 2 Generate FPs
for each data page and detect duplicate data chunks by
checking the FACT. If a duplicate data chunk is detected,
3 increase the UC of the corresponding FACT entry. If it
is a unique data chunk, a new FACT entry is inserted with
UC set to 1. In Step 4 , for each duplicate data chunk, a
new write entry is appended that points to the old du-
plicate data page. The dedupe-flag of the appended write
entry will be “in_process”. 5 Update the log tail with an
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atomic update. After the tail is updated, the deduplication
transaction is persistent to the file. Then, the dedupe-
flag of the target entry is modified to “in_process”. 6
Decrease UC and increase RFC with an atomic operation.
After such transactions are done, the dedupe-flag of the
appended write entries, and the target entry will be set
to “dedupe_complete”. The obsolete duplicate data pages
are reclaimed afterwards. Algorithm 1 lists the complete
process.
3) Failures in Reclaiming Process: Another exam-

ple of inconsistency can occur in the data page reclaiming
process. In NOVA, reclaiming the data page starts by
adding an entry to the log and updating the log tail. This
entry indicates to reclaim certain data pages. After the
entry is appended, the free_list reclaims the data chunks.
In DeNova an additional step to check the RFC is added
in the reclaiming process. Only when the RFC is zero,
its corresponding data page is reclaimed. Assume that the
RFC is decreased after the tail has been updated. A failure
might occur after reclaiming a data chunk but before
decreasing the RFC in FACT. In such a case, the reclaimed
data chunk is free to be used, but has a corresponding
FACT entry filled with a wrong RFC. Such a situation
results in a dangling pointer that points to the address of a
reclaimed data page filled with garbage or invalid content.
Therefore, for the sake of consistency, the transaction of
reclaiming should take FACT into account.

E. Optimizing IAA Management
A data chunk with a high RFC is more likely to be

written again. Said differently, the corresponding highly
referenced FACT entry is more likely to be a target in the
deduplication process. Since the IAA of FACT is managed
in a doubly linked list, the access time would linearly
increase with the length of the list. If a data chunk with
a high reference count is located in the rear end of a
linked list, this would lead to increased average NVM
reads. Furthermore, the deduplication process holds an
inode lock. All these would lead to a longer deduplication
process time, interfering with foreground processes and
wasting bandwidth of the device. The DD monitors the
access time for each entry. If an entry exceeds both the
predefined RFC threshold and the access time threshold,

Algorithm 1: Deduplication Algorithm
1 while !DW Q.empty() do
2 target_entry ← DW Q.pop(); // 1
3 inode← get_inode(target_entry);
4 lock(inode);
5 for data_page ∈ target_entry do
6 fp← generate_fingerprint(data_page);
7 fact_entry ← lookup(fp); // 2
8 if fact_entry = NULL then
9 fact_entry ← add_fact_entry(data_page);

10 end
11 atomic_increase(fact_entry.count); // 3
12
13 end
14 for data_page ∈ duplicate_data_page do
15 append_write_entry(data_page); // 4
16
17 end
18 inode.update_tail(); // 5
19 target_entry.dedupe_flag ← in_process;
20 for write_entry ∈ new_write_entry, target_entry do
21 for data_page ∈ write_entry do
22 fact_entry ← get_fact(data_page);
23 atomic_update(fact_entry.count); // 6
24
25 end
26 write_entry.dedupe_flag ← dedupe_complete;
27 end
28 rebuild_radix_tree(inode);
29 Unlock(inode);
30 end

DD performs the reordering. It first holds a lock to the
linked list. Then it scans the linked list and reorders them
in descending order by RFC. The reordering process does
not physically move the FACT entries, but only modifies
the prev and next fields.

Consistency in Reordering: Reordering a doubly
linked list in IAA should also consider consistency. A
system crash during an in-place update could lead to
a disconnected linked list. Figure 7 shows the flow of
reordering. The prev field of a normal linked list head
is always 0. This prev field works as a commit flag of
reordering. The reordering starts by setting this prev field
to the index of the head. Then it sets all the prev fields of
the nodes to the desired value. After all the prev fields are
updated, the commit flag is set to the last node’s index.
After setting the next fields of nodes to the desired value,
the reordering is finished by setting the commit flag back
to 0. When a system crash occurs the reordering process
can be resumed or recovered by checking the commit flag.
If the prev field of head is the same as its index, it uses
the next field of each node to reconstruct the prev fields
of each node. If the prev field is different from its index,
it scans through the list using the prev fields and resumes
the reordering process.

V. Evaluation
A. Evaluation Setup
We implemented DeNova in a NOVA file system

and evaluated it on an NVM emulated server running
Linux kernel v5.1.0. Our source code is publicly available
at https://github.com/hishine6/DeNOVA. The detailed

https://github.com/hishine6/DeNOVA
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server specifications are shown in Table III. We performed
experiments with two sets of synthetic workloads gener-
ated with the Fio benchmark [23], i.e., small files and
large files. We also used the Fio benchmark to control the
duplicate ratio in the workload.

We compare and evaluate the followings;
• Baseline NOVA: It denotes the NOVA file system with

no deduplication.
• DeNova-Inline: It denotes the NOVA file system with

inline deduplication. It performs all the deduplication
processes (chunking, fingerprinting, duplicate lookups,
dedupe metadata updates and unique data chunk stor-
age) in the critical write I/O path.

• DeNova-Immediate: It denotes the NOVA file system
with offline deduplication, where the DD polls DWQ
aggressively and processes write entries whenever the
DWQ is not empty.

• DeNova-Delayed(n,m): It denotes the NOVA file
system with offline deduplication, where the DD is
triggered every n milliseconds and consumes only m
write entries from the DWQ.
Note that we designed DeNova-Inline by closely fol-

lowing the NVDedup [10] methodology for the NOVA
file system. However, the NVDedup workload adaptive
fingerprinting algorithm cannot be employed due to con-
tradiction, as discussed in Equation (4) of Section III.

B. Performance Analysis
We first measured the write latency and deduplication

latency with DeNova for small and large workload files,
as shown in Table IV. In particular, we further breakdown
deduplication latency into fingerprinting time and time
spent for additional operations (chunking, FACT lookup,
etc.). It shows that for both files, the time consumed for

TABLE III
Testbed Server Specifications.

CPU Intel(R) Xeon(R) Gold 5218R 2.10GHz
CPU Nodes (#): 2, Cores per Node (#): 40

Memory DRAM per Node (#): 2, DDR4, 64 GB * 4 (=256 GB)
(Including the PM emulated portion)

PM Emulated on DRAM: 64 GB
OS Linux kernel 5.1.0
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Fig. 8. Write throughput of different models, based on different
duplicate ratio. DeNova-delayed(750, 20000) dequeues 20,000 write
entries from the DWQ every 750 ms.

fingerprinting is five to six times longer than the write
latency. With additional operations included, the total
deduplication latency is six to seven times longer than the
write latency.
1) Write Performance Analysis: Figure 8 shows the

throughput comparison with varying duplicate ratios. For
the small file workload, we used 1,000,000 files of 4 KB,
and for the large file workload, we used 100,000 files of
128 KB. Also, we added 0.1 ms of think time for every 0.1
ms, which leads to a 0.2 ms cycle of think time and actual
IO time. The evaluation was done with a single thread.
We clearly observed a throughput drop of more than 50%
for small files, and 80% for large files in DeNova-Inline
compared to baseline NOVA. This is due to the large
overhead of fingerprinting and the low latency of NVM
devices. Although these results may not seem surprising,
it proves that it completely negates the existing research
results where the write throughput can be higher than the
baseline NVM file system with a high duplicate ratio [10].
Note that this result also supports our claim that inline
deduplication-based schemes are not the best fit for ultra-
low latency NVM environments such as Intel Optane DC
PM. We also observed a slight increase in performance
as the duplicate ratio increased in DeNova-Inline. The
actual amount written decreases as the duplicate ratio
increases, leading to better performance. However, this
performance increase is hard to identify in Figure 8. This
is because the fingerprinting time, which does not change
with different duplicate ratios, takes up most of the write
transaction time. Furthermore, both DeNova-Immediate
and DeNova-Delayed show a throughput drop of less
than 1% compared to the baseline NOVA. This perfor-
mance drop is attributed to the shared data structure,
DWQ, between the write process and the deduplication
process (DD).
Figure 9 shows a throughput comparison of all the

variants in a multi-threaded environment. The same two

TABLE IV
File Write Latency and Deduplication Latency.
File Size 4 KB 128 KB
Write Latency (us) 2.85 39.86

Dedupe Latency (us) Other Ops 3.66 53.57
FP Time 11.78 215.26
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Fig. 9. Write throughput of different models, based on different
numbers of threads.

workloads from the previous experiment were used with
the duplicate ratio fixed to 50%. The overall throughput
increases as the number of threads increases, but after the
number of threads exceeds two for small files and eights for
large files, the overall throughput decreases in a parabolic
pattern. We suspect that the excessive write requests of
multiple threads made the file system overflow, causing
this performance degradation. Overall, both DeNova-
Immediate and DeNova-Delayed show the same degrada-
tion of less than 1% compared to baseline NOVA regardless
of the change in the number of threads. This means that
contention for the DWQ does not change significantly
even when file system performance is decreased due to the
increase in the number of threads.

The DeNova-Delayed(n,m) triggers the DD every n ms
and processes m write entries. As n decreases it performs
aggressive polling on DWQ, which is a shared data struc-
ture used by both foreground and background I/Os, pos-
sibly incurring high interference between them. Therefore,
we initially expected that as n increases, the through-
put would increase due to less contention on the DWQ.
Simply put, we used DeNova-Delayed(n,m) to clearly
demonstrate if there were any aggressive polling overhead
on the DWQ. However, from previous evaluations, we
proved that even when n=0 (DeNova-Immediate) the
throughput degradation is small, i.e., less than 1%. The
actual time accessing the DWQ takes less than 0.1% of the
overall write process, and even less for the deduplication
process, which takes more time compared to the write
process. This leads to significantly lowering the contention
possibility of DWQ. Thus, we conclude that, n does not
significantly affect the throughput. On the other hand, n
does affect the length of the DWQ.
2) DWQ Lingering Time and DRAM Space Overhead:

To measure the average length of the DWQ, we used the
average lingering time of nodes in the DWQ. The lingering
time is measured by tracking the difference between each
node’s enqueue time and dequeue time. We used 250,000
small files (4 KB) from the previous workload. Figure 10
shows a CDF of the time of DWQ nodes lingering in
the DWQ. Due to the periodic triggering of dequeue, a
stair-like pattern appears in all DeNova-Delayed. As n
in DeNova-Delayed(n,m) increases from 0 ms to 250 ms,
the time consumed to dequeue 90% of the DWQ increases
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Fig. 10. Cumulative Distribution Function of the DWQ node’s
lingering time. For instance 90% of the DWQ nodes are processed
within 1254 ms for DeNova-delayed(250,20000).

by 2,100%. The increase in the average lingering time
can be interpreted as the longer average length of the
DWQ. Furthermore, the DWQ is a DRAM data structure.
Therefore maintaining a longer DWQ results in DRAM
space overhead. Thus we conclude that, only considering
the throughput and DRAM space overhead, DeNova-
Immediate is the best choice.
3) Overwrite Performance Analysis: Figure 11 shows

a normalized throughput comparison of write/overwrite
between DeNova-Immediate and baseline NOVA. The
workloads of the previous experiment were used with a
single thread. In baseline NOVA, the throughput of the
overwrite increases approximately 1% for large files, and
3% for small files compared to write. The write workload
we used creates a new file and writes to it. This process
consists of creating a new inode and allocating a new inode
log page, whereas overwrite does not. Furthermore, since
an inode is created per 4 KB for small files and per 128 KB
for large files, the additional overhead is higher for small
files. Therefore the performance increase of overwrite is
slightly higher for small files. However, this phenomenon
was not reproduced for DeNova-Immediate.
Since DeNova uses the CoW approach, a process of re-

claiming the obsolete data page is included in the overwrite
process. Furthermore, the reclaiming process in DeNova
includes modifying the FACT. It should first decrease the
RFC of the obsolete data page and only reclaim it when its
RFC is 0. In some cases, the corresponding FACT entry
could lie in the IAA. Since the IAA is maintained as a
doubly linked list, when the RFC of a FACT entry in
IAA is 0, the FACT entry must be removed by modifying
the “prev” and “next” fields of the next and previous
nodes. As mentioned in Section IV-C, a cache line flush
should be followed after a FACT entry update. Therefore,
a maximum of three cache line flushes (3 ∗ 64 B = 192 B)
can occur while reclaiming a single data page (4 KB). Such
overhead resulted in a performance drop of approximately
5% for small files and 18% for large files in overwrites. The
large file workload has a higher overhead due to higher
average cache line flushes per file.
4) Evaluation of Read Performance on Duplicate File:

FACT is a shared data structure. Furthermore, dedupli-
cated data blocks are shared data pages. We performed the
following experiment to evaluate whether the read thread
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Fig. 11. Normalized throughput of write and overwrite of different
models, where the write throughput of baseline NOVA is set to 1.

has performance degradation due to races on the FACT
data structure or shared data page with other read or write
threads.

Figure 12 shows the result of read performance in dif-
ferent workloads. For read-only workloads, we have made
two duplicate files of a 4 GB, file A and B. We gave plenty
of time in DeNova-Immediate for the DD to finish the
entire deduplication process. Then we used two threads,
each reading file A and B, and measured the throughput
of the thread that reads file B. In NOVA, file A and B
have unique data pages. On the other hand, in DeNova-
Immediate, all the data pages would be shared between file
A and B. Thus, the two threads would read the identical
data pages. The results show no difference between NOVA
and DeNova-Immediate. For the read and write mixed
workloads, we started off with the read-only workloads.
We used two threads, one to overwrite file A and one to
read B, and measured the throughput of the thread that
reads file B. There was no degradation in this case as well.

Since DeNova uses CoW, the overwritten file A would
have written new data pages without interfering with
the read process. Therefore, we conclude that there is
no performance degradation due to shared data pages.
Furthermore, since the FACT is not accessed in the read
I/O path, there are no race conditions on FACT in the
read process.

C. Consistency and Failure Analysis
We qualitatively analyzed the possible failures (failures

during deduplication or reclaiming process) and describe
the consistency handling offered by DeNova. Note that
we describe the potential failures using the deduplication
path discussed earlier in Figure 6 in the section IV-D.
1) Failures during Deduplication: A system crash can

occur at any time during deduplication.
• Inconsistency Handling I: Note that, if a system
failure occurs before Step 3 in Figure 6, the only thing
that changes is that a write entry is dequeued from the
DWQ. In system recovery, the DWQ is rebuilt by doing
a fast scan on all the write entries, enqueuing all the
write entries with the dedupe-flag “dedupe_needed.”

• Inconsistency Handling II: If a system failure occurs
after Step 5 and before Step 6 as shown in Figure 6, the
deduplication transaction is assumed to be complete.
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Fig. 12. Comparing the read throughput in different workloads.

However, the RFC needs to be updated. When scan-
ning all the write entries at system recovery, the write
entries with dedupe-flag “in_process” are detected. The
detected write entries resume the deduplication process
from Step 6. Even after detecting all the “in_process”
write entries and finishing their deduplication process,
there might be FACT entries with a UC bigger than
0. This happends when a system failure occurs after
Step 3 and before Step 5. It is assumed to have failed
the deduplication in such cases. Therefore, the UC is
not applied to the RFC for these entries, but discarded.
These UCs are set to 0 at system reboot.

• Inconsistency Handling III: The final case to
consider is a system failure happening between
Step 5 and before modifying the dedupe-flag from
“dedupe_needed” to “in_process” of the target entry,
which is the write entry dequeued from the DWQ. At
system recovery, this write entry will be enqueued to the
DWQ, even though it has been deduplicated. However,
this does not cause any inconsistency issues. If Step
5 is completed, the target entry has only unique data
pages and each detected duplicate data page would
have already been deduplicated. For example, as can
be seen in Figure 6 the target entry contains only c as a
valid data page after Step 5. Since the dedupe-flag was
“dedupe_needed”, the UCs of these unique data pages
are discarded by the recovery process. However, the UCs
of the duplicate data pages, like “b”, as shown in the
Figure 6, would have the new write entry with dedupe-
flags “in_process”. This leads to a successful recovery
for duplicate data pages. It shows that the deduplication
process has finished for duplicate data pages but failed
for unique pages. The second deduplication process done
on this target entry would lead to processing deduplica-
tion only on the unique data pages.
2) Failures during Page Reclamation: When a system

crash occurs, NOVA scans through all the write entries
and generates a bitmap of occupied pages. By using this
bitmap, the free_list is rebuilt, i.e., automatically finishes
any reclaiming processes that were not finished. However,
rebuilding the free_list does not modify the FACT. This
may lead to a valid FACT entry corresponding to a free
data chunk.
In order to avoid these cases, DeNova checks each

FACT entry’s data chunk. If the data chunk has been
reclaimed by the free_list in recovery, it decreases the



RFC of the corresponding FACT entry, i.e., invalidates
it. However, this recovery might lead to over increment
of RFC. When a system crashes while reclaiming a data
chunk with a reference count bigger than 1, rebuilding the
free_list does not reclaim the data chunk. Since the data
chunk is valid, the RFC does not decrease in recovery.
However, the actual number of write entries pointing to
the data chunk have decreased by one. While this over-
increment does not affect the system consistency, it may
lead to data pages that are not reclaimable. DeNova uses
a background thread to monitor the use of FACT entries.
It periodically scans all the files and generates a bitmap of
which FACT entry is in use. If a valid FACT entry with no
files using it is detected, it reclaims the corresponding data
page. In this way, all the invalid data pages will eventually
be reclaimed.

VI. Conclusion

This paper proposes DeNova, the most suitable dedu-
plication framework for the latest NVM devices such as the
Intel Optane DC PM module with ultra-low latency guar-
antees. We implemented the proposed high-performance
offline deduplication framework with a DRAM-free con-
sistent deduplication metadata index table in the NOVA
file system and evaluated its effectiveness. The evaluations
confirmed that DeNova shows a negligible degradation
of less than 1% compared to the baseline NOVA and
guarantees failure-consistency in various failure scenarios.
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