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Abstract
The petaflop supercomputers have provided optimal resources for numerous scientific domains. Specifically, the storage

nodes in supercomputers support tens to hundreds of petabytes of capacity and they are managed by parallel file system. Sev-
eral studies have explored storage space optimization techniques, such as data deduplication (dedup). The dedup reduces the
storage space by identifying and eliminating the duplicate data. However, these studies only considered the supercomputers
at tera-scale. Therefore, in this work, we perform data dedup analysis on the Nurion petaflop supercomputer operated by
Korea Institute of Science and Technology (KISTI) using an in-house dedup tool, named Deduplication Analyzer (Danzer).
We observe that on average 25% of the data can be removed by adopting data dedup.

1. Introduction

The National Supercomputing Center at the Korean Institute of
Science and Technology Information (KISTI) in South Korea has
a long history of deploying and operating world class supercom-
puter. KISTI is home of the Nurion [1] petaflop supercomputer
that is ranked 11th in 2018 on the Top500 list [2], with a peak
performance of 25.3 Petaflops (PF). Nurion is a Cray CS500 with
8,305 compute nodes, each compute node with 64 cores Intel Xeon
Phi processor.

Nurion contains 797.3 TB of aggregated memory and 21 PB of
storage capacity managed by Lustre parallel file system (PFS) [3].
Furthermore, the storage layer of Nurion also employs burst buffers
(BB) to absorb high I/O demand. The BB acts as an I/O buffer by
storing bursty I/O request traffic, which occurs instantly in the ap-
plication program, between the application and the PFS. In addi-
tion, to store the huge amount of data produced by HPC simula-
tion, Nurion maintains a peta-scale storage system based on Lus-
ter. However, in order to store the constantly produced simulation
data, Nurion adopts a purging policy that deletes files older than
two weeks. The purging process releases the resources acquired
by clients and make them available for new users. However, the
purge policy is usually implemented based on time and only trig-
gered once the required time duration is met, which can lead to
exhaustive utilization of PFS. To address this, a few studies con-
sidered adopting the storage optimization techniques, such as data
deduplication [4, 5].

Data deduplication (dedup) reduces the storage space by iden-
tifying and eliminating the duplicate data. Meister et. al [4] es-
timated the data dedup potentials in the storage systems of su-
percomputer and analyzed more than 1,000 TB of data stored at
PFS and observed that 20% to 30% of the data can be removed by
adopting data dedup. However, this study only considered super-
computers at tera-scale while in current era supercomputers are of
peta-scale. The increase in resources and induction of new appli-
cation domains such as machine learning at supercomputing facil-
ities make it necessary to once again analyze the potentials of stor-
age optimization techniques.

Therefore, in this work, we perform data dedup analysis atop
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Nurion supercomputer and present our observations on the datasets
we collected during a span of a year. To perform the analysis, we
developed an in-house dedup tool, named Deduplication Analyzer
(Danzer), which estimates the benefits of employing data dedup on
supercomputers. To the best of our knowledge, this is the first work
to perform dedup analysis on peta-scale supercomputer. Danzer is
a two phase tool, trace and analysis phase. In the trace phase,
Danzer traverses the filesystem, performs dedup steps (fixed-size
chunking and fingerprinting), and writes the fingerprints to a trace-
file. In the analysis phase, Danzer performs dedup analysis and ex-
tracts insights based on the trace phase. We observed that on av-
erage 25% of the data can be removed by adopting data dedup at
supercomputers and reduce the space utilization.

2. Data Deduplication (Dedup)

Data dedup is a key storage space optimization technique
adopted in various distributed storage systems like cloud. Dedup
reduces the storage space by identifying and eliminating the du-
plicate data. Dedup consists of several steps: partitioning the data
into chunks, fingerprinting data chunks using a cryptographic hash
function such as SHA-1 and MD-5, removing the duplicated data
and managing the metadata of dedup. Analyzing dedup potential
is to estimate how much data can be removed via dedup. We define
a metric to quantitatively measure the dedup potential, referred as
dedup ratio.

The dedup ratio is defined as capacityredundant

capacitytotal
, which is equal to

1− capacityunique

capacitytotal
. For example, a dedup ratio of 25% denotes that

25% of the data could be removed by the dedup and only 75% of
the original data capacity would be actually stored.

D. Meister et. al. [4] studied the deduplication potential and
found that 20% and 30% of the data in the HPC filesystem was
duplicated [4]. J. Kaiser et. al. [5] showed the potential for signif-
icant space savings ranging from 37% to 99% [5] in system-level
checkpoint data of numerous HPC applications.

3. Danzer: Deduplication Analyzer

Figure 1 shows the design overview of our proposed dedup anal-
ysis tool, Danzer. Similar to FS-C [4] tool, Danzer is also com-
posed of two phases, a trace phase and an analysis phase. Dur-
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Figure 1: The Architecture of Danzer.

ing the trace phase, Danzer traverses the given dataset where it
recursively reads all the files, chunks them based on the chunk-
ing parameter, computes the fingerprint and writes it to the trace-
file. Once the whole dataset is traversed, the second step, analysis
phase, is triggered to extract the deduplication insights from the
tracefile. Each component of Danzer is explained in detail below.

• Trace phase: Danzer takes the uppermost directory path as an
input parameter and traverses whole files under that directory.
Once Danzer starts running, first, Danzer reads data file by file.
Second, Danzer partitions a file into a series of chunks and per-
forms fingerprinting on each chunk to deduplicate it. The size
of the chunk determines the deduplication accuracy. Chunk size
can be configured before the Danzer starts up. In order to per-
form fingerprinting, each data chunk is put into the SHA-1 hash
function to get a 20 Bytes unique fingerprint value. Despite con-
cerns about the hash collision, the probability of it occurring for
the SHA-1 algorithm is orders of magnitudes smaller than other
sources of data loss such as undetected memory corruption. This
series of processes is repeated for all files under the input direc-
tory path.

• Tracefile: Information about all traced files during trace phase
is saved in one output file, which is called tracefile. In the trace-
file, metadata and fingerprint information for each data chunk
are sequentially recorded for each file. Metadata of the traced
file is written on the first line: file name, file size. Below that,
the fingerprint values of all chunks from that file are recorded
consecutively. Since the information of a given dataset is stored
in one single file, it serves as a simple interface between two
phases and provides high portability.

• Analysis phase: The analysis phase calculates dedup ratio by
making use of the result of the trace phase, tracefile. First,
Danzer reads the fingerprint values of all data chunks under the
input directory path from the tracefile. After reading, Danzer
constructs a hash table with the fingerprint value as the key and
the number of data chunks with that value as the value. Then,
based on that hash table, Danzer calculates how much data is re-
dundant among the entire data chunk, and finds the dedup ratio.
The execution time of the analysis phase is less than 5% of the
trace phase. However, if we integrate this task with the trace
phase, we lose the possibility of parallelizing the trace phase
due to the shared property of the hash table. By separating this
step from the trace phase, we leave room to optimize the trace
phase, which is a bundle of the same tasks, using multithreaded
parallelism.

Table 1: Testbed Machine Specifications.
Processor Intel Xeon Phi 7250 (KNL) processor, 1.4 GHz

# of CPU Nodes: 8305, # of Cores per Node: 68
Main Memory Multi-Channel DRAM (6 channel), DDR4-2400, 16 GB x 6 (= 96 GB)

per Node, Bandwidth per CPU: 115.2 GB/s, Total size: 778.6 TB
Parallel File System Lustre 2.7.21.3, /scratch: 21 PB, /home: 0.76 PB, /apps: 0.5 PB

Bandwidth: 0.3 TB/s
OS Kernel Linux version 3.10.0-1062.el7.x86 64

4. Evaluation Results
4.1 Experimental Setup

We developed Danzer using C++. Danzer was run on a sin-
gle server and the server’s specs are given in Table 1. We used
25 datasets for deduplication study. One dataset is composed of
data which was used for 1 HPC application. For each dataset, we
have collected the data used by the top 5 users in the criteria of
the amount of Nurion usage from June 1, 2021 to May 31, 2022.
When there were less than 5 users, data of all users was used as the
dataset which might have led to a relatively low amount of capac-
ity.

4.2 File Size Statistics
In order to observe how the file size statistics of a given dataset

are related to the dedup ratio and Danzer’s execution time, we eval-
uated the file size distribution and the cumulative file size distribu-
tion as seen Table 2. For these results, we present 10%, 25%, 50%,
75%, and 90% percentiles for the number of files and capacity.
When x is the median which is the 50% percentile point on the file
size distribution, it means that 50% of files are smaller than x. For
the cumulative file size distribution in the same condition, it means
that 50% of the capacity is occupied by files which are smaller than
x. If there is no file for that condition, we represent it as ‘-’. We
also measured the number of files, capacity and mean file size for
each dataset.

First, we observe that in the HPC storage system there are a
large number of tiny files while they do not occupy a significant
capacity. For most of the datasets, which are 19 out of 25, a fourth
of the files are smaller than 8 KB. Specifically in the VASP dataset,
even three quarters of files were smaller than 3 KB. In those all 19
datasets, even though a considerable amount of files are smaller
than 8 KB, the capacity is occupied less than 10% by them. On
the other hand, the largest top 10% files occupied more than 90%
of the total capacity except for 3 datasets. In particular, for the
Nastran dataset 90% of files were smaller than 50 MB, while the
mean file size is 1.74 GB. This is an extreme case where a few huge
files occupy more than 90% of the capacity.

4.3 Deduplication Potential
Second, we observe that there is a dedup potential of 24.85% in

our data collection, which means that 1.59 TB is redundant among
the total 6.4 TB when using 4 KB chunk size. In the case of 8 KB
chunk size, the dedup ratio is 24.06% slightly less than the case of 4
KB chunk size, which means that 1.54 TB is redundant among the
total 6.4 TB. When we use 4KB chunking, 15 out of 25 datasets
show dedup ratio greater than 10%. The highest dedup ratio is
66.57% in MPAS which is the only dataset whose dedup ratio is
over 50% and the lowest is 0.51% in Gromacs. We found that the
deviation of dedup ratio for the given data is quite large and does
not appear close to each other. This suggests that when measuring
the dedup potential in the HPC system, there is a possibility of
misjudgment by sampling only the data of a few applications.

Furthermore, we also captured the change pattern of the dedup
potential when increasing the chunk size from 4 KB to 8 KB. De-
pending on the size of the data chunk, there was a trade-off be-
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Table 2: File size statistics and dedup ratios (DR) of Nurion supercomputer datasets. The dedup ratios were measured both using 4 KB and 8 KB
chunking. Two sets of percentiles were measured in 10%, 25%, 50%, 75%, 90%, respectively. Mean FS. and Q.E. denote mean file size and Quantum
Espresso.

Dataset # Files Capacity DR (4K) DR (8K) Mean FS. File Size Percentile Cumulative File Size Percentile

Abaqus 6,829 385.07 G 40.27% 39.33% 57.74 M 1.29 K 8.58 K 251.99 K 251.99 K 2.13 M 983.25 M 1.55 G 4 G 11.13 G 17.01 G
ANSYS 7,602 544.39 G 19.51% 17.89% 73.33 M 31 366 25.52 K 1.02 M 178.87 M 178.85 M 384.62 M 604.58 M 11.39 G 60.26 G
BWA 2,803 121.75 G 10.50% 9.90% 44.48 M 510 510 510 1.13 K 101.29 K 215.74 M 4.01 G 35.71 G 36.31 G -
CESM 2,340 273.34 G 24.58% 23.77% 119.61 M 234.29 K 5.63 M 14.81 M 21.87 M 105.34 M 105.34 M 444.48 M 3.67 G 3.67 G 3.67 G
Charmm 4,936 381.56 G 17.74% 15.80% 79.16 M 424 5.08 K 176.75 K 3.81 M 10.88 M 1.94 G 3.41 G 5.79 G 6.62 G 9.87 G
Gaussian 2,549 293.72 G 33.23% 33.07% 117.99 M 0 754 4.43 K 4.78 M 88.22 M 137.15 M 4.11 G 21.35 G 33.61 G 33.61 G
grims 4,293 322.65 G 8.36% 8.30% 76.96 M 1.05 K 3.04 K 15.97 K 1018.04 K 1018.04 K 3.18 G 68.09 G 218.84 G - -
Gromacs 4,278 231.4 G 0.51% 0.50% 55.39 M 143 24.18 K 1.74 M 12.17 M 45.78 M 45.78 M 312.47 M 1.22 G 1.27 G 1.28 G
in-house 8,847 172.35 G 0.73% 0.15% 19.95 M 261 1.22 K 6.22 K 20.97 K 157.23 K 494.25 M 494.25 M 494.25 M 10.19 G 12.72 G
LAMMPS 5,085 23.24 G 14.93% 14.67% 4.68 M 909 11.25 K 18.86 K 845.75 K 6.8 M 8.81 M 27.87 M 74.99 M 120.18 M 166.86 M
MOM 2,428 322.32 G 41.80% 39.53% 135.94 M 101 1.13 K 8.83 K 73.52 K 6.72 M 978.7 M 2.93 G 5.69 G 28.47 G 60.26 G
MPAS 10,829 219.06 G 66.57% 62.05% 20.71 M 752 2.46 K 24.68 K 1.37 M 1.37 M 15.96 G 15.96 G 15.96 G 15.96 G 42.19 G
msc 322 190.65 G 1.91% 1.88% 606.28 M 361 25.39 M 244.14 M 1.82 G 1.82 G 244.14 M 1.82 G 1.82 G 1.82 G 1.82 G
NAMD 13,049 2.79 G 5.55% 3.00% 223.85 K 443 1.35 K 4.27 K 21.73 K 107.92 K 283.86 K 9.05 M 380.25 M 389.3 M 389.3 M
Nastran 125 217.3 G 6.66% 6.34% 1.74 G 307 3.5 K 177.47 K 10.69 M 45.85 M 19.09 G 195.15 G - - -
OpenFoam 32,900 31.8 G 4.15% 4.09% 1013.48 K 879 1.15 K 4.5 K 258.51 K 3.08 M 1.21 M 6.38 M 6.6 M 15.99 M 1.65 G
Pytorch 9,239 472.51 M 2.81% 2.52% 52.37 K 145 459 1.3 K 7.24 K 37.01 K 71.26 K 799.79 K 1.65 M 1.85 M 9.79 M
Qchem 7,865 319.67 G 28.13% 27.02% 41.62 M 0 167 1.82 K 110.66 K 7.06 M 287.71 M 10.68 G 228.51 G - -
Q.E. 10,661 199.93 G 9.98% 9.91% 19.2 M 248 2.27 K 102.96 K 3.5 M 17.58 M 17.62 M 579.5 M 579.64 M 579.72 M 2.1 G
QMCpack 1,793 5.61 G 0.90% 0.83% 3.2 M 61 1.38 K 8.61 K 109.64 K 1.15 M 13.22 M 40.03 M 121.37 M 130.17 M 377.47 M
RAMSES 2,280 12.4 G 23.79% 17.31% 5.57 M 27.4 K 4 M 4 M 4 M 4 M 4 M 4 M 5.19 M 60.8 M 70.6 M
ROMs 18,017 318.54 G 12.33% 12.32% 18.1 M 62 234 4.86 K 25.92 K 29.91 M 77.7 M 113.33 M 549.52 M 4.95 G 8.62 G
SIESTA 8,118 565.6 G 45.58% 45.54% 71.34 M 72 1.04 K 13 K 209.65 K 790.34 K 2 G 5.02 G 7.84 G 11.86 G 45.64 G
VASP 158,369 1.05 TB 22.39% 22.38% 6.92 M 0 13 618 2.85 K 147.92 K 49.33 G 49.33 G 49.33 G 49.33 G 49.33 G
WRF 16,352 326.61 G 42.51% 41.18% 20.45 M 212 287 9.08 K 1.37 M 3.16 M 1.11 G 1.11 G 1.79 G 1.79 G 34.19 G

Table 3: Dedup ratio when using 8KB chunking of 18 HPC datasets mea-
sured in 2012 [4].

Dataset Capacity DR (8K) Dataset Capacity DR (8K)

BSC-BD 11.2 TB 7.0% DKRZ-B5 75.3 TB 29.5%
BSC-MOD 20.1 TB 21.3% DKRZ-B6 47.9 TB 22.5%
BSC-PRO 9.1 TB 29.3% DKRZ-B7 65.2 TB 14.1%
BSC-SCRA 3.0 TB 38.3% DKRZ-B8 176.6 TB 13.9%
DKRZ-A 27.0 TB 17.9% DKRZ-K 42.9 TB 49.3%
DKRZ-B1 114.5 TB 19.7% DKRZ-M1 134.5 TB 15.0%
DKRZ-B2 109.1 TB 27.6% DKRZ-M2 116.8 TB 21.1%
DKRZ-B3 126.5 TB 74.4% RENCI 11.1 TB 23.8%
DKRZ-B4 68.3 TB 27.1% RWTH 53.8 TB 23.2%

tween the analysis execution speed and the dedup ratio derived. As
the chunk size increases, the amount of chunking and fingerprint-
ing work decreases, which has the advantage of reducing the exe-
cution time for analysis. However, since the unit size of chunking
has become coarser-grained from 4 KB to 8 KB, the dedup ratio
decreases slightly as seen in Table 2.

4.4 Execution Time Measurement
We show an analysis of Danzer’s execution time. Our experi-

ment was conducted using a single core in Nurion’s KNL comput-
ing node.

First, the analysis phase of Danzer’s two phases has relatively
little execution time, so the effect on Danzer’s overall running time
is insignificant. This is because the analysis phase has a time com-
plexity of O(n) using a hash table in calculating the dedup ratio.
We found that the execution time of the analysis phase is within a
couple of minutes at most, and it is between 1% and 5% of the total
running time.

Second, we clearly observe that running Danzer’s trace phase
is a computationally intensive task, as shown in Figure 2. This is
because a significant amount of computation is required for finger-
printing using the SHA-1 hash function. We found that the ratio of
cpu-time to wall-time (CPU time ratio) is over 90% for datasets
with the mean file size of 20 MB or more among the five sampled
datasets. Specifically, the LAMMPS dataset has a mean file size of
4.68 MB, which is very small compared to the other four datasets
as shown in Figure 2, which leads to a relatively low CPU-ratio,
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Figure 2: (Left) CPU time ratio when running Danzer’s trace phase with
mean file size of 5 datasets. (Right) Wall time of trace phase per capacity
with mean file size of 5 datasets.

68.26%. This shows that the smaller the mean file size, the greater
the overhead of the file open and close operations.

The above observations suggest the motivation that the trace
phase, the bottleneck of the Danzer process, needs to be run by
exploiting multi-nodes or multi-core parallelism.

5. Conclusion
In this paper, we found a high deduplication potential on the Nu-

rion supercomputer. Specifically, when setting the chunk size to be
4 KB, the dedup ratio is 24.85% which is exactly in the same range
with a decade ago study, surprisingly. Based on our observation,
we claim that dedup services on HPC environments will save stor-
age space and cost by a significant amount in petascale storage as
well.
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