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1 Introduction
LSM-tree is used as a write-optimized index structure to han-
dle bursty inserts in key-value (KV) stores [1]. It organizes
KV pairs in hierarchical levels of increasing size. Compaction
between these levels in LSM-tree generates large I/Os re-
sulting in high write and space amplification. Wisckey [9]
employed KV separation to minimize the write amplification
(WA) in LSM-tree. However, it suffers from space amplifica-
tion (SA) and depends highly on garbage collection, which
interferes with the foreground IOs. On the other hand, dedupli-
cation (dedup) can eliminate duplicate data, reducing the size
of the primary storage system [3–8, 10–12]. In this work, we
present DELTAKV which incorporates the dedup at the flush
operation, when Immutable Memtables (IMTs) are flushed
to Sorted String Tables (SSTs). Dedup-based LSM-tree will
reduce the overall amount of data, hence, resulting in less I/Os
during compaction operations. We argue that incorporating
dedup in LSM-tree design mitigates the WA and SA problems
without significant performance loss.
2 Problems with MEMDEDUP
The naive approach is to incorporate inline dedup at the
memtable (MT) of the LSM-tree, MEMDEDUP. Figure 1
shows the design and operational flow (in red) of the MEMD-
EDUP. The dedup layer performs the dedup operations, such
as chunking, fingerprinting, duplicate detection and metadata
update. MEMDEDUP intercepts the put operation and per-
form dedup operations before inserting the KV pairs to the
MT. MEMDEDUP performs fixed-size chunking on the value
of KV pair and maintain dedup metadata based on it. The
metadata includes Chunk Information Table (CIT), which
manages the dedup metadata, such as the fingerprint of the
value (FP(V)), list of parent keys (PK[]) referring to the value,
reference count (RC) and value offset. Every Get/Compaction
I/O touches CIT to access the KV pairs. MEMDEDUP has
two major challenges: First, there is a high performance over-
head due to fingerprinting of the values and frequent dedup
metadata updates/traversals. Every access to KV pair needs
to touch the CIT. For instance, the compaction process, which
is based on keys, has to first traverse the CIT (linearly due
to PK[]) and then update it based on the modifications. Sec-
ond, the in-place update support in MT leads to inconsistency
issues. It happens when an existing KV pair with RC > 1
updates its value in MT, making other keys inconsistent, i.e.,
keys in the PK[] list of the CIT points to the old missing
value which is replaced due to in-place update. It is possi-
ble to handle such inconsistency via out-of-place update in
MT but it complicates KV pair reconstruction using CIT in
MEMDEDUP.

3 DELTAKV: Proposed Design
DELTAKV delays the dedup to be performed at the FLUSH
operation, when IMTs are flushed to the SSTs, which is
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Figure 1: Design overview of MEMDEDUP and DeltaKV

performed by the background threads. The advantages of
DELTAKV over MEMDEDUP are two folds; (i) removes
dedup from the critical IO path and perform dedup in the
background where it does not interfere with foreground IOs,
and (ii) by delaying dedup, it eliminates the consistency issue
of the in-place update operations as MT serves the incoming
requests and becomes immutable once it meets the threshold
size. DELTAKV performs dedup on the immutable data which
is not updated directly hence mitigate the consistency issues.
For further optimization, dedup metadata is divided into two
different data structures, value information table (VIT) and
B+-tree, as shown in Figure 1. The operation flow (in blue)
of DELTAKV is shown in Figure 1. At flush operation, firstly,
each KV pair goes through the dedup layer where it performs
the dedup operation by referring to the VIT (comprised of the
FP(V) and RC). If a unique value is encountered, it is stored
in the SSTs and the dedup metadata is updated. For unique
value, a new entry is created in the VIT while the PK and
offset are stored in the B+-tree. However, when a duplicate
value is detected in VIT, the RC of that value is incremented
while in the B+-tree, a new entry of PK and the offset are
updated. Meantime, Get IO traverses the B+-tree, whereas
the compaction process accesses/updates both data structures
in parallel.
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Figure 2: Performance of MEMDEDUP, DELTAKV and RocksDB.
Workload A (100%:W) and Workload B (50%:W & 50%:R)

We implement MEMDEDUP and preliminary version of
DELTAKV atop Facebook’s RocksDB [1] and evaluate on
Intel Xeon CPU with Samsung 970 EVO SSD with YCSB
benchmark [2]. DELTAKV updates the VIT for KV pairs
without duplicate detection and does not include B+-tree in
this evaluation. We run two different workloads of YCSB
with three different sizes based on the KV pairs as shown in
Figure 2. Evaluation shows that DELTAKV maintains the per-
formance as it does not perform dedup in the critical I/O path
of the LSM-tree. However, a slight performance drop with
bigger workload is observed in DELTAKV which is attributed
to fingerprint computation.
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