
Exploring Data Deduplication in LSM Tree-based Key-Value Stores

Safdar Jamil1, Awais Khan2, Youngjae Kim1

1Sogang University, Seoul, South Korea, 2Oak Ridge National Lab, TN, USA

1 Introduction
LSM-tree is used as a write-optimized index structure to han-
dle bursty inserts in key-value (KV) stores [1]. It organizes
KV pairs in hierarchical levels of increasing size. Compaction
between these levels in LSM-tree generates large I/Os re-
sulting in high write and space amplification. Wisckey [9]
employed KV separation to minimize the write amplification
(WA) in LSM-tree. However, it suffers from space amplifica-
tion (SA) and depends highly on garbage collection, which
interferes with the foreground IOs. On the other hand, dedupli-
cation (dedup) can eliminate duplicate data, reducing the size
of the primary storage system [3–8, 10–12]. In this work, we
present DELTAKV which incorporates the dedup at the flush
operation, when Immutable Memtables (IMTs) are flushed
to Sorted String Tables (SSTs). Dedup-based LSM-tree will
reduce the overall amount of data, hence, resulting in less I/Os
during compaction operations. We argue that incorporating
dedup in LSM-tree design mitigates the WA and SA problems
without significant performance loss.
2 Problems with MEMDEDUP
The naive approach is to incorporate inline dedup at the
memtable (MT) of the LSM-tree, MEMDEDUP. Figure 1
shows the design and operational flow (in red) of the MEMD-
EDUP. The dedup layer performs the dedup operations, such
as chunking, fingerprinting, duplicate detection and metadata
update. MEMDEDUP intercepts the put operation and per-
form dedup operations before inserting the KV pairs to the
MT. MEMDEDUP performs fixed-size chunking on the value
of KV pair and maintain dedup metadata based on it. The
metadata includes Chunk Information Table (CIT), which
manages the dedup metadata, such as the fingerprint of the
value (FP(V)), list of parent keys (PK[]) referring to the value,
reference count (RC) and value offset. Every Get/Compaction
I/O touches CIT to access the KV pairs. MEMDEDUP has
two major challenges: First, there is a high performance over-
head due to fingerprinting of the values and frequent dedup
metadata updates/traversals. Every access to KV pair needs
to touch the CIT. For instance, the compaction process, which
is based on keys, has to first traverse the CIT (linearly due
to PK[]) and then update it based on the modifications. Sec-
ond, the in-place update support in MT leads to inconsistency
issues. It happens when an existing KV pair with RC > 1
updates its value in MT, making other keys inconsistent, i.e.,
keys in the PK[] list of the CIT points to the old missing
value which is replaced due to in-place update. It is possi-
ble to handle such inconsistency via out-of-place update in
MT but it complicates KV pair reconstruction using CIT in
MEMDEDUP.

3 DELTAKV: Proposed Design
DELTAKV delays the dedup to be performed at the FLUSH
operation, when IMTs are flushed to the SSTs, which is

This work was supported by the Institute of Information and Commu-
nications Technology Planning and Evaluation (IITP), Korea government
(MSIT) (Development of low-latency storage module for I/O intensive edge
data processing) under Grant 2020-0-00104. This work was also supported
by, and used the resources of, the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences at ORNL, which
is managed by UT Battelle, LLC for the U.S. DOE (under the contract No.
DE-AC05-00OR22725).

CI T

Def aul t
Fl ow

DRAM

Memt abl e
(Mut abl e)

Memt abl e
(I mmut abl e)Memt abl e

(I mmut abl e)

St or age

WAL

PUT

L0 SSTabl e

L1

SSTabl e

SSTabl e SSTabl eSSTabl e SSTabl e

Dedupl i cat i on
Layer

Mem- Dedup
Fl ow

Del t aKV
Fl ow FP(V) PK[] RC Of f set

FP(12) k1 1 0x00

FP(34) k2, k3 2 0x10

M K K

M K K M K K

B+- Tr ee

FP(V) RC

FP(12) 1

FP(34) 2

VI T

Figure 1: Design overview of MEMDEDUP and DeltaKV

performed by the background threads. The advantages of
DELTAKV over MEMDEDUP are two folds; (i) removes
dedup from the critical IO path and perform dedup in the
background where it does not interfere with foreground IOs,
and (ii) by delaying dedup, it eliminates the consistency issue
of the in-place update operations as MT serves the incoming
requests and becomes immutable once it meets the threshold
size. DELTAKV performs dedup on the immutable data which
is not updated directly hence mitigate the consistency issues.
For further optimization, dedup metadata is divided into two
different data structures, value information table (VIT) and
B+-tree, as shown in Figure 1. The operation flow (in blue)
of DELTAKV is shown in Figure 1. At flush operation, firstly,
each KV pair goes through the dedup layer where it performs
the dedup operation by referring to the VIT (comprised of the
FP(V) and RC). If a unique value is encountered, it is stored
in the SSTs and the dedup metadata is updated. For unique
value, a new entry is created in the VIT while the PK and
offset are stored in the B+-tree. However, when a duplicate
value is detected in VIT, the RC of that value is incremented
while in the B+-tree, a new entry of PK and the offset are
updated. Meantime, Get IO traverses the B+-tree, whereas
the compaction process accesses/updates both data structures
in parallel.

4 Preliminary Evaluation

100K 500K 1M
0

10

20

30

Workload A

K
IO

P
S

RocksDB Mem-Dedup

100K 500K 1M
0

1

2

3

Workload B

DeltaKV

Figure 2: Performance of MEMDEDUP, DELTAKV and RocksDB.
Workload A (100%:W) and Workload B (50%:W & 50%:R)

We implement MEMDEDUP and preliminary version of
DELTAKV atop Facebook’s RocksDB [1] and evaluate on
Intel Xeon CPU with Samsung 970 EVO SSD with YCSB
benchmark [2]. DELTAKV updates the VIT for KV pairs
without duplicate detection and does not include B+-tree in
this evaluation. We run two different workloads of YCSB
with three different sizes based on the KV pairs as shown in
Figure 2. Evaluation shows that DELTAKV maintains the per-
formance as it does not perform dedup in the critical I/O path
of the LSM-tree. However, a slight performance drop with
bigger workload is observed in DELTAKV which is attributed
to fingerprint computation.

1

References
[1] Rocksdb. http://rocksdb.org. Accessed: 2022-01-

16.

[2] Yahoo cloud serving benchmark. https://github.
com/brianfrankcooper/YCSB/. Accessed: 2022-01-
21.

[3] DedupSearch: Two-Phase deduplication aware keyword
search. In 20th USENIX Conference on File and Stor-
age Technologies (FAST 22), Santa Clara, CA, February
2022. USENIX Association.

[4] DeepSketch: A new machine Learning-Based reference
search technique for Post-Deduplication delta compres-
sion. In 20th USENIX Conference on File and Stor-
age Technologies (FAST 22), Santa Clara, CA, February
2022. USENIX Association.

[5] DUPEFS: Leaking data over the network with filesystem
deduplication side channels. In 20th USENIX Confer-
ence on File and Storage Technologies (FAST 22), Santa
Clara, CA, February 2022. USENIX Association.

[6] Zhichao Cao, Shiyong Liu, Fenggang Wu, Guohua
Wang, Bingzhe Li, and David H.C. Du. Sliding Look-
Back window assisted data chunk rewriting for improv-
ing deduplication restore performance. In 17th USENIX
Conference on File and Storage Technologies (FAST 19),
pages 129–142, Boston, MA, February 2019. USENIX
Association.

[7] P. Hamandawana, A. Khan, J. Kim, and T. Chung. Ac-
celerating ml/dl applications with hierarchical caching
on deduplication storage clusters. IEEE Transactions
on Big Data, (01):1–1, aug 5555.

[8] Awais Khan, Chang-Gyu Lee, Prince Hamandawana,
Sungyong Park, and Youngjae Kim. A robust fault-
tolerant and scalable cluster-wide deduplication for
shared-nothing storage systems. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), pages 87–93, 2018.

[9] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Wisckey: Separating keys
from values in ssd-conscious storage. ACM Trans. Stor-
age, 13(1), March 2017.

[10] João Paulo and José Pereira. A survey and classification
of storage deduplication systems. ACM Comput. Surv.,
47(1), June 2014.

[11] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang,
Yu Hua, and Qiang Wang. Finesse: Fine-Grained fea-
ture locality based fast resemblance detection for Post-
Deduplication delta compression. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
pages 121–128, Boston, MA, February 2019. USENIX
Association.

[12] Xiangyu Zou, Jingsong Yuan, Philip Shilane, Wen Xia,
Haijun Zhang, and Xuan Wang. The dilemma between
deduplication and locality: Can both be achieved? In
19th USENIX Conference on File and Storage Technolo-
gies (FAST 21), pages 171–185. USENIX Association,
February 2021.

2

http://rocksdb.org
https://github.com/brianfrankcooper/YCSB/
https://github.com/brianfrankcooper/YCSB/

	Introduction
	Problems with MemDedup
	DeltaKV: Proposed Design
	Preliminary Evaluation

