
Enabling Manycore Scalability in F2FS Metadata for unlink() Operation

Soon Hwang, Chang-Gyu Lee, Youngjae Kim
Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea

{hs950826,changgyu,youkim}@sogang.ac.kr

CCS CONCEPTS
• Software and its engineering→ File systemsmanage-
ment;

KEYWORDS
Operating System, File System

1 MANYCORE SCALABILITY IN F2FS
Manycore systems enable massive parallel I/O in a single
server due to the number of cores. Among file I/O operations
in a file system, C. Lee et al. [1] applied range lock in F2FS for
parallel data I/O, and showed scalable performance. However,
little research has been done on metadata I/O scalability.

To investigate this, we analyzed unlink() with related data
structures in F2FS. File metadata in F2FS (inode) is called
Node and identified via nid. Nodes are stored in an on-disk
structure, called Node Address Table (NAT), which is cached
in memory with a pool of free nids. F2FS keeps a certain
number of free nids for fast nid allocations during create().
Every time unlink() is called, the number of free nids in the
pool is checked. If it is not sufficient, a Free nid Scan function
is performed to secure sufficient free nids.

We evaluated the I/O performance when multiple threads
call unlink() in F2FS in a manycore system, and it shows no
performance scalability. From the analysis above, we iden-
tified that a large critical section(CS) in Free nid Scan by a
mutex lock is the leading cause of the scalability bottleneck.
2 PROBLEM AND PROPOSED DESIGN
Free nid Scan has two steps in F2FS. The first step is to scan
the free nid bitmap in memory, and the second step is to
scan NAT directly from the SSD. These two steps are held
in a large CS by a mutex lock in Free nid Scan. Thus, if there
is a thread (𝑇1) running Free nid Scan, other threads will be
blocked until it exits Free nid Scan. The parallelism of threads
executing Free nid Scan is limited by such a large CS. If 𝑇1
has obtained sufficient free nids, then other threads don’t
have to go through Free nid Scan. However, all competing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00
https://doi.org/10.1145/3456727.3463832

Baseline
Proposed

Th
ro

ug
hp

ut
 (K

O
PS

)

0

50

100

150

200

of Cores
1 15 30 45 60 75 90 105 120

Figure 1: Performance comparison of proposed designwith
baseline F2FS on a 120 core machine.
threads currently run both steps unnecessarily. This ineffi-
cient design increases the blocking time of threads. To solve
this problem, we propose the Optimistic Free nid Scan to min-
imize the blocking time of threads. In the Optimistic Free nid
Scan, the large CS is split into two smaller CSs. Thus, it in-
creases the parallelism among competing threads. Consider
𝑛 threads competing in the Optimistic Free nid Scan. If𝑇1 is in
the first step and 𝑇2 is executing the second step, 𝑇3 −𝑇𝑛 can
avoid Free nid Scan as𝑇1 or𝑇2 will ensure to secure sufficient
free nids to a threshold. With the Optimistic Free nid Scan,
threads that were previously blocked will not be blocked any
longer, increasing a thread’s parallel execution efficiency.
Second, in the first step of Free nid Scan, every free nid

bitmap scan begins at the beginning of the bitmap. Thus,
a thread has to search for free nids in the bitmap already
scanned by the preceding thread. This increases the latency
of free nid bitmap scan unnecessarily. Thus, we propose
the Heuristic Free nid Bitmap Scan where the bitmap scan
starts scanning from the point where the previous bitmap
scan ended. By reducing the work performed in the free nid
bitmap scan, the total bitmap scanning latency is reduced
and the blocking time of threads is minimized.
3 EVALUATION
We evaluated the proposed design for F2FS on a 120-core
machine with a Samsung 970 EVO SSD using the FxMark
MWUL workload [2]. In MWUL, multiple threads each is-
sue unlink() to their own directory. As shown in Figure 1,
our design outperformed the baseline due to the reduced
lock contention in Free nid Scan. However, it only scales to
15 cores since it does not fully eliminate the lock contention.
ACKNOWLEDGMENTS
This work was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2014-3-00035, Research on High Performance and
Scalable Manycore Operating System).

REFERENCES
[1] C. Lee et. al. 2019. Write Optimization of Log-Structured Flash File

System for Parallel I/O on Manycore Servers. In SYSTOR. 21–32.
[2] C. Min et. al. 2016. Understanding Manycore Scalability of File Systems.

In USENIX ATC. 71–85.

https://doi.org/10.1145/3456727.3463832

	1 Manycore Scalability in F2FS
	2 Problem and Proposed Design
	3 Evaluation
	References

