
A Probabilistic Machine Learning Approach
to Scheduling Parallel Loops With

Bayesian Optimization
Khu-rai Kim , Student Member, IEEE, Youngjae Kim ,Member, IEEE,

and Sungyong Park ,Member, IEEE

Abstract—This article proposes Bayesian optimization augmented factoring self-scheduling (BO FSS), a new parallel loop scheduling

strategy. BO FSS is an automatic tuning variant of the factoring self-scheduling (FSS) algorithm and is based on Bayesian optimization

(BO), a black-box optimization algorithm. Its core idea is to automatically tune the internal parameter of FSS by solving an optimization

problem using BO. The tuning procedure only requires online execution time measurement of the target loop. In order to apply BO, we

model the execution time using two Gaussian process (GP) probabilistic machine learning models. Notably, we propose a locality-

aware GPmodel, which assumes that the temporal locality effect resembles an exponentially decreasing function. By accurately

modeling the temporal locality effect, our locality-aware GP model accelerates the convergence of BO. We implemented BO FSS on

the GCC implementation of the OpenMP standard and evaluated its performance against other scheduling algorithms. Also, to quantify

our method’s performance variation on different workloads, or workload-robustness in our terms, we measure theminimax regret.

According to the minimax regret, BO FSS shows more consistent performance than other algorithms. Within the considered workloads,

BO FSS improves the execution time of FSS by as much as 22% and 5% on average.

Index Terms—Parallel loop scheduling, Bayesian optimization, parallel computing, OpenMP

Ç

1 INTRODUCTION

LOOP parallelization is the de-facto standard method for
performing shared-memory data-parallel computation.

Parallel computing frameworks such as OpenMP [1] have
enabled the acceleration of advances in many scientific and
engineering fields such as astronomical physics [2], climate
analytics [3], and machine learning [4]. A major challenge in
enabling efficient loop parallelization is to deal with the
inherent imbalance in workloads [5]. Under the presence of
load imbalance, some computing units (CU) might end up
remaining idle for a long time,wasting computational resour-
ces. It is thus critical to schedule the tasks to CUs efficiently.

Early on, dynamic loop scheduling algorithms [6], [7], [8],
[9], [10], [11], [12] have emerged to attack the parallel loop
scheduling problem.However, these algorithms exploit a lim-
ited amount of information about the workloads, resulting in
inconsistent performance [13]. In our terms, they lack
workload-robust as their performance varies acrossworkloads.

Meanwhile, workload-aware scheduling methods have
recently emerged. These methods, including the history-
aware self-scheduling (HSS, [14]) and bin-packing longest

processing time (BinLPT, [15], [16]) algorithms, utilize the
static imbalance information of workloads. Static imbalance
is an imbalance inherent to the workload that is usually
caused by algorithmic variations. Unlike dynamic imbal-
ance, which is caused by the environment of execution,
static imbalance can sometimes be accurately estimated
before execution. In these cases, workload-aware methods
aim to exploit the static imbalance information for schedul-
ing. On the other side of the coin, these methods are inappli-
cable when the static imbalance information, or a workload-
profile, is not provided. In many high-performance comput-
ing (HPC) applications, static imbalance is often avoided by
design. Even if such imbalance is present, it is usually
unknown unless extensive profiling is performed. As a
result, workload-aware methods can only be applied to a
limited range of workloads or challenging to use at best.

As discussed, both dynamic and workload-aware meth-
ods have limitations. Thus, additional efforts must be made
to find the algorithm best-suited for a particular workload.
Practitioners often need to try out different scheduling algo-
rithms and manually tune them for the best performance,
which is tedious and time-consuming. To resolve the issues
of dynamic and workload-aware scheduling methods, we
propose Bayesian optimization augmented factoring self-
scheduling (BO FSS), a workload-robust parallel loop sched-
uling algorithm. BO FSS automatically infers properties of
the target loop only using its execution time measurements.
Since BO FSS doesn’t rely on a workload-profile, it applies
to a wide range of workloads.

In this paper, we first show that it is possible to achieve
robust performance if we are able to appropriately tune the

� Khu-Rai Kim is with the Department of Electronics Engineering, Sogang
University, Seoul 04107, Republic of Korea. E-mail: msca8h@sogang.ac.kr.

� Youngjae Kim and Sungyong Park are with the Department of Computer
Science and Engineering, Sogang University, Seoul 04107, Republic of
Korea. E-mail: {youkim, parksy}@sogang.ac.kr.

Manuscript received 26 June 2020; revised 21 Aug. 2020; accepted 6 Sept.
2020. Date of publication 22 Dec. 2020; date of current version 11 Feb. 2021.
(Corresponding author: Sungyong Park.)
Recommended for acceptance by P. Balaji, J. Zhai, and M. Si.
Digital Object Identifier no. 10.1109/TPDS.2020.3046461

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021 1815

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2063-0889
https://orcid.org/0000-0003-2063-0889
https://orcid.org/0000-0003-2063-0889
https://orcid.org/0000-0003-2063-0889
https://orcid.org/0000-0003-2063-0889
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0001-8786-3850
https://orcid.org/0000-0002-0309-1820
https://orcid.org/0000-0002-0309-1820
https://orcid.org/0000-0002-0309-1820
https://orcid.org/0000-0002-0309-1820
https://orcid.org/0000-0002-0309-1820
mailto:msca8h@sogang.ac.kr
mailto:youkim@sogang.ac.kr
mailto:parksy@sogang.ac.kr


internal parameters of a classic scheduling algorithm to each
workload individually. Based on this observation, BO FSS
tunes the parameter of factoring self-scheduling (FSS, [7]), a
classic dynamic scheduling algorithm, only using execution
time measurements of the target loop. This is achieved
by solving an optimization problem using a black-box
global optimization algorithm called Bayesian optimization
(BO, [17]). BO is notable for being data efficient; it requires a
minimal number of measurements until convergence [18]. It
is also able to efficiently handle the presence of noise in the
measurements. These properties previously led to successful
applications such as compiler optimization flag selection [19],
garbage collector tuning [20], and cloud configuration selec-
tion [18]. Based on these properties of BO, our system is able
to improve scheduling efficiency with a minimal number of
repeated executions of the target workload.

To apply BO, we need to provide a surrogate model that
accurately describes the relationship between the schedul-
ing algorithm’s parameter and the resulting execution time.
By extending our previous work in [21], we propose two
types of probabilistic machine learning models as surro-
gates. First, we model the total execution time contribution
of a loop as Gaussian processes (GP). Second, for workloads
where the loops are executed multiple times in a single run,
we propose a locality-aware GPmodel. Based on the assump-
tion that the temporal locality effect resembles exponen-
tially decreasing functions, our locality-aware GP can
accurately model the execution time using exponentially
decreasing function kernels from [22]. As a result, it is able
to achieves faster convergence of BO when applicable.

We implemented BO FSS as well as other classic schedul-
ing algorithms such as chunk self-scheduling (CSS, [6]),
FSS [7], trapezoid self-scheduling (TSS, [8]), tapering self-
scheduling (TAPER, [10]) on the GCC implementation [23]
of the OpenMP parallelism framework. Then, we evaluate
BO FSS against these classical algorithms and workload-
aware methods including HSS and BinLPT. To quantify and
compare the robustness of BO FSS, we adopt the minimax
regret metric [24], [25]. We selected workloads from the
Rodinia 3.1 [26] and GAP [27] benchmark suites for evalua-
tion. Results show that our method outperforms other
scheduling algorithms by improving the execution time of
FSS as much as 22% and 5% on average. In terms of work-
load-robustness, BO FSS achieves a regret of 22.34, which is
the lowest among the considered methods.

The key contributions of this paper are as follows:

� We Show That, When Appropriately Tuned, FSS Can
Achieve Workload-Robust Performance (Section 2). In
contrast, the performance of dynamic scheduling and
workload-awaremethods varies across workloads.

� We Apply BO to Tune the Internal Parameter of FSS
(Section 3). Results show that BO FSS achieves consis-
tently good performance acrossworkloads (Section 5).

� We Propose to Model the Temporal Locality Effect of
Workload Using Locality-Aware GPs (Section 3.3). Our
locality-aware GP incorporates the effect of temporal
locality using exponentially decreasing function
kernels.

� We Implement BO FSS Over the OpenMP Parallel Com-
puting Framework (Section 4). Our implementation

includes other classic scheduling algorithms used
for the evaluation and is publicly available online1.

� We Propose to Use Minimax Regret for Quantifying
Workload-Robustness of Scheduling Algorithms (Sec-
tion 5). According to the minimax regret criterion,
BO FSS shows the most robust performance among
considered algorithms.

2 BACKGROUND AND MOTIVATION

In this section, we start by describing the loop scheduling
problem. Then, we show that dynamic scheduling and
workload-aware methods lack what we call workload-
robustness. Our analysis is followed by proposing a strategy
to solve this problem.

2.1 Background

Parallel Loop Scheduling. Loops in scientific computing
applications are easily parallelizable because of their
embarrassingly-data-parallel nature. A parallel loop schedul-
ing algorithm attempts to map each task, or iteration, of a loop
to CUs. The most basic scheduling strategy called static sched-
uling (STATIC) equally divides the tasks (Ti) by the number of
CUs in compile time. Usually, a barrier is implied at the end of
a loop, forcing all the CUs to wait until all tasks finish comput-
ing. If imbalance is present across the tasks, some CUs may
complete computation before other tasks, resulting in many
CUs remaining idle. Since execution time variance is abundant
in practice because of control-flow divergence and inherent
noise in modern computer systems [5], more advanced sched-
uling schemes are often required.

Dynamic Loop Scheduling. Dynamic loop scheduling has
been introduced to solve the inefficiency caused by execu-
tion time variance. In dynamic scheduling schemes, each
CU self-assigns a chunk of K tasks in runtime by accessing
a central task queue whenever it becomes idle. The queue
access causes a small runtime scheduling overhead,
denoted by the constant h. The case where K ¼ 1 is called
self-scheduling (SS, [28]). For SS, we can achieve the mini-
mum amount of load imbalance. However, the amount of
scheduling overhead grows proportionally to the number
of tasks. Even for small values of h, the total scheduling
overhead can quickly become overwhelming. The problem
then boils down to finding the optimal tradeoff between
load imbalance and scheduling overhead. This problem has
been mathematically formalized in [6], [29], and a general
review of the problem is provided in [30].

2.2 Factoring Self-Scheduling

Among many dynamic scheduling algorithms, we focus on
the factoring self-scheduling algorithm (FSS, [7]). Instead of
using a constant chunk size K, FSS uses a chunk size that
decreases along the loop execution. At the ith batch, the size
of the next P chunks,Ki, is determined according to

R0 ¼ N; Riþ1 ¼ Ri � PKi; Ki ¼ Ri

xiP
(1)

bi ¼ P

2
ffiffiffiffiffiffi
Ri

p u (2)

1. Source code available in https://github.com/Red-Portal/bosched

1816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/Red-Portal/bosched


x0 ¼ 1þ b20 þ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ 4

q
(3)

xi ¼ 2þ b2i þ bi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i þ 4

q
: (4)

where Ri is the number of remaining tasks at the ith batch.
The parameter u in (2) is crucial to the overall performance
of FSS. The analysis in [31] indicates that u ¼ s=m results in
the best performance where m and s2 are the mean (E½Ti�)
and variance (V½Ti�) of the tasks. However, in Section (2.3),
we show that this u does not always perform well. Instead,
the essence of our work is a strategy to empirically deter-
mine good u for each individual workloads by solving an
optimization problem.

The FAC2 Scheduling Strategy. Since determining m and s

requires extensive profiling of the workload, the original
authors of FSS suggest an unparameterized heuristic ver-
sion [7]. This version is often abbreviated as FAC2 in the lit-
erature and has been observed to outperform the original
FSS [9], [11] despite being a heuristic modification. Again,
this observation supports the fact that the analytic solution
u ¼ s=m is not always the best nor the only good solution.

2.3 Motivation

Limitations of Workload-Aware Methods. The HSS and BinLPT
strategies have significant drawbacks despite being able to
fully incorporate the information about load imbalance.
First, both the HSS and BinLPT methods require an accurate
workload-profile. This is a significant limiting factor since
many HPC workloads are comprised of homogeneous tasks
where the imbalance is caused dynamically during runtime.
This means there is no static imbalance in the first place.
Also, even if a workload-profile is present, it imposes a run-
time memory overhead of OðNÞ for each loop. For large-
scale applications where the task count N is huge, the mem-
ory overhead is a significant nuisance.

Moreover, both the HSS and BinLPT algorithms also have
their own caveats. The HSS algorithm has high scheduling
overhead [16]. In Section 5, we observe that HSS performs
well only when high levels of imbalance, such as in the pr-
wiki workload, are present. On the other hand, BinLPT is

highly sensitive to the accuracy of the workload-profile. In
practice, discrepancies between the actual workload and the
workload-profile are inevitable. We illustrate this fact using
the pr-journal graph analytics workload in the upper plot
of Fig. 1a. We estimated the load of each task using the in-
degree of the corresponding vertex in the graph. The grey
region is the estimated load of each task, while the red region
is the measured load. As shown in the figure, the estimated
load does not accurately describe the actual load. Likewise,
the chunks created by BinLPT using these estimates are
equally inaccurate, as shown in the lower plot of Fig. 1a. If
the number of tasks is minimal, some level of discrepancy
may be acceptable. Indeed, the original analysis in [16] con-
siders at most N ¼ 3072 tasks. In practice, the number of
tasks scales with data, leading to a very largeN .

Effect of Tuning the Parameter of FSS. Similarly, classical
scheduling algorithms such as FSS are not workload-
robust [13]. However, we reveal an interesting property by
tuning the parameter (u) of FSS. Figs. 1b and 1c illustrate the
evaluation results of FSS using the lavaMD (a workload
with low static imbalance) and pr-journal (a workload
with high static imbalance) workloads with different values
of u, respectively. The solution suggested in the original FSS
algorithm (as discussed in Section 2.2) is denoted by a blue
cross. For the lavaMD workload (Fig. 1b), this solution is
arguably close to the optimal value. However, for the pr-

journal workload (Fig. 1c), it leads to poor performance.
The original FSS strategy is thus not workload-robust since
its performance varies greatly across workloads.

In contrast, by using an optimal value of u (blue star), FSS
outperforms all other algorithms as shown in the plots.
Even in Fig. 1c where HSS and BinLPT are equipped with
an accurate workload-profile, FSS outperforms both meth-
ods. This means that tuning the parameter of FSS on a per-
workload basis can achieve robust performance.

Motivational Remarks.Workload-aware methods and clas-
sical dynamic scheduling methods tend to vary in applica-
bility and performance. Meanwhile, classic scheduling
algorithms such as FSS achieve optimal performance when
they are appropriately tuned to the target workload. This
performance potential of FSS points towards the possibility
of creating a novel robust scheduling algorithm.

Fig. 1. ((a), top) Discrepancy between the workload-profile and actual execution time of the tasks. ((a), bottom) Discrepancy between the load of the
chunks created by BinLPT, and their actual execution time. (b-c) Effect of the internal parameter (u) of FSS on a workload with homogeneous tasks
((b), low static imbalance, lavaMD workload) and a workload with non-homogeneous tasks ((c), high static imbalance, pr-journal workload). The
value of the parameter suggested by the original FSS algorithm is marked with a blue cross, while the actual optimal solution targeted by our pro-
posed method is marked with a blue star. The error bands are the 95% empirical bootstrap confidence intervals of the execution time mean.

KIM ETAL.: PROBABILISTIC MACHINE LEARNING APPROACH TO SCHEDULING PARALLEL LOOPSWITH BAYESIAN OPTIMIZATION 1817

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



3 AUGMENTING FACTORING SELF-SCHEDULING

WITH BAYESIAN OPTIMIZATION

In this section, we describe BO FSS, a self-tuning variant of
the FSS algorithm. First, we provide an optimization per-
spective on the loop scheduling problem. Next, we describe
a solution to the optimization problem using BO. Since solv-
ing our problem requires modeling of the execution time
using surrogate models, we describe two ways to construct
surrogate models.

3.1 Scheduling as an Optimization Problem

Themain idea of our proposedmethod is to design an optimal
scheduling algorithm by finding its optimal configurations
based on execution time measurements. First, we define a set
of scheduling algorithms S ¼ fSu1 ; Su2 ; . . .g indentified by a
tunable parameter u. In our case, S is the set of configurations
of the FSS algorithm with the parameter u discussed in Sec-
tion 2.2.Within this set of configurations,we choose the optimal
configuration that minimizes the mean of the total execution
time contribution (Ttotal) of a parallel loop. This problem is
now of the form of an optimization problemdenoted as

minimize
u

E½TtotalðSuÞ �: (5)

Problem Structure.Now that the optimization problem is for-
mulated, we are supposed to apply an optimization solver.
However, this optimization problem is ill-formed, prohibit-
ing the use of any typical solver. First, the objective function
is noisy because of the inherent noise in computer systems.
Second, we do not have enough knowledge about the struc-
ture of T . Different workloads interact differently with
scheduling algorithms [13]. It is thus difficult to obtain an
analytic model of T that is universally accurate. Moreover,
most conventional optimization algorithms require knowl-
edge about the gradientruT , which we do not have.

Algorithm 1. Bayesian optimization

Initial dataset D0 ¼ fðu0; t0Þ; . . . ; ðuN; tNÞg
for t 2 ½1; T � do
1. Fit surrogate model M using Dt.
2. Solve inner optimization problem.

utþ1 ¼ argmaxu aðujM;DtÞ
3. Evaluate parameter. ttþ1 � TtotalðSutþ1Þ
4. Update dataset. Dtþ1  Dtþ1 [ ðu; tÞ

end

Solution Using Bayesian Optimization. For solving this
problem, we leverage Bayesian Optimization (BO). We ini-
tially attempt to apply other gradient-free optimization
methods such as stochastic approximation [32]. However,
the noise level in execution time is so extreme that most gra-
dient-based methods fail to converge. Conveniently, BO has
recently been shown to be effective for solving such kind of
optimization problems [18], [19], [20]. Compared to other
black-box optimization methods, BO requires less objective
function evaluations and can handle the presence of noise
well [18].

Description of Bayesian Optimization. The overall flow of
BO is shown in Algorithm 1. First, we build a surrogate
model M of Ttotal. Let ðu; tÞ denote a data point of an

observation where u is a parameter value, and t is the result-
ing execution time measurement such that t � Ttotal. Based
on a dataset of previous observations denoted as Dt ¼
fðu1; t1Þ; . . . ; ðut; ttÞ g, a surrogate model provides a predic-
tion of TtotalðuÞ and the uncertainty of the prediction. In our
context, the prediction and uncertainty are given as the
mean of the predictive distribution denoted as mðu j DtÞ and
its variance denoted as s2ðu j DtÞ.

UsingM, we now solve what is known as the inner opti-
mization problem. In this step, we choose to exploit our cur-
rent knowledge about the optimal value or explore entirely
new values that we have not tried yet. In the extremes, mini-
mizing mðu j DtÞ gives us the optimal parameter given our
current knowledge, while minimizing s2ðu j DtÞ gives us the
parameter we are currently the most uncertain. The optimal
solution is given by a tradeoff of the two ends (often called
the exploration-exploitation tradeoff), found by solving the
optimization problem

uiþ1 ¼ arg max
u

aðu jM;DtÞ; (6)

where the function a is called the acquisition function.
Based on the predictions and uncertainty estimates ofM, a
returns our utility of trying out a specific value of u. Evi-
dently, the quality of the prediction and uncertainty esti-
mates of M are crucial to the overall performance. By
maximizing a, we obtain the parameter value that has the
highest utility, according to a. In this work, we use the max-
value entropy search (MES, [33]) acquisition function.

After solving the inner optimization problem, we obtain
the next value to try out, utþ1. We can then try out this
parameter and append the result (utþ1; ttþ1) to the dataset.
For a comprehensive review of BO, please refer to [17]. We
will later explain our OpenMP framework implementation
of this overall procedure in Section 4.

3.2 Modeling Execution Time With Gaussian
Processes

As previously stated, having a good surrogate modelM is
essential. Modeling the execution time of parallel programs
has been a classic problem in the field of performance
modeling. It is known that parallel programs tend to follow
a Gaussian distribution when the execution time variance is
not very high [34]. This result follows from the central limit
theorem (CLT), which states that the influence of multiple
i.i.d. noise sources asymptotically form a Gaussian distribu-
tion. Considering this, we model the total execution time
contribution of a loop as

Ttotal ¼
XL
‘¼1

T ðSuÞ þ �; (7)

where L is the total number of times a specific loop is exe-
cuted within the application, indexed by ‘. Following the
conclusions of [34], we naturally assume that � follows a
Gaussian distribution. Note that, at this point, we assume T
is independent of the index ‘. For an illustration of the mod-
els used in our discussion, please see Fig. 2.

Gaussian Process Formulation. From the dataset Dt, we
infer the model of the execution time TtotalðuÞ using Gaussian

1818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



processes (GPs). A GP is a nonparametric Bayesian probabi-
listic machine learning model for nonlinear regression.
Unlike parametric models such as polynomial curve fitting
and random forest, GPs automatically tune their complexity
based on data [35]. Also, more importantly, GPs can natu-
rally incorporate the assumption of additive noise (such as �
in (7)). The prediction of a GP is given as a univariate Gauss-
ian distribution fully described by its mean mðxjDtÞ and var-
iance s2ðxjDtÞ. These are computed in closed forms as

mðujDtÞ ¼ kðuÞT ðKþ s2
nIÞ
�1
y (8)

s2ðujDtÞ ¼ kðu; uÞ � kðuÞT ðKþ s2
� IÞ
�1

kðuÞ; (9)

where y ¼ ½t1; t2; . . . ; tt�, kðuÞ is a vector valued function such
that ½kðuÞ�i ¼ kðu; uiÞ; 8ui 2 Dt, and K is the Gram matrix
such that ½K �i;j ¼ kðui; ujÞ; 8ui; uj 2 Dt; kðx; yÞ denotes the
covariance kernel function which is a design choice. We use the
Matern 5/2 kernel which is computed as

kðx;x0; s2; r2Þ ¼ s2 ð1þ
ffiffiffi
5
p

rþ 5

3
r2Þ expð�

ffiffiffi
5
p

rÞ (10)

where r ¼ jjx� x0jj2=r2: (11)

For a detailed introduction to GP regression, please refer
to [36].

Non-Gaussian Noise.Despite the remarks in [34] saying that
the noise in parallel programs mostly follow Gaussian distri-
butions, we experienced cases where the execution time of
individual parallel loops did not quite followGaussian distri-
butions. For example, occasional L2, L3 cache-misses results
in large deviations, or outliers, in execution time. To correctly
model these events, it is advisable to use heavy-tail distribu-
tions such as the Student-T.More advancedmethods for deal-
ing with such outliers are described in [37] and [38].
However, to narrow the scope of our discussion, we stay
within the Gaussian assumption.

3.3 Modeling With Locality-Aware Gaussian
Processes

Until now, we only considered acquiring samples of Ttotal by
summing our measurements of T . For the case where the
parallel loop in question is executed more than once (that is,
L > 1), we acquire L observations of T in a single run of the
workload. By exploiting our model’s structure in (7), it is
possible to utilize all L samples instead of aggregating them
into a single one. Since the Gaussian distribution is additive,
we can decompose the distribution of Ttotal such that

Ttotal ¼
XL
‘¼1

T ðSu; ‘Þ (12)

�
XL
‘¼1
NðE½T ðSu; ‘Þ�;V½T ðSu; ‘Þ�; Þ (13)

¼ N
 XL

‘¼1
E½T ðSu; ‘Þ�;

XL
‘¼1

V½T ðSu; ‘Þ�
!

(14)

� N
 XL

‘¼1
mðu; ‘ j DtÞ;

XL
‘¼1

s2ðu; ‘ j DtÞ
!
: (15)

Note the dependence of T on the index of execution ‘.
From (14), we can retrieve Ttotal from the mean (E½T ðSu; ‘Þ�)
and variance (V½T ðSu; ‘Þ�) estimates of T , which are given
by modeling T using GPs as denoted in (15).

Temporal Locality Effect. However, this is not as simple as
assuming that all L measurements of T are independent
(ignoring the argument ‘ of T ). The execution time distribu-
tion of a loop changes dramatically within a single applica-
tion run because of the temporal locality effect. This is
shown in Fig. 3 using measurements of a loop in the
kmeans benchmark. In Fig. 3a, it is clear that earlier execu-
tions of the loop (‘ � 10) are much longer than the later exe-
cutions (‘ > 10). Also, different moments of executions are
effected differently by u, as shown in Fig. 3b. It is thus neces-
sary to accurately model the effect of ‘ to better distinguish
the effect of u.

Exponentially Decreasing Function Kernel. To model the
temporal locality effect, we expand our GP model to include
the index of execution ‘. Now, the model is a 2-dimensional
GP receiving ‘ and u. Within the workloads we consider,
the temporal locality effect is shown an exponentially
decreasing tendency. We thus assume that the locality effect
can be represented with exponentially decreasing functions
(Exp.) of the form of e��‘. The kernel for these functions has
been introduced in [22] for modeling the learning curves of
machine learning algorithms. The exponentially decreasing
function kernel is computed as

kð‘; ‘0Þ ¼ ba

ð‘þ ‘0 þ bÞa : (16)

Random functions sampled from the space induced by
the Exp. kernel are shown in Fig. 3c. Notice the similarity of
the sampled functions and the visualized locality effect in
Fig. 3a. Modeling more complex locality effects such as peri-
odicity can be achieved by combiningmore different kernels.
An automatic procedure for doing this is described in [39].

Kernel of Locality-Aware GPs. Since the sum of covariance
kernels is also a valid covariance kernel [36], we define our
2-dimensional kernel as

kðx; x0Þ ¼ kMaternðu; u0Þ þ kExpð‘; ‘0Þ (17)

where x ¼ ½ u; ‘ �; x0 ¼ ½ u0; ‘0 �: (18)

Intuitively, this definition implies that we assume the
effect of scheduling (resulting from u) and locality (resulting
from ‘) to be superimposed (additive).

Fig. 2. Visualization of our execution time models. The execution time of
the parallel loop (red bracket) is denoted as T , while the execution time
of the tasks in the parallel loop (green bracket) is denoted as Ti. The
outer loop (blue bracket) represents repeated execution (L times) of the
parallel loop within the application, where Ttotal is the total execution time
contribution of the loop.

KIM ETAL.: PROBABILISTIC MACHINE LEARNING APPROACH TO SCHEDULING PARALLEL LOOPSWITH BAYESIAN OPTIMIZATION 1819

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



Reducing Computational Cost. The computational complex-
ity of computing a GP is inOðT 3Þwhere T represents the total
number of BO iterations. The locality aware construction uses
all the independent loop executions resulting in computa-
tional complexity in OððLT Þ3Þ. To reduce the computational
cost, we subsample data along the axis of ‘ by using every kth
measurement of the loop, such that ‘ 2 f1; kþ 1; 2kþ
1; . . . ; Lg. As a result, the computational complexity is
reduced by a constant factor such that OððLk T Þ

3Þ. In all of our
experiments, we use a large value of k so thatL=k ¼ 4.

3.4 Treatment of Gaussian Process
Hyperparameters

GPs have multiple hyperparameters that need to be prede-
termined. The suitability of these hyperparameters is
directly related to the optimization performance of BO [40].
Unfortunately, whether a set of hyperparameters is appro-
priate depends on the characteristics of the workload. Since
real-life workloads are very diverse, it is essential to auto-
matically handle these parameters.

The Matern 5/2 kernel has two hyperparameters r and s,
while the exponentially decreasing function kernel has two
hyperparameters a and b. GPs also have hyperparameters
themselves, the function mean m and the noise variance s2

� .
We denote the hyperparameters using the concatenation
f ¼ ½m; s�; s; r; . . . �.

Since the marginal likelihood pðDtjfÞ is available in a
closed form [36], we can infer the hyperparameters using
maximum likelihood estimation type-II or marginalization
by integrating out the hyperparameters. Marginalization has
empirically shown to give better optimization performance

in the context of BO [40], [41]. It is performed by approximat-
ing the integral

aðx jM;DtÞ ¼
Z

aðx jM;f;DtÞpðfjDtÞdu (19)

� 1

N

X
fi�pðfjDtÞ

aðx jM;fi;DtÞ; (20)

using samples from the posterior fi where N is the number
of samples. For sampling from the posterior, we use the no-
u-turn sampler (NUTS, [42]).

4 SYSTEM IMPLEMENTATION

We now describe our implementation of BO FSS. Our imple-
mentation is based on the GCC implementation of the
OpenMP 4.5 framework [1], which is illustrated in Fig. 4.
The overall workflow is as follows:

�0 First, we randomly generate initial scheduling
parameters u0; . . . ; uN0

using a Sobol quasi-random
sequence [43].�1 During execution, for each loop in the workload,

we schedule the parallel loop using the parame-
ter ut. We measure the resulting execution time
of the loop and acquire a measurement tt.�2 Once we finish executing the workload, store the
pair ðut; ttÞ in disk in a JSON format.�3 Then, we run the offline tuner, which loads the
dataset Dt from disk.

Fig. 4. System overview of BO FSS.Online denotes the time we are actually executing the workload, while offline denotes the time we are not execut-
ing the workload. For a detailed description, refer to the text in Section 4.

Fig. 3. (a) (b) Visualization of the temporal locality effect on the execution time of the kmeans workload. (a) ‘-axis view. The error bars are the 95%
empirical confidence intervals. (b) u-axis view. The red squares are measurements of earlier executions (‘ � 10) while the blue circles are measure-
ments of later executions (‘ > 10). (c) Randomly sampled functions from a GP prior with an exponentially decreasing function kernel.

1820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



�4 Using Dt, we solve the inner optimization prob-
lem in (6), obtaining the next scheduling configu-
ration utþ1.�5 At the subsequent execution of the workload,
t tþ 1, and go back to�1 .

Note that offline means the time we finish executing the
workload, while online means the time we are executing the
workload (runtime).

Implementation of the Offline Tuner. We implemented the
offline tuner as a separate program written in Julia [44],
which is invoked by the user. When invoked, the tuner sol-
ves the inner optimization problem, and stores the results in
disk. For solving the inner optimization problem, we use
the DIRECT algorithm [45] implemented in the NLopt
library [46]. For marginalizing the GP hyperparameters, we
use the AdvancedHMC.jl implementation of NUTS [47].

Search space reparameterization. BO requires the domain of
the parameter to be bounded. However, in the case of FSS, u
is not necessarily bounded. As a compromise, we reparame-
terized u into a fixed domain such that

minimizex E½TtotalðSuðxÞÞ � (21)

where uðxÞ ¼ 219 x�10; 0 < x < 1: (22)

This also effectively converts the search space to be in a log-
arithmic scale. The reparameterized domain was deter-
mined by empirically investigating feasible values of u.

User interface. BO FSS can be selected by setting the
OMP_SCHEDULE environment variable, or by the OpenMP

runtime API as in Listing 1.

Listing 1. Selecting a Scheduling Algorithm

omp_set_schedule(BO_FSS); // selects BO FSS

Listing 2.Modified GCC OpenMP ABI

void GOMP_parallel_loop_runtime(void (*fn) (void *),

void *data, unsigned num_threads, long start,

long end, long incr, unsigned flags, size_t

loop_id)

void GOMP_parallel_runtime_start(long start,

long end, long incr, long *istart,

long *iend, size_t loop_id)

void GOMP_parallel_end(size_t loop_id)

Modification of the OpenMP ABI. As previously described,
our system optimizes each loop in the workload indepen-
dently. Naturally, our system requires the identification of
the individual loops within the OpenMP runtime. However,
we encountered a major issue: the current OpenMP ABI does
not provide a way for such identification. Consequently, we
had tomodify the GCC 8.2 [23] compiler’s OpenMP code gen-
eration and the OpenMP ABI. The modified GCC OpenMP

ABI is shown in Listing 2. During compilation, a unique
token for each loop is generated and inserted at the end of
the OpenMP procedure calls. Using this token, we store and
manage the state of each loop. Measuring the loop execution
time is done by starting the system clock in OpenMP runtime
entries such as GOMP_parallel_runtime_start, and
stopping in exits such as GOMP_parallel_end.

5 EVALUATION

In this section, we first describe the overall setup of our
experiments. Then, we compare the robustness of BO FSS
against other scheduling algorithms. After that, we evaluate
the performance of our BO augmentation scheme. Lastly,
we directly compare the execution time.

5.1 Experimental Setup

System Setup. All experiments are conducted on a single
shared-memory computer with an AMD Ryzen Threadrip-
per 1950X 3.4 GHz CPU which has 16 cores and 32 threads
with simultaneous multithreading enabled. It also has
1.5 MB of L1 cache, 8 MB of L2 cache and 32 MB of last level
cache. We use the Linux 5.4.36-lts kernel with two 16 GB
DDR4 RAM (32 GB total). Frequency scaling is disabledwith
the cpupower frequency-set performance setting. We
use the GCC 8.3 compiler with the -O3, -march=native
optimization flags enabled in all of our benchmarks.

BO FSS setup. We run BO FSS for 20 iterations starting
from 4 random initial points. All results use the best param-
eter found after the aforementioned number of iterations.

Baseline Scheduling Algorithms.We compare BO FSS against
the FSS [7], CSS [6], TSS [8], GUIDED [48], TAPER [10],
BinLPT [16], HSS [14] algorithms.

We use the implementation of BinLPT and HSS provided
by the authors of BinLPT2. For the FSS and CSS algorithms,
we estimate the statistics of each workloads (m, s) before-
hand from 64 executions. The scheduling overhead parame-
ter h is estimated using the method described in [49]. We
use the default STATIC and GUIDED implementations of
the OpenMP 4.5 framework using the static and guided

scheduling flags. For the TSS and TAPER schedules, we fol-
low the heuristic versions suggested in their original works,
denoted as TRAP1 and TAPER3, respectively.

Benchmark workloads. The workloads considered in our
experiments are summarized in Table 1. We select work-
loads from the Rodinia 3.1 benchmark suite [26] (lavamd,
streamcluster, kmeans, srad v1) where the STATIC
scheduling method performs worse than other dynamic
scheduling methods. We also include workloads from the
GAP benchmark suite [27] (cc, pr) where the load is pre-
dictable from the input graph.

Workload-Profile Availability. We characterize the workload-
profile availability of each workload in the Workload-Profile
column in Table 1. For workloads with homogeneous tasks
(lavaMD, stream., srad v1, nn), static imbalance does not
exist. Most of the imbalance is caused during runtime, deem-
ing a workload-profile uniformative. On the other hand, the
static imbalance of the kmeans workload is revealed during
execution, not before execution. We thus consider the work-
load-profile to be effectively unavailable.

Input Graph Datasets. We organize the graph datasets
used for the workloads from the GAP benchmark suite in
Table 3, acquired from [54]. jVj and jEj are the vertices and
edges in each graph, respectively. The load of each task Ti

in the cc and pr workloads is proportional to the in-degree
and out-degree of each vertex [55]. We use this degree infor-
mation for forming the workload-profiles. Among the

2. Retrieved from https://github.com/lapesd/libgomp

KIM ETAL.: PROBABILISTIC MACHINE LEARNING APPROACH TO SCHEDULING PARALLEL LOOPSWITH BAYESIAN OPTIMIZATION 1821

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/lapesd/libgomp


datasets considered, wiki has the most extreme imbalance
while road has the least imbalance [55].

Workload-Robustness Measure. To quantify the notion of
workload-robustness, we use the minimax regret mea-
sure [25]. The minimax regret quantifies robustness by
calculating the opportunity cost of using an algorithm,
computed as

RðS; wÞ ¼ CðS; wÞ �minS2SCðS; wÞ
minS2SCðS; wÞ 	 100 (23)

RðSÞ ¼ max
w2W
RðS;wÞ; (24)

where CðS;wÞ is the cost of the scheduling algorithm S on
the workload w, and W is our set of workloads. We choose
CðS;wÞ to be the execution time. In this case, RðS; wÞ can be
interpreted as the slowdown relative to the best performing
algorithm in percentages. Also,RðSÞ is the worst case regret
of using S on the set of workloadsW. Note that among dif-
ferent robustness measures, the minimax regret is very pes-
simistic [24], emphasizing worst-case performance. For this
reason, we additionally consider the 90th percentile of the
minimax regret denoted asR90ðSÞ.

5.2 Evaluation of Workload-Robustness

Table 2 compares the minimax regrets of different schedul-
ing algorithms with that of BO FSS. Each entry in the table
is the regret subject to the workload and scheduling algo-
rithm, RðS;wÞ. The final rows are the minimax regret RðSÞ
and the 90th percentile minimax regret R90ðSÞ subject to the
scheduling algorithm. BO FSS achieves the lowest regret
both in terms of minimax regret (22% points) and 90th per-
centile minimax regret (13% points). In contrast, both static
and dynamic scheduling methods achieve similar level of
regret. This observation is on track with the previous find-
ings [13]; none of the classic scheduling methods dominate
each other.

It is worth to note that we selected workloads in which
STATIC performs poorly. Our robustness analysis thus only
holds for comparing dynamic and workload-aware sched-
uling methods.

Remarks. The results for workload-robustness using the
minimax regret metric show that BO FSS achieves signifi-
cantly lower levels of regret compared to other schedul-
ing methods. As a result, BO FSS performs consistently
well. Even when BO FSS does not perform the best, its
performance is within an acceptable range.

TABLE 1
Benchmark Workloads

Suite Workload Profile Characterization # Tasks (N) Application Domain Benchmark Suite

lavaMD Uniformative1 N-Body 8000 Molecular Dynamics Rodinia 3.1
stream. No Dense Linear Algebra 65536 Data Mining Rodinia 3.1
kmeans Uniformative2 Dense Linear Algebra 494020 Data Mining Rodinia 3.1
srad v1 Uniformative1 Structured Grid 229916 Image Processing Rodinia 3.1
nn Uniformative1 Dense Linear Algebra 8192 Data Mining Rodinia 3.1
cc-* Yes Sparse Linear Algebra N/A3 Graph Analytics GAP
pr-* Yes Sparse Linear Algebra N/A3 Graph Analytics GAP

1Uniformly partitioned workload.
2Imbalance present only in domain boundaries.
3Input data dependent; number of vertices of the input graph.

TABLE 2
Minimax Regret of Scheduling Algorithms

Workload Ours Static Workload-Aware Dynamic

BO FSS STATIC HSS BinLPT GUIDED FSS CSS FAC2 TRAP1 TAPER3

lavaMD 0.00 17.55 n/a n/a 7.25 3.00 0.36 0.25 10.33 42.64
stream. 0.00 10.79 n/a n/a 2.39 10.36 1.25 0.68 2.00 2.45
kmeans 0.00 23.02 n/a n/a 8.01 17.62 1.50 1.17 2.30 6.41
srad v1 22.34 10.92 n/a n/a 16.75 11.74 26.03 0.00 16.43 17.61
nn 4.76 5.06 n/a n/a 0.00 0.55 7.00 6.06 4.39 5.14
cc-journal 0.00 2.88 66.98 196.63 11.94 2.47 2.98 6.15 3.65 0.66
cc-wiki 0.00 6.94 58.57 154.31 10.37 2.77 6.58 5.29 7.88 5.27
cc-road 0.00 8.57 81.88 251.71 7.19 1.37 1.55 1.23 1.97 1.71
cc-skitter 5.28 2.28 61.69 129.08 3.57 1.03 1.05 1.06 0.73 0.00
pr-journal 0.00 29.66 5.52 66.89 42.93 29.01 29.07 29.17 29.33 28.81
pr-wiki 15.30 45.20 0.00 42.26 85.34 46.99 47.28 46.82 46.53 46.87
pr-road 0.00 0.32 41.65 138.32 6.60 0.41 0.42 0.42 0.40 0.41
pr-skitter 0.00 11.51 23.21 68.91 29.97 11.66 11.21 11.34 12.06 11.26
RðSÞ 22.34 45.20 81.88 251.71 85.34 46.99 47.28 46.83 46.53 46.87
R90ðSÞ 13.30 28.33 71.75 213.15 40.34 26.73 28.46 25.60 26.75 39.87

The Values in the Table are the Percentage Slowdown Relative to the Best Performing Algorithm. They can be interpreted as the opportunity cost of using each
algorithm. For more details, refer to the text in Section 5.1.

1822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



5.3 Evaluation of Bayesian Optimization
Augmentation

A fundamental part of the proposed method is that BO FSS
improves the performance of FSS by tuning its internal
parameter. In this section, we show how much BO augmen-
tation improves the performance of FSS and its heuristic
variant FAC2. We run BO FSS, FSS, and FAC2 on workloads
with both high and low static imbalances. The results are
shown in Fig. 5. Overall, we can see that BO FSS consistently
outperforms FSS and FAC2 with the exception of srad v1

and cc-skitter. On workloads with high imbalance such
as pr-journal and pr-wiki, the execution time improve-
ments are as high as 30%.

Performance Degradation on srad v1. Interestingly, BO
FSS does not perform well on two workloads: srad v1 and
cc-skitter. While the performance difference in cc-

skitter is marginal, the difference in srad v1 is not. This
phenomenon is due to the large deviations in the execution
time measurements as shown in Fig. 6. That is, large outliers
near u ¼ 0:4 and u ¼ 0:8 deviated the GP predictions (green
line). Since GPs assume the noise to be Gaussian, they are
not well suited for this kind of workload. A possible remedy
is to use Student-T processes [37], [38], shown with the blue
line. In Fig. 6, the Student-T process is much less affected by
outliers, resulting in a tighter fit. Nonetheless, GPs worked
consistently well on other workloads.

Comparison of Gaussian Process Models. We now com-
pare the simple GP construction in Section 3.2 and the
locality-aware GP construction in Section 3.3. We equip
BO with each of the models, and run the autotuning pro-
cess beginning to end 30 times. The convergence results
are shown in Fig. 7. We can see that the locality-aware
construction converges much quickly. Note that the
shown results are averages. In the individual results,
there are cases where the locality-unaware version
completely fails to converge within a given budget. We

thus suggest to use the locality-aware construction when-
ever possible. It achieves consistent results at the
expense of additional computation during tuning.

Remarks. Apart from srad v1, BO FSS performs better
than FSS and FAC2 on most workloads. This indicates
that the Gaussian assumption works fairly well in most
cases. We can conclude that our BO augmentation
improves the performance of FSS on both workloads with
high and low static imbalances. Our interest is now to see
how this improvement compares against other schedul-
ing algorithms.

5.4 Evaluation on Workloads Without Static
Imbalance

This section compares the performance of BO FSS against
dynamic scheduling methods on workloads where a
workload-profile is unavailable or uniformative. The bench-
mark results are shown in Fig. 10. Out of the 5 workloads
considered, BO FSS outperforms all other methods on 3 out
of 5 workloads. On the nnworkload, the difference between
all methods is insignificant. As discussed in Section 5.3, BO
FSS performs poorly on the srad v1 workload. Note that
the same tuning results are used both for Section 5.3 and
this experiment.

Remarks. Compared to other dynamic scheduling meth-
ods, BO FSS achieves more consistent performance. How-
ever, because of the turbulence in the tuning process, BO
FSS performs poorly on srad v1. It is thus important to
ensure that BO FSS correctly converges to a critical point
before applying it.

Fig. 6. Parameter space and surrogate model fit on the srad v1 work-
load. The colored regions are the 95% predictive credible intervals of a
GP (green region) and a Student-T process (blue region). The red circles
are the data points used to fit both surrogate models.

TABLE 3
Input Graph Datasets

Dataset jVj jEj deg�ðvÞ1, degþðvÞ2
mean std max

journal [50] 4.0M 69.36M 17, 17 43, 43 15k, 15k
wiki [51] 3.57M 45.01M 13, 13 33, 250 7k, 187k
road [52] 24.95M 57.71M 2, 2 1, 1 9, 9
skitter [53] 1.70M 22.19M 13, 13 137, 137 35k, 35k

1In-degree of each vertex.
2Out-degree of each vertex.

Fig. 5. Execution time comparison of BO FSS, FSS and FAC2. We estimate the mean execution time from 256 executions. The error bars show the
95% bootstrap confidence intervals. The results are normalized by the mean execution time of BO FSS. The methods with the lowest execution time
are marked with a star (*). Methods not significantly different with the best performing method are also marked with a star (Wilcoxon signed rank test,
1% null-hypothesis rejection threshold).

KIM ETAL.: PROBABILISTIC MACHINE LEARNING APPROACH TO SCHEDULING PARALLEL LOOPSWITH BAYESIAN OPTIMIZATION 1823

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



5.5 Evaluation on Workloads With Static Imbalance

This section evaluates the performance of BO FSS against
workload-aware methods using workloads with a workload-
profile. The evaluation results are shown in Fig. 8. Except for
the pr-wiki workload, BO FSS dominates all considered
baselines. Because of the large number of tasks, both the HSS
and BinLPT algorithms do not perform well on these work-
loads. Meanwhile, the STATIC and GUIDED strategies are
very inconsistent in terms of performance. On the pr-wiki

and pr-journal workloads, both methods are nearly 30%
slower than BO FSS. This means that these algorithms lack
workload-robustness unlike BO FSS.

On the pr-wiki workload which has the most extreme
level of static imbalance, HSS performs significantly better.
As discussed in Section 2.3, HSS has a very large critical sec-
tion, resulting in a large amount of scheduling overhead.
However, on the pr-wiki workload, the inefficiency
caused by load imbalance is so extreme compared to the
inefficiency caused by the scheduling overhead, giving HSS
a relative advantage.

Does the Input Data Affect Performance? BO FSS’s perfor-
mance is tightly related to the individual property of each
workload. It is thus interesting to ask how much the input
data of the workload affects the behavior of BO FSS. To ana-
lyze this, we interchange the data used to tune BO FSS and
the data used to measure the performance. If the input data
plays an important role, the discrepancy between the tuning
time data and the runtime data would degrade the perfor-
mance. The corresponding results are shown in Fig. 9 where

the entries are the percentage increase in execution time rel-
ative to the matched case. Each row represents the dataset
used for tuning, while each column represents the dataset
used for execution. The anti-diagonal (bottom left to top
right) is the case when the data is matched. The maximum
amount of degradation is caused when we use skitter for
tuning and wiki during runtime. Also, the case of using
journal for tuning and wiki during runtime significantly
degrades the performance. Overall, the wiki and road

datasets turned out to be the pickiest about the match. Since
both wiki and road resulted in high degradation, the
amount of imbalance in the data does not determine how
important the match is. However, judging from the fact that
the degradation is at most 1%, we can conclude that BO FSS
is more sensitive to the workload’s algorithm rather than its
input data.

Remarks. Compared to the workload-aware methods, BO
FSS performed the best except for one workload which
has the most amount of imbalance. Excluding this
extreme case, the performance benefits of BO FSS is quite
large. We also evaluated the sensitivity of BO FSS on per-
turbations to the workload. Results show that BO FSS is
not affected much by changes in the input data of the
workload.

5.6 Discussions

Analysis of Overhead. BO FSS has specific duties, both
online and offline. When online, BO FSS loads the

Fig. 7. Convergence plot of the locality-unaware GP and the locality-
aware GP on the skitter workload. We can see the execution time
decreasing as we run BO. We ran BO 30 times with 10 iterations each,
and computed the 95% boostrap confidence intervals.

Fig. 8. Execution time comparison of BO FSS against workload-aware methods. We estimate the mean execution time from 256 executions. The
error bars show the 95% bootstrap confidence intervals. The results are normalized by the mean execution time of BO FSS. The methods with the
lowest execution time are marked with a star (*). Methods not significantly different with the best performing method are also marked with a star (Wil-
coxon signed rank test, 1% null-hypothesis rejection threshold).

Fig. 9. Effect of mismatching the data used for tuning BO FSS and the
data used for execution. The rows are the data used for tuning of BO
FSS, while the columns are the data used for execution. The numbers
represent the percentage slowdown relative to the matched case. Colder
colors represent more slowdown (hotter the better).

1824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



precomputed scheduling parameter ui, measures the loop
execution time and stores the pair ðui; tiÞ in the dataset
Dt. A storage memory overhead of OðT Þ, where T is the
number of BO iterations, is required to store Dt. This is
normally much less than the OðNÞ memory requirement,
where N is the number of tasks, imposed by workload-
aware methods. When offline, BO FSS runs BO using the
dataset Dt and determines the next scheduling parameter
uiþ1. Because most of the actual work is performed off-
line, the online overhead of BO FSS is almost identical to
that of FSS. The offline step is relatively expensive due
to the computation complexity of GPs. Fortunately, BO
FSS converges within 10 to 20 iterations for most cases.
This allows the computational cost to stay within a rea-
sonable range.

Limitation. When the target loop is not to be executed for
a significant amount of time, BO FSS does provide signifi-
cant benefits, as it requires time for offline tuning. However,
HPC workloads are often long-running and reused over
time. For this reason, BO FSS should be applicable for many
HPC workloads.

Portability. When solving the optimization problem in (5)
with BO, the target system becomes part of the objective
function. As a result, BO FSS automatically takes into
account the properties of the target system. This fact makes
BO FSS highly portable. At the same time, as the experimen-
tal results of Fig. 9 imply, instead of directly operating on

the full target workload, it should be possible to use much
cheaper proxy workloads for tuning BO FSS.

6 RELATED WORKS

Classical Dynamic Loop Scheduling Methods. To improve the
efficiency of dynamic scheduling, many classical algorithms
are introduced such as CSS [6], FSS [7], TSS [8], BOLD [9],
TAPER [10] and BAL [11]. However, most of these classic
algorithms are derived in a limited theoretical context with
strict statistical assumptions. Such an example is the i:i:d:
assumption imposed on theworkload.

Adaptive andWorkload-Aware Methods. To resolve this limi-
tation, adaptive methods are developed starting from the
adaptive FSS algorithm [12]. Recently, workload-aware meth-
ods including HSS [14] and BinLPT [15], [16] are introduced.
These scheduling algorithms explicitly require a workload-
profile before execution and exploit this knowledge in the
scheduling process. On the flip side, this requirement makes
these methods difficult to use in practice since the exact
workload-profile may not always be available beforehand.
In contrast, our proposed method is more convenient since
we only need tomeasure the execution time of a loop.

Also, the overall concept of our method is more flexible;
it is possible to plug in our framework to any parameterized
scheduling algorithm, directly improving its robustness.

Machine Learning Based Approaches. Machine learning has
yet to see many applications in parallel loop scheduling.
In [56], Wang and O’Boyle use compiler generated features
to train classifiers that select the best-suited scheduling
strategy for a workload. This approach contrasts with ours
since it does not improve the effectiveness of the chosen
scheduling algorithm. On the other hand, Khatami et al.
in [57] recently used a logistic regression model for predict-
ing the optimal chunk size for a scheduling strategy, com-
bining CSS and work-stealing. Similarly, Laberge et al. [58]
propose a machine-learning based strategy for accelerating
linear algebra applications. These supervised-learning based
approaches are limited in the sense that they are not yet well
understood: their performance is dependent on the quality of
the training data. It is unknown how well these approaches
generalize across workloads from different application
domains. In fact, quantifying and improving generalization is

Fig. 10. Execution time comparison of BO FSS against dynamic sched-
uling methods. We estimate the mean execution time from 256 execu-
tions. The error bars show the 95% bootstrap confidence intervals. The
results are normalized by the mean execution time of BO FSS. The
methods with the lowest execution time are marked with a star (*). Meth-
ods not significantly different with the best performing method are also
marked with a star (Wilcoxon signed rank test, 1% null-hypothesis rejec-
tion threshold).

TABLE 4
Implementation Details of Considered Baselines

Type Chunk Size Equation Parameter Setting

CSS [6] K ¼ h
s

ffiffi
2
p

N

P
ffiffiffiffiffiffiffiffi
logP
p

� �2=3

h, s, m (measured values)

TAPER [10]
va ¼ a s

m
; xi ¼ Ri

P þ Kmin
2 ; Riþ1 ¼ Ri �Ki

Ki ¼ maxðKmin; xi þ v2a
2 � va

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xi þ v2a

4

q
Þ

va ¼ 3;Kmin ¼ 1

TSS [8] d ¼ Kf�Kl

N�1 ; K0 ¼ Kf

Kiþ1 ¼ maxðKi � d;KlÞ
Kf ¼ N

2P ; Kl ¼ 1;

KIM ETAL.: PROBABILISTIC MACHINE LEARNING APPROACH TO SCHEDULING PARALLEL LOOPSWITH BAYESIAN OPTIMIZATION 1825

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



still a central problem in supervised learning. Our method is
free of these issues since we directly optimize the perfor-
mance for a targetworkload.

7 CONCLUSION

In this paper, we have presented BO FSS, a data-driven,
adaptive loop scheduling algorithm based on BO. The pro-
posed approach automatically tunes its performance to the
workload using execution time measurements. Also, unlike
the scheduling algorithms that are inapplicable to some
workloads, our approach is generally applicable. We imple-
mented our method on the OpenMP framework and quanti-
fied its performance as well as its robustness on realistic
workloads. BO FSS has consistently performed well on a
wide range of real workloads, showing that it is robust com-
pared to other loop scheduling algorithms. Our approach
motivates the development of computer systems that can
automatically adapt to the target workload.

At the moment, BO FSS assumes that the properties of
the workload do not change during execution. For this rea-
son, BO FSS does not address some crucial scientific work-
loads, such as adaptive mesh refinement methods. These
types of workloads dynamically change during execution,
depending on the computation results. It would be interest-
ing to investigate automatic tuning-based scheduling algo-
rithms that can target such types of workloads in the future.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for providing
precious comments enriching our work, Pedro Henrique
Penna for the helpful discussions about the BinLPT schedul-
ing algorithm, Myoung Suk Kim for his insightful comments
about our statistical analysis and Rover Root for his helpful
comments about the scientific workloads considered in this
work. This work was supported by the Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT under Grant 2017M3C4A7080245.
This paper was presented in part of the 27th IEEE Interna-
tional Symposium onModeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS’19)
held in Rennes, France, 2019.

REFERENCES

[1] L. Dagum and R. Menon, “OpenMP: An industry standard API
for shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5,
no. 1, pp. 46–55, First Quarter 1998.

[2] J. Regier et al., “Cataloging the visible universe through Bayesian
inference at petascale,” in Proc. Int. Parallel Distrib. Process. Symp.,
2018, pp. 44–53.

[3] T. Kurth et al., “Exascale deep learning for climate analytics,” in
Proc. Int. Conf. High Perform. Comput. . Storage Anal., 2018, pp. 1–12.

[4] A. G. Baydin et al., “Etalumis: Bringing probabilistic program-
ming to scientific simulators at scale,” in Proc. Int. Conf. High Per-
form. Comput. . Storage Anal., 2019, pp. 1–24.

[5] D. Durand, T. Montaut, L. Kervella, and W. Jalby, “Impact of mem-
ory contention on dynamic scheduling onNUMAmultiprocessors,”
IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 11, pp. 1201–1214,
Nov. 1996.

[6] C. P. Kruskal and A. Weiss, “Allocating independent subtasks on
parallel processors,” IEEE Trans. Softw. Eng., vol. SE-11, no. 10,
pp. 1001–1016, Oct. 1985.

[7] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A
method for scheduling parallel loops,” Commun ACM, vol. 35, no. 8,
pp. 90–101, Aug. 1992.

[8] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A practical
scheduling scheme for parallel compilers,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 1, pp. 87–98, Jan. 1993.

[9] T. Hagerup, “Allocating independent tasks to parallel processors:
An experimental study,” J. Parallel Distrib. Comput., vol. 47, no. 2,
pp. 185–197, Dec. 1997.

[10] S. Lucco, “A dynamic scheduling method for irregular parallel
programs,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 1992, pp. 200–211.

[11] H. Bast, “On scheduling parallel tasks at twilight,” Theory Comput.
Syst., vol. 33, no. 5–6, pp. 489–563, Dec. 2000.

[12] I. Banicescu and V. Velusamy, “Load balancing highly irregular
computations with the adaptive factoring,” in Proc. 16th Int. Paral-
lel Distrib. Process. Symp., 2002, Art. no. 12.

[13] F. M. Ciorba, C. Iwainsky, and P. Buder, “OpenMP loop schedul-
ing revisited: Making a case for more schedules,” in Proc. Int.
Workshop OpenMP, 2018, pp. 21–36.

[14] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos, “History-
aware self-scheduling,” in Proc. Int. Conf. Parallel Process., 2006,
pp. 185–192.

[15] P. H. Penna, M. Castro, P. Plentz, H. Cota de Freitas, F. Broquedis,
and J.-F. M�ehaut, “BinLPT: A novel workload-aware loop sched-
uler for irregular parallel loops,” in Proc. Simp�osio Em Sistemas
Computacionais de Alto Desempenho, 2017.

[16] P. H. Penna et al., “A comprehensive performance evaluation of
the BinLPT workload-aware loop scheduler,” Concurr. Comput.,
Pract. Exp., vol. 31, Feb. 2019, Art. no. e5170.

[17] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of Bayesian opti-
mization,” Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[18] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best cloud
configurations for big data analytics,” in Proc. 14th USENIX Symp.
Networked Syst. Des. Implementation, 2017, pp. 469–482.

[19] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, “Constrained
Bayesian optimization with noisy experiments,” Bayesian Anal.,
vol. 14, no. 2, pp. 495–519, Aug. 2018.

[20] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Building
auto-tuners with structured Bayesian optimization,” in Proc. 26th
Int. Conf. World Wide Web, 2017, pp. 479–488.

[21] K.-R. Kim, Y. Kim, and S. Park, “Towards robust data-driven parallel
loop scheduling using Bayesian optimization,” in Proc. IEEE 27th Int.
Symp.Model. Anal. Simul. Comput. Telecommun. Syst., 2019, pp. 241–248.

[22] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-thaw Bayesian
optimization,” Jun. 2014, arXiv:1406.3896 [cs, stat].

[23] GCC, “GCC, the GNU compiler collection,” Jul. 2018.
[24] C. McPhail, H. R. Maier, J. H. Kwakkel, M. Giuliani, A. Castelletti,

and S. Westra, “Robustness metrics: How are they calculated,
when should they be used and why do they give different
results?,” Earth’s Future, vol. 6, no. 2, pp. 169–191, Feb. 2018.

[25] L. J. Savage, “The theory of statistical decision,” J. Amer. Statist.
Assoc., vol. 46, no. 253, pp. 55–67, 1951.

[26] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the Rodinia benchmark suite
with comparison to contemporary CMP workloads,” in Proc. IEEE
Int. Symp. Workload Characterization, 2010, pp. 1–11.

[27] S. Beamer, K. Asanovi�c, and D. Patterson, “The GAP benchmark
suite,” May 2017, arXiv:1508.03619 [cs].

[28] P. Tang andP.C. Yew, “Processor self-scheduling formultiple-nested
parallel loops,” inProc. Int. Conf. Parallel Process., 1986, pp. 528–535.

[29] H. Bast, “Provably optimal scheduling of similar tasks,” Ph.D The-
sis, Fac. Mathematics Comput. Sci., Universit€at des Saarlandes,
Saarbr€ucken, 2000.

[30] K. K. Yue and D. J. Lilja, “Parallel loop scheduling for high perfor-
mance computers,”Adv. Parallel Comput., vol. 10, pp. 243–264, 1995.

[31] L. E. Flynn and S. F. Hummel, “Scheduling variable-length paral-
lel subtasks,” IBM Research T. J. Watson Research Center, Ossin-
ing, NY, USA, Tech. Rep. RC15492, Feb. 1990.

[32] J. C. Spall, “An overview of the simultaneous perturbation
method for efficient optimization,” Johns Hopkins APL Tech. Dig.,
vol. 19, no. 4, pp. 482–492, 1998.

[33] Z. Wang and S. Jegelka, “Max-value entropy search for efficient
Bayesian optimization,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 3627–3635.

1826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



[34] V. S. Adve and M. K. Vernon, “The influence of random delays on
parallel execution times,” in Proc. ACM SIGMETRICS Conf. Meas.
Model. Comp. Syst., 1993, pp. 61–73.

[35] C. E. Rasmussen and Z. Ghahramani, “Occam’s razor,” in Proc.
Int. Conf. Neural Inf. Process. Syst, 2001, pp. 294–300.

[36] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning: Cambridge, MA, USA: MIT Press, 2006.

[37] R. Martinez-Cantin, K. Tee, and M. McCourt, “Practical Bayesian
optimization in the presence of outliers,” Dec. 2017, arXiv:
1712.04567 [cs, stat].

[38] A. Shah, A. G. Wilson, and Z. Ghahramani, “Bayesian Optimiza-
tion using Student-t Processes,” in Proc. NIPS Workshop Bayesian
Optimisation, 2013, pp. 1–5.

[39] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and G. Zoubin,
“Structure discovery in nonparametric regression through compo-
sitional kernel search,” in Proc. 30th Int. Conf. Mach. Learn., 2013,
pp. 1166–1174.

[40] J. M. Henr�andez-Lobato, M. W. Hoffman, and Z. Ghahramani,
“Predictive entropy search for efficient global optimization of
black-box functions,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2014, pp. 918–926.

[41] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian opti-
mization of machine learning algorithms,” in Proc. Int. Cont. Neu-
ral Inf. Process. Syst., 2012, pp. 2951–2959.

[42] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adap-
tively setting path lengths in Hamiltonian Monte Carlo,” J. Mach.
Learn. Res., vol. 15, no. 47, pp. 1593–1623, 2014.

[43] I. Sobol’, “On the distribution of points in a cube and the approxi-
mate evaluation of integrals,” USSR Comput. Math. Math. Phys.,
vol. 7, no. 4, pp. 86–112, Jan. 1967.

[44] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” SIAM Rev., vol. 59,
no. 1, pp. 65–98, 2017.

[45] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian
optimization without the Lipschitz constant,” J. Optim. Theory
Appl., vol. 79, no. 1, pp. 157–181, Oct. 1993.

[46] S. G. Johnson, The NLopt Nonlinear-Optimization Package, 2011.
[47] H. Ge, K. Xu, and Z. Ghahramani, “Turing: A language for flexible

probabilistic inference,” in Proc. Int. Conf. Artif. Intell. Statist., 2018,
pp. 1682–1690.

[48] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers,”
IEEE Trans. Comput., vol. C-36, no. 12, pp. 1425–1439, Dec. 1987.

[49] J. M. Bull, “Measuring synchronisation and scheduling overheads
in OpenMP,” in Proc. 1st Eur. Workshop OpenMP, 1999, pp. 99–105.

[50] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and
evolution,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2006, pp. 44–54.

[51] D. Gleich, “Wikipedia-20070206,” 2007.
[52] C. Demetrescu, A. Goldberg, and D. Johnson, “9th DIMACS

implementation challenge - shortest paths,” 2006.
[53] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:

Densification laws, shrinking diameters and possible explan-
ations,” in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2005, pp. 177–187.

[54] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, Dec. 2011, Art. no. 1.

[55] S. Bak, Y. Guo, P. Balaji, and V. Sarkar, “Optimized execution of
parallel loops via user-defined scheduling policies,” in Proc. 48th
Int. Conf. Parallel Process., 2019, pp. 1–10.

[56] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores:
A machine learning based approach,” in Proc. 14th ACM SIGPLAN
Symp. Princ. Pract. Parallel Program., 2009, pp. 75–84.

[57] Z. Khatami, L. Troska, H. Kaiser, J. Ramanujam, and A. Serio,
“HPX smart executors,” in Proc. 3rd Int. Workshop Extreme Scale
Program. Models Middleware, 2017, pp. 1–8.

[58] G. Laberge, S. Shirzad, P. Diehl, H. Kaiser, S. Prudhomme, and
A. S. Lemoine, “Scheduling optimization of parallel linear algebra
algorithms using supervised learning,” in Proc. IEEE/ACM Work-
shop Mach. Learn. High Perform. Comput. Environ., 2019, pp. 31–43.

Khu-rai Kim (Student Member, IEEE) is currently
working towards the BS degree with the Depart-
ment of Electronics Engineering, Sogang Univer-
sity, Seoul, South Korea. His research interests
include in the duality of machine learning and com-
puter systems, including parallel computing, com-
piler runtime environments, probabilistic machine
learning and Bayesian inferencemethods.

Youngjae Kim (Member, IEEE) received the BS
degree in computer science from Sogang Univer-
sity, South Korea, in 2001, the MS degree in com-
puter science from KAIST, in 2003, and the PhD
degree in computer science and engineering from
Pennsylvania State University, University Park,
Pennsylvania, in 2009. He is currently an associate
professor with the Department of Computer Sci-
ence and Engineering, Sogang University, Seoul,
South Korea. Before joining Sogang University,
Seoul, South Korea, hewas a R&Dstaff scientist at

the US Department of Energy’s Oak Ridge National Laboratory (2009–
2015) and as an assistant professor at Ajou University, Suwon, South
Korea (2015–2016). His research interests include operating systems, file
and storage systems, parallel and distributed systems, computer systems
security, and performance evaluation.

Sungyong Park (Member, IEEE) received the BS
degree in computer science from Sogang Univer-
sity, Seoul, South Korea, and the MS and PhD
degrees in computer science from Syracuse Uni-
versity, Syracuse, NewYork, respectively. He is cur-
rentlya professor with theDepartment of Computer
Science and Engineering, Sogang University,
Seoul, South Korea. From 1987 to 1992, heworked
for LG Electronics, South Korea, as a research
engineer. From 1998 to 1999, he was a research
scientist at Bellcore, where he developed network

management software for optical switches. His research interests include
cloud computing and systems, high performance I/O and storage systems,
parallel and distributed system, and embedded system.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

KIM ETAL.: PROBABILISTIC MACHINE LEARNING APPROACH TO SCHEDULING PARALLEL LOOPSWITH BAYESIAN OPTIMIZATION 1827

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


