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ABSTRACT Scientific applications often require high-bandwidth shared storage to perform joint simula-
tions and collaborative data analytics. Sharedmemory pools provide a chance to satisfy such needs. Recently,
a high-speed network such as Gen-Z utilizing persistent memory (PM) offers an opportunity to create a
shared memory pool connected to compute nodes. However, there are several challenges to use scientific
applications on the shared memory pool directly such as scalability, failure-atomicity, and lack of scientific
metadata-based search and query. In this paper, we propose MOSIQS, a persistent memory object storage
framework with metadata indexing and querying for scientific computing. We design MOSIQS based on
the key idea that memory objects on PM pool can live beyond the application lifetime and can become the
sharing currency for applications and scientists. MOSIQS provides an aggregate memory pool atop an array of
persistent memory devices to store and access memory objects to accelerate scientific computing. MOSIQS

uses a lightweight persistent memory key-value store to manage the metadata of memory objects, which
enables memory object sharing. To facilitate metadata search and query over millions of memory objects
resident onmemory pool, we introduce Group Split andMerge (GSM), a novel persistent index data structure
designed primarily for scientific datasets. GSM splits and merges dynamically to minimize the query search
space and maintains low query processing time while overcoming the index storage overhead. MOSIQS is
implemented on top of PMDK. We evaluate the proposed approach on many-core server with an array of
real PM devices. Experimental results show that MOSIQS gains a 100% write performance improvement
and executes multi-attribute queries efficiently with 2.7× less index storage overhead offering significant
potential to speed up scientific computing applications.

INDEX TERMS Memory-centric computing and HPC, persistent memory storage, scientific metadata
indexing and search, PM index data structures.

I. INTRODUCTION
Large-scale scientific applications, including simulations,
experiments, and observations, generate tens of petabytes of
data objects and are forecasted to grow even further [1]–[3].
The critical attributes required by such applications include
parallel I/O for high-performance and minimal I/O latency
in accessing the data objects from storage systems [4].
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In addition, the scientific applications, whether running on
a single server, small clusters, or HPC systems, all deal
with creating, modifying, and processing data objects in
memory [5]. The bottleneck between storage andmemory has
arisen because data must be loaded into memory from slow
storage.

Memory centric computing (MCC) has recently emerged
to overcome such memory and storage bottlenecks [6]. The
HPC has attempted to adopt MCC by enabling a shared
memory storage abstraction across the hundreds of compute
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nodes [6]–[9]. Thus, the upcoming construction of larger
MCC infrastructures is expected to be equipped with an
array of persistent memory devices co-located with DRAM
on each node or shared among all the nodes via high-speed
interconnects such as Gen-Z [6] and Infiniband to impro-
vise MCC [6]–[8]. In MCC, the nodes are equipped with
non-volatile memories (NVMs), such as Intel Optane DC
Persistent Memory (PM) which offers high capacity at low
cost, byte-addressability, low idle power, persistence, and
performance closer to DRAM than SSD or disks [10]–[12].
A single machine can be equipped with up to 6 TB of PM
providing an opportunity to build rack-scale shared memory
pools for scientific computing applications [9], [11], [13].
Recently, several studies have shown PM as a full or partial
substitute for DRAM [14], [15]. For instance, pVM [14]
employs NVRAM to seamlessly expand virtual memory for
memory-intensive applications. Similarly, [16] proposed a
data-centric OS based on PM.Due to such properties, they are
considered a major contender for future main memory fabric
and MCC [9], [10].

Therefore, PM given its properties, offers an opportunity to
store and manage the millions and billions of objects beyond
the lifetime of application in shared memory pool [17]–[19].
Such management of application memory objects on shared
PM pool enables multiple benefits, i.e., i) low access latency,
ii) low serialization and deserialization overhead, and iii) effi-
cient computation via direct byte-addressability. We refer
application objects on PM as Persistent Memory Objects
(PMO1). Such PM application model also brings us the
opportunity to enable PM level object sharing across different
users/scientists and applications to facilitate effective scien-
tific collaborations.

Unfortunately, the PM application model stated above
creates new data and metadata management challenges.
First, there is a need to ensure data and metadata con-
sistency, i.e., data is modified atomically when moving
from one consistent state to another. Applications should
be able to access PMOs after a crash or ungraceful
shutdowns [20]–[23]. Second, scientific application data
objects are self-described and packed in versatile scientific
data formats, i.e., metadata is embedded inside the data
object [24]–[26]. Without additional descriptive metadata,
PMO may become unidentifiable, siloed, and in general, not
useful to either scientists who own the data or the broader
scientific community. Third, where and how tomanage, store,
and associate object metadata alongwith user-defined custom
metadata is challenging. It is a common standard in the scien-
tific community to tag or annotate data objects with additional
descriptive metadata for a better understanding of data for
collaborators [2], [25], [27]. Fourth, with ever-changing data
analysis scenarios, to select a subset of PMOs from million
and billions of PMOs in a shared PM pool based on metadata
or user-defined tags without additional indexing becomes

1PMO refers to application memory objects resident on persistent
memory.

highly challenging [27]–[30]. These challenges drive the need
for essentially effective scientific metadata search services
and querying on top of persistent memory object storage
abstraction.

An approach to build a high-performance scientific meta-
data search service on top of the PM pool is storing, index-
ing, and querying all of its metadata and at least significant
data in the main memory [25], [26], [31], [32]. Although,
there exist in-memory scientific data management solu-
tions [25], [30], [31]. However, in-memory solution suffers
from failure-tolerance and recurring recovery cost in case of
failures. MIQS [25] is the state-of-the-art research, offering
an effective in-memory metadata indexing and querying for
self-described scientific data formats such as HDF5 [33] and
netCDF [34] for scientific applications. It extractsmetadata in
the form of <key,value> pair from scientific data formats
and uses multiple tree hierarchies such as a Self-balancing
Search Tree (SBST) and Adaptive Radix Tree (ART) to main-
tain file, location, path, and attributes inside scientific data
file. However, a single update to a scientific object makes the
whole MIQS index go stale/inconsistent and requires recon-
struction of the index, which incurs high recovery overhead.
Further, most importantly, the query search space is highly
inefficient, i.e., when a search query spans over multiple
metadata attributes, then there is ample query search space
to find the desired memory objects.

In this paper, we propose to build MOSIQS, an appli-
cation framework that enables applications, scientists, and
researchers to create, modify, search, and delete mem-
ory objects on a large shared PM pool. A PMO is a
self-described object, i.e., an object can contain a single
value, multi-dimensional array or composite value similar
to scientific data formats such as HDF5 and netCDF data
objects.We designMOSIQS based on the key idea thatmemory
objects on PM pool can live beyond the application lifetime
and can become the sharing currency for applications and
scientists. Moreover, providing controls and annotations to
memory objects will bring more friendly storage model in
scientific computing environments.

Our key contributions in this paper are:
• We propose an application framework for PM to store and

access memory objects via persistent pointers beyond the
application lifetime and to share objects across applica-
tions, scientists, and collaborators with flexible data shar-
ing controls (Section III). We designed a self-described
metadata object and use PMEMKV [35], a light-weight
persistent memory key-value store to manage PMO’s
metadata.
• To enable efficient multi-attribute metadata search and

querying for scientific data objects resident in PM pool,
we introduce Group Split-and-Merge (GSM) index data
structure (Section IV). GSM dynamically split and merge
based on sharing frequency, application/user’s defined
threshold and query patterns to minimize the query search
space. Further, GSM also reduces the additional per object
index metadata storage overhead.
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• For effective storage and easier data sharing, we pro-
vide namespace abstraction. Such an abstraction enables
a process to share its PMOs with other processes access-
ing the namespace. We also provide post-storage attribute
tagging and annotation to PMO and enable indexing on
such application or user-defined metadata attributes anno-
tations(Section III).
• We develop a prototype implementation of the proposed

PM application framework using Intel’s PMDK [20].
We conduct preliminary evaluations on a Intel many-core
server equipped with 1.5 TB real Intel Optane DC
3D-XPoint PM. (Section V). Experimental results show
thatMOSIQS gains a 100%performance improvement com-
pared to the PM-aware file system approach and executes
multi-attribute queries efficiently with 2.7× less index
storage overhead.

II. BACKGROUND AND MOTIVATION
In this section, we briefly describe the self-describing scien-
tific data formats. Then, we present the background on PM
and elaborate a need for object storage abstraction and search
services.

A. SCIENTIFIC DATA FORMATS
Many applications from various scientific domains tend
to store experimental, simulation, and analytical data in
domain-specific scientific data formats such as HDF5 [33],
netCDF [34], FITS [36], Plot3D [37], and GRIB [38] in the
underlying parallel file system. These scientific data formats
are often referred to as self-described and self-contained,
i.e., the metadata is stored alongside the data objects [26].
This metadata enables use and reuse of scientific data [30].
HDF5 is one of the most widely used data formats in the sci-
entific community. It stores data in binary file organized hier-
archically for high-performance access [25]. Here, we show
the HDF5 internal layout in Table 1. Several optimizations
and improvements have been made on top of HDF5 in recent
years such as HDF5 virtual object layer (HDF5-VOL) to
enable HDF5 data model on different storage backends [39].
BaryonOscillation Spectroscopic Survey (BOSS) from Sloan
Digital Sky Survey (SDSS) [40], typically produces a single
data file per object and store it in FITS format [36]. Originally,
FITS API lacks parallel IO and data query support and exter-
nally relies on HDF5 library [28]. H5Boss [28] tool converts
multiple FITS files to HDF5 format to achieve parallel IO and
data query.

B. MEMORY CENTRIC COMPUTING
The memory centric computing (MCC) has emerged recently
to satisfy the requirements of memory-intensive scientific
computing applications [9]. MCC architecture benefits sci-
entific applications in many ways. First, MCC provides a
high storage capacity and can store large scientific datasets
that could not traditionally fit in the memory. Second, MCC
mitigates the performance gap between storage and mem-
ory, i.e., fast computation is provided on in-memory large

TABLE 1. An overview of data abstraction layers in HDF5 [33].

datasets. Third, MCC enables in-memory data sharing across
the applications and processes. In particular, MCC operates
on the principle of memory-first, i.e., the data resides in
memory to provide in-memory speeds to deliver tremen-
dous performance. In MCC, each node is equipped with
a storage-class non-volatile memory such as Intel Optane
DC PM. The PM technology can potentially reduce latency
and increase bandwidth of I/O operations by many orders
of magnitude, but fully harnessing the device capability
requires overcoming the legacy IO stack of disk-based storage
systems [11]. A few studies have enabled the use of PM
in scientific applications, e.g., NV-Process [41] proposed a
fault tolerance process model based on PM and provides an
elegant way for the applications to tolerate system crashes.
Similarly, [17] evaluates different fault-tolerance approaches
for porting scientific applications to use PM. DAOS-M [18]
employs PM to store metadata and small writes, whereas
larger writes are redirected to NVMe SSDs. Similarly, [16]
proposed a data-centric OS based on PM.

C. SERIALIZATION/DESERIALIZATION ON PM
In the conventional scientific computing model, application
relies on the CPU to handle the task of deserializing file
contents into memory objects. Such an approach requires
the application to first load raw data into the system main
memory from the storage. Then, the CPU parses and trans-
forms the file data to objects in other main memory locations
for the rest of the computation in the application [5], [9].
Such deserialization takes up almost 64% of the application’s
total execution time [5], [42]. Our previous work [9] provides
a conceptual overview of the scientific computing model
based on PM, where application objects persist in PM address
space, and direct computation is performed, avoiding addi-
tional serial- and deserialization operations. Such usage of
PM-based storage and computing model also minimizes the
decades-old file system IO stack overhead (paging, context
switching, kernel code executions).

D. OBJECT MANAGEMENT ON PM
Employing PM directly for legacy scientific applications is
challenging. As, the existing applications are built on notion
of block-based file system interface and are a clear mismatch
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with PM hardware, i.e., byte-addressable. A simple solution
is to deploy a PM-aware file system and enable applications
to use PM but as reported in [13], ext4-DAX [43] specially
designed for PM incurs up to 13× overhead compared to raw
PM device write bandwidth. Thus, deploying file system is
not an optimal choice for PM. Whereas, an object storage
model offers much simpler interface but requires additional
metadata book keeping and object sharing controls.

E. MOTIVATION
Arguably, storing application objects directly on persistent
memory without a file system interface provides multiple
benefits such as faster storage without file system overhead
and direct computations. But, it poses several challenges at
the same time. First, data sharing across applications and
other collaborators is an essential requirement of the scien-
tific community [27], [44]. It is challenging to access, select
and share a PMOwithout additional descriptivemetadata. As,
object access and sharing require object semantics such as
object name, size, and owner provided by the application, user
or scientists, whereas, PMOs are simple memory allocated
objects and can only be accessed and shared via persistent
pointers. For instance, with Intel’s PMDK libpmemobj
API, each stored object on PM is represented by an object
handle of type PMEMoid as shown in Figure 1.

FIGURE 1. Layout of PM object identifier (PMEMoid) [20].

The PMEMoid for given object does not change during the
life of an object/application unless a realloc() operation
is invoked [10]. Therefore, accessing and sharing a PMO
requires an additional metadata mapping or index of objects
with user or application provided semantics. Furthermore,
self-describing metadata for scientific files, i.e., metadata
embedded inside the scientific data file and tags/annotations
to data objects by the scientist, also needs to be persisted
along with memory objects. Second, a persistent memory
object should be crash consistent, i.e., system should ensure
access and consistency of memory object in case of applica-
tion crash or ungraceful power failures. Third, creating and
managing index metadata for each PMO incurs high index
storage space overhead and large query search space.

To this end, we intend to build an application framework
with object storage abstraction on top of the shared PM pool.
The proposed application model employs PMDK provided
transactions to ensure atomicity and consistency. The meta-
data is managed in a lightweight persistent key-value store.
For multi-attribute indexing, search, and query, we introduce
Group Split and Merge (GSM) index data structure. GSM
minimizes the query search space and storage overhead by
grouping various memory objects based on a specific sharing
set of attributes.

III. MOSIQS: DESIGN AND IMPLEMENTATION
In this section, we present our key design goals, target archi-
tecture and system overview.

A. DESIGN GOALS
Our key design goals include:

• Simple andGeneric StorageModel:MOSIQS should have
a simple, generic, and schema-less storage model to ensure
the compliance to diverse scientific formats and applica-
tions, i.e., persistent memory objects should be orthogonal
to a domain-specific datatype or format.
• High-Performance and Scalability: One critical goal of
MOSIQS is to meet the performance and scalability require-
ments of scientific applications by fully exploiting the
underlying hardware architecture, i.e., Shared PM Pool.
Furthermore, MOSIQS should be capable of handling con-
current workloads in a scalable manner while ensuring the
correctness of individual transactions.
• Multi-attribute Indexing and Query Support: Self-

described scientific data formats such as HDF5 and
NetCDF contain additional descriptive metadata. Often-
times data is retrieved based on additionally stored meta-
data. Thus, MOSIQS should provide a capability to search
based on object metadata.
• Flexible Data Sharing and Controls: Another important

goal of MOSIQS is to facilitate scientists and researchers
with easier data sharing controls, i.e., ability to export or
publish a particular PMO or a collection of PMOs based on
certain criteria with other scientists and collaborators. Such
PMO sharing also minimizes data movement overhead.
• Application and User-provided Hints: The scientific-

friendly storage model provided by MOSIQS intends to
empower scientists and applications to pass hints to control
and set application specific configurations such as creating
a shareable and read-only PMO, post-storage tagging of
PMO, and excluding metadata extraction or index con-
struction for specific PMOs.

B. TARGET ARCHITECTURE
MOSIQS is a PM object storage framework providing a
scalable data management and metadata search service for
scientific applications. MOSIQS’s target architecture is an
array of PM devices distributed across hundreds of compute
nodes. PM on each compute node is shared with other com-
pute nodes via a shared PM pool abstraction via high-speed
fabric attached memory (FAM) interconnect such as
Gen-Z [6], [45]. Figure 2 depicts a high-level architectural
overview of the MOSIQS. Multiple compute nodes can create
a shared namespace abstraction atop the shared PM pool via
the MOSIQS library and directly store and manage memory
objects on these namespaces. Multiple processes running at
these compute nodes can access and share PMOs via names-
pace abstraction. Figure 2 shows that a process running at
compute node 2 accesses two PMOs from namespace 1 and 2.
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FIGURE 2. MOSIQS target architecture and memory object storage
abstraction integrated with scientific discovery service.

FIGURE 3. An inner layout of MOSIQS architecture.

To enable memory-level object storage abstraction to appli-
cations, we employ Intel’s PMDK provided lipmemobj
library, an open source PM object storage interface [20].
On top of the shared memory object storage abstraction,
MOSIQS provides applications and scientists with scientific
metadata search service to further accelerate the performance
and overcome the challenge to find a particular PMO or
subset of PMOs.

C. SYSTEM OVERVIEW
MOSIQS primarily consists of the following key abstractions:
Shared memory pool, Namespace manager, Metadata extrac-
tor, Sharing manager, Group manager, Index manager, and
Query manager. Figure 3 presents the multi-layered archi-
tecture of MOSIQS. The bottom layer is the shared PM pool,
which aggregates all PM devices and exposes them as a single
PM pool. Next, the PMDK [20] layer provides low-level
primitives, e.g., transactional and reliable object manipula-
tion, via libpmemobj and libpmem. All the applications
attach and detach memory objects from PM pool via MOSIQS,
which internally relies on libpmemobj interface.

The metadata extraction and storage management layer is
stacked on top of the bottom layer. The metadata extrac-
tor is responsible to extract and populate the object name
and PMEMoid mappings. Furthermore, it extracts the anno-
tations, user provided tags and other metadata from the
object as well. All the extracted metadata resides in form
of key-value paired metadata objects. The sharing manager
is responsible to enable the data sharing among applications
and collaborators. Group Manager provides logical organiza-
tion of PMOs defined by application and/or scientists. The
group manager in our design plays a crucial role in providing
easier and space efficient index metadata. Further, it also
benefits in reducing the query search space spanning over
multiple attributes. The pool KV store is metadata storage
backend for all the metadata of MOSIQS objects. The names-
pace manager enables flexible controls via partitioning large
shared PM pool into application or user-defined namespaces.
The third layer provides multi-attribute metadata search and
query service and relies on the PMO metadata. The index
manager controls the Group Split-Merge (GSM) index data
structure. GSM index is a tree data structure designed to
provide efficient querying atop pool KV store where all the
metadata is stored. The main responsibility of query manager
is to serve the query requests from the users/scientists and
applications.

D. DATA MODEL
MOSIQS data model consists of three major building blocks.

• Persistent Memory Object (PMO): A PMO is a
self-described entity and represents a single-value, an array
or a compound datatype. It can be created by application
or user. A PMO is placed in a group, and additional anno-
tations and hints can be specified. In MOSIQS, a PMO is
the minimum sharing currency between applications and
users. A PMO requires several properties to be supported:
crash consistency to ensure consistent state, system nam-
ing, and permission controls to enable PMO to be discov-
ered and shared with other processes and collaborators.
• Group: A group represents a collection of PMOs that

share common properties and attributes. MOSIQS supports
inclusive relationships between groups, i.e., a group can
have nested groups similar to nested directories in file
systems. Specifically, the group provides a logical orga-
nization and a way to store and share collection of PMOs.
A key property of a group is its Sharing Frequency (SF),
which we discuss later in Section IV.
• Attribute: An attribute is a <key,value> pair which
enables annotations, user-defined tags, and properties of
groups and objects. Our attribute concept is the same with
attributes in scientific data formats, i.e., HDF5 and netCDF.
Each attribute also maintains SF which we explain later in
Section IV.

The prior version of this work [9] shows an example appli-
cation for group and PMO creation with attribute annotations
in Listing 1.
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E. SHARED PERSISTENT MEMORY POOL
The shared persistent memory pool empowers MOSIQS to
provide applications with collective view and an aggregate
capacity of an array of PM devices. This satisfies the intense
capacity desire of scientific applications [15]. Internally,
MOSIQS creates the shared PM pool via libpmempool
API [20], where the device files, i.e., /dev/pmem[1-6]
as shown in Figure 3, are concatenated to form a single PM
pool. Any object inside the PM pool is reachable via Root
object pointer. When an application opens a pool, it is given a
privilege to access the global memory Root pointer, which
allows applications to locate the PMOs by accessingmetadata
stored in the pool KV store. The memory allocations and
de-allocations are conducted via libpmem at the lower level
inside libpmemobj.

1) NAMESPACE MANAGEMENT
MOSIQS provides a namespace abstraction atop its data model
to enable easier storage for applications using a shared PM
pool. A namespace in our design is the same as memory
address space for a process except that our namespace is
persistent and stays beyond the application lifetime. Each
namespace has its own metadata KV storage engine to store
and locate PMOs inside the namespace. Applications or sci-
entists using a shared PM pool can access PMOs in another
namespace, provided awareness of namespace metadata such
as name, owner and access permissions. Such namespace
management offers an easier and simpler storage model per
application or scientist.

F. METADATA EXTRACTION AND STORAGE
1) METADATA EXTRACTION
We analyzed that a general design technique that proved
crucial forMOSIQS is simplifying andminimizing the number
of operations in critical I/O path. The key idea to extract and
store PMOmetadata and user/application annotated tags is to
enable sharing and to build indexes for quick access, efficient
retrieval of PMO and to enable future analysis. The metadata
extractor is implemented as a service by which application or
user annotated tags can be extracted from group or PMO. It
creates a single metadata KV object for each PMO or group
and inserts it in pool KV store. MOSIQS defines its own layout
of metadata object for PMO and group.

FIGURE 4. The self-described metadata KV objects in pool KV store.

Figure 4 shows an overview of extracted and stored meta-
data KV object of both types, PMO metadata and group
metadata object in pool KV store. The OID denotes the PMO
object, whereas GID refers to the group metadata object.

The value in <OID|GID,Value> pair as shown in Figure 4
itself represents an additional self-described entity, i.e., moti-
vated by scientific data formats [33], [34]. We further parti-
tion the value part into header part and data part, as shown
in Figure 4. For each OID, the header contains the meta-
data information such as PMEMoid, whereas the data part
contains associated attributes and annotated values provided
by the user or application to a particular PMO. Note that,
each OID points to a single PMO stored in MOSIQS. For
each GID, the header contains the metadata of group such as
annotated attributes and sharing scope of the group as shown
in Figure 4. Whereas, the data part contains the list of PMOs
sharing the same set of attributes, along with their unique
values which can be a single-valued string or an integer
or a complex composite data structure such as a tree or a
mesh. Themotivation behind storing OID and GID as <k,v>
metadata objects in pool KV store provides multiple benefits,
i) easier access to PMO, ii) flexible and extensible tagging,
iii) efficient metadata search queries.

To ensure the consistency of metadata extraction,
we encapsulate each operation as a transaction backed by
a logging approach. To minimize the performance degra-
dation, we perform metadata extraction in the background
and <OID|GID,Value> pair populates synchronously in
pool KV store. Both metadata extraction operation and
<OID|GID,Value> pair population is executed in parallel.
For data object consistency, we rely on libpmemobj pro-
vided consistency semantics. All the PMOs annotated with
bypass index hint are excluded by metadata extractor from
extraction operations. For such objects, only object mapping,
i.e., object name to PMEMoid is stored.

2) OBJECT SHARING CONTROLS
We design MOSIQS aiming to make it as simple as possible
for scientists and applications to enable fast memory-level
object sharing. PMDK [20] provides persistent pointers,
i.e., PMEMoid and handles an internal virtual address map-
ping indirection to the memory base address to tolerate appli-
cation crashes and ungraceful shutdowns. Therefore, sharing
a PMO beyond the application bounds to other applications
or scientists requires storing the persistent pointer of PMO.
Whereas, other applications or scientists are unaware of such
memory pointer addresses and instead use object naming
semantics to share objects. For this reason, we keep object
mapping information in the pool KV store as explained ear-
lier (Subsection III-F). We provide sharing controls at two
levels, i.e., object and group level. For object-level sharing,
an application or scientist requests an object. The sharing
manager receives the request and checks the requested object
mapping in the pool KV store. If the object entry is found,
the sharing manager checks the object scope and properties.
If the object is shareable, then the sharing manager returns
the PMEMoid to requesting application or scientist.

To further ease the sharing controls and bring similarity
closer to POSIX like permissions controls, a group can be
marked as a shared group that minimizes the data sharing
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overhead, i.e., sharing a directory in file system compared to
sharing an individual file. An application or a collaborator ini-
tiates a sharing request for a group. In such a case, the sharing
manager validates the group scope and properties from the
pool KV store. If the group is annotated with a global and
shared scope then, returns the list of OIDs enclosed in the
group data part to the requesting application or collaborator.
Note that, the group-level abstraction provides file system
like semantics, e.g., ls -l on a shared group works similar
to ls -l on a shared file system directory.

G. METADATA SEARCH AND QUERY
MOSIQS enables scientists and applications to search and
query PMOs using the metadata stored in the pool key-value
store. However, despite the simpler API for metadata stor-
age, an inherited limitation of key-value store is; lack of
multi-attribute or multi-dimensional search queries, which
is a common trend in scientific applications and communi-
ties [2], [27], [30], [46]. Scientific data is largely unstruc-
tured and contains a lot of descriptive metadata in the
form of key-value pair attributes [26], and retrieving the
desired dataset usually depends on such multiple metadata
attributes [30], [47]. Besides, such retrieval often includes
additional tags and annotations in search query provided
by scientists and applications [2], [26]. Hence, persistent
memory objects also require such multi-attribute metadata
search services to accelerate the performance of scientific
applications. However, simply utilizing existing index data
structures for billions of memory objects on an aggregate
memory pool entails ample query search space and index
metadata storage overhead.

To overcome large query search space and index stor-
age overhead challenges, we intend to introduce and embed
a persistent yet simple index data structure on top of
PMEMKV [35] to improve scientific queries spanning over
multiple metadata attributes. We present the proposed persis-
tent index data structure in the next Section IV.

H. PMO PORTABILITY AND MOBILITY
MOSIQS offers high portability and mobility of PMOs,
i.e., PMOs can be packed into any scientific data format and
flushed to underlying storage for later use in longer future.
Therefore, we consider the portability and mobility of PMOs
in MOSIQS for scientific applications to be favorable when
compared to domain-specific solutions. However, it is not
in scope of this study that how objects will be drained to
underlying storage system.

IV. GSM: MULTI-ATTRIBUTE INDEXING AND QUERYING
Group Split and Merge (GSM) is a dynamic index data
structure designed for PMOmetadata indexing and querying.
It leverages the property that memory objects have many
common attributes shared among each other and query can
benefit from such shared associations. Realistically, a sci-
entific object can be associated with more than a hundred
attributes. For example, MIQS [25] stated that an HDF5 file

FIGURE 5. Representation of PMOs and overview of group split and
merge index tree. SF denotes the sharing frequency.

object contains more than 200 unique attributes, which over-
lap with other objects in the same file. We elaborate it
by using an example of scientific objects associated with
multiple attributes. For the sake of simplicity, we use only
3 attributes per each object. Figure 5(a) presents multiple
objects with multiple attributes. The white box attributes
are unique to each object, whereas, colored box are dupli-
cate attributes which are common among objects as shown
in Figure 5(a). Note that, as mentioned earlier (Section III-D),
the attribute is a key-value pair and the same attributes across
many objects not necessarily have the same value, i.e., the
attribute value can vary from object to object in the pool
key-value store.

To transform such associations to the GSM index,
we extract metadata and associated properties/tags from each
object when it is created and pass it to the index manager
for further processing. The index manager determines the
location of the object in the GSM tree. The location is deter-
mined based on the associated attributes of the object. We
strive to keep objects with sharing or overlapping attributes
into the same group. Recalling, a group object is defined as a
set-associative structure to accommodate multiple objects in
a single key-value entry, as shown in the Figure 4. A single
object may overlap multiple groups. As there is a high prob-
ability that future queries will be performed on the attributes
with a higher number of associations. Figure 5(b) shows
the GSM index tree build from the objects with unique and
overlapping attributes. We introduce and bind an important
element to each group and attribute, i.e., Sharing Frequency
(SF). The group SF is defined as: the number of attributes
contained in a group, whereas attribute SF denotes the num-
ber of objects associated with a particular attribute contained
in a group. For example, as shown in Figure 5(b) the Group
<A, B>’s SF is 2 because it maintains two attributes. On the
contrary, attribute A and B sharing frequency is 4 because
there are 4 PMOs associated with these two attributes,
as shown in Figure 5(a).

A. GSM: INSERT OPERATION
When the application or user creates a group, the group man-
ager simply adds it to the first level of the index tree unless an
existing group is annotated. The insert operation starts upon
receiving an object along with its tags and attributes. There
are two possible ways to associate an object to a group in the
GSM index tree. First, an application or user-defined group
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for the object, where group annotation is provided at object
creation, as shown in Listing 1 in our prior work [9]. We refer
to such an object as Tagged Object. Second, if no group is
annotated to object by application or user, then we search the
appropriate group for object placement based on associated
attributes. We refer to such an object as Free Object.
Therefore, the insert algorithm treats each object differ-

ently, i.e., ¶ Tagged Object, and · Free object. For ¶,
the insert operation is simple; we select the group and update
the attribute’s SF, and check if the group or attribute SF meets
split and merge threshold value. If split and merge threshold
is not violated, then we update the group value accordingly
in the pool key-value store.

For · Free object, we first scan the groups based on
matching attributes; if a group is found, the rest of the pro-
cedure is carried out in the same fashion with the tagged
object. Note that the insertion of a free object is carried on
per attribute. There is a high possibility that free objects
with multiple attributes/tags will overlap in multiple groups.
Figure 6 presents the insertion of a free object in the GSM
index tree. If no group is found then, we create and initialize
a new group, update the header of the newly created group,
associate object to the group and write the group metadata
object in pool key-value store.

FIGURE 6. A free object insertion in GSM index tree. The changes are
shown in bold and red box. Note that, for simplicity we only show the
groups with changes.

B. GSM: SPLIT OPERATION
When a thread has exhausted all the options to insert an entry
into GSM tree without violating the split threshold or SF
value, it triggers a group split operation, which is possibly
the expansion of the GSM index tree. A split threshold is
a tunable parameter configured by application or user to
minimize the query search space. Figure 7 shows the split
operation in GSM index tree. Such group split not only offers
high parallelism for querying but also enables a broad-range
of queries, such as splitting the group based on provided
query hint. For example, Group<A1> contains objects with
temperature less than a certain value, and Group<A2> con-
tains the objects with temperature value greater than a certain
value, which is a common querying pattern in the scientific
community. Such a split trims the query cost and latency by
excluding the undesired results from the query.

C. GSM: MERGE OPERATION
On the contrary to split operation, when the sharing frequency
drops below a threshold, groups can be merged to minimize

FIGURE 7. A split operation in GSM index tree.

index storage overhead and to accelerate the query. Themerge
operation is required in cases when objects are overlapping in
multiple groups, i.e., sharing attributes from multiple groups.
The merge operation squeezes the GSM tree. A merge oper-
ation is useful in minimizing the number of additional I/Os
where a query criterion contains multiple attributes, and irre-
spective of query search space, multiple groups, are iterated
to find the desired datasets. Another use-case of the merge
operation is; when an application provides a query hint in
advance, then groups can be merged to execute the query
efficiently.

Both split and merge operations can be carried out depend-
ing on application, sharing frequency or user-defined query
patterns.

D. CRASH CONSISTENCY
There is a need to ensure that GSM index tree is modified
atomically when an insert, split or merge operation is per-
formed, in order to provide consistency after a crash due
to application error, power loss, or hardware failure. For
this reason, we employ a unified logging (ulog) approach,
i.e., an undo log for metadata operation and redo log for
data operation. The undo log prevents the inconsistency of
groupmetadata such as attribute and group sharing frequency.
Whereas, a redo log preserves the group, attribute, and object
association. The size of our log records is 8 byte and we
mostly write two log records for each operation in GSM
tree. Note that, the redo log hits group data part and can
sustain duplicate results, whereas we avoid duplication in
group header as query relies on header portion and such
duplication in header results in population of false positive
results.

E. MULTI-ATTRIBUTE SEARCH AND QUERYING
As stated in previous studies [26], [30], the queries bound
on multiple attributes are necessarily the most interesting
or complex type of queries encountered in real scientific
applications. In fact, it is usually the case that specific prop-
erties may largely be the unknown parts of queries; indeed,
one may query for relationships between objects spanned
over multiple files (consider, for example, to retrieve all the
objects having temperature and pressure attribute generated
at timestamp t1 from simulation s1). Therefore, we intend to
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FIGURE 8. An example of versatile querying provided by MOSIQS.
In particular, (a) and (b) shows a point query.

FIGURE 9. An example of union operation in parallel querying. The
gray-color boxes represent duplicate OIDs in result. PQ_i denotes parallel
queries issued to multiple groups.

provide such multi-attribute querying on persistent memory
objects in MOSIQS.

Here, we describe how MOSIQS efficiently responds to
queries spanning over multi-attribute ample search space.
A scientist or an application provides a query in a string
form, comprising of a specific field or spanning over mul-
tiple attributes, as shown in Figure 8. For instance, retrieve
all the PMOs associated with set of attributes as defined
in Figure 8(c). The query manager scans the group for query
attributes in the GSM index tree. If all the attributes are
in a single group header, then we read the group metadata
object from the pool key-value store and return the list of
OIDs. However, if different groups are responsible for stor-
ing the attributes and parallel queries are initiated to each
group, the result can contain the duplicates OIDs, as shown
in Figure 9.

The duplication may arise due to overlapping OID across
many groups, i.e., PMO associated with many attributes. For
such queries, it is critical to minimize the duplication from
the query results. Therefore, the query manager performs the
union and sort operation on the resulting list of OIDs and
returns the list with unique OIDs.

Note that, we consider extending and improving the GSM
index tree for attribute-value based querying on persistent
memory objects as our future work.

V. EVALUATION
This section presents MOSIQS performance evaluation.

A. EXPERIMENTAL SETUP
1) TESTBED
We perform our experiments on a machine equipped with
second-generation Intel Xeon scalable dual-socket 56-core
processor (hyper-threading enabled) with 1.5 TB Intel Optane
DC 3D-XPoint PM, and 768GBDRAM. Each socket has two
memory controllers, six memory channels, and twelve mem-
ory DIMM slots installed with 12× 128 GB PM. Optane DC
PM is configured in 100% App direct mode without DRAM

TABLE 2. HDF5 dataset used for evaluation [49].

intervention, so that application has direct byte-addressable
access to the PM. We used PMDK 1.7 and Linux Kernel ver-
sion 5.4.30 (Ubuntu 18.04.2) for compiling and running the
experiments. Note that our target architecture is a distributed
shared PM pool. However, for evaluation, we consider a
single PM device as a shared PM pool where it is shared
multiple processes on the Intel Xeon scalable server. The
peak write throughput for 28 cores is 6.6 GB/s and peak
read throughput is 23 GB/s measured with Memory Latency
Checker [48].

2) IMPLEMENTATION
We modified Intel’s PMDK library and provide a wrap-
per API on top of persistent memory object API. For
metadata backend storage, we used PMEMKV [35] with a
fully persistent B+-Tree storage engine. Though it is not
production-ready yet, we still used it as the goal of our study
is to show the feasibility of the proposed PM application
framework. We use R-trees to implement our GSM index
data structure and internally, rely on PMDK transactions for
GSM split and merge operations to ensure atomicity. This
frees us from handling low-level memory management while
guaranteeing safe and atomic allocations.

3) BENCHMARK AND WORKLOADS
We use PIOK [24] benchmark to evaluate the performance
of MOSIQS. In particular, we use two PIOK provided kernels,
i.e., VPIC-IO and BDCATS-IO to show the read and write
performance. VPIC-IO is an extracted kernel that simulates
the particle data write behavior by the real VPIC scientific
application [50]. Similarly, BDCATS-IO demonstrates the
data read patterns of a parallel program that analyze the parti-
cle data generated byVPIC [50].Wemodified the two kernels
usingMOSIQS object storage abstractionAPI, where each par-
ticle denotes a PMO and is associated with a fixed metadata.
We changed 120 and 270 lines in VPIC-IO and BDCATS-IO
to adopt MOSIQS. We show the efficiency of MOSIQS’s GSM
indexing and multi-attribute querying by using the most
commonly used HDF5 scientific data format. We download
real-world publicly available NASA’s GLAS/ICESat L2 Sea
Ice Altimetry HDF5 dataset [49]. The dataset details are
provided in Table 2. We run each experiment multiple times
and report the mean. In all cases, the standard deviation was
less than five percent of the mean.

We compare our approach with the following systems:

• MIQS+: We implement and emulate MIQS [25] on top
of ext4-DAX file system mounted PM and refer to it as
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FIGURE 10. MOSIQS I/O performance analysis by varying number of processes using 256B and 512KB PMO size.

MIQS+. MIQS [25] implements various DRAM-based
index data structures such as ART and SBST trees to
maintainHDF5file indexes for querying on self-describing
scientific datasets, stored in parallel and distributed file
systems. The metadata indexing is conducted after the data
is written successfully.
• MOSIQS-NoIndex: MOSIQS with no metadata indexing

and search service, but including the software implemen-
tation overhead of MOSIQS on top of PMDK [20].
• MOSIQS-Sync: MOSIQS with metadata extraction enabled

in inline synchronous mode, i.e., metadata populates in
pool key-value store and write operation finishes.
• MOSIQS-Async:MOSIQSwithmetadata extraction enabled

in inline asynchronous mode, i.e., metadata populates in
pool key-value store after the write I/O. We use separate
dedicated threads executing concurrently, one for process-
ing application I/O and another for metadata extraction.

B. I/O PERFORMANCE ANALYSIS
1) THROUGHPUT ANALYSIS
Figure 10 shows the peak throughput of read and write oper-
ations with varied number of processes using a fixed PMO
(i.e., 256 Bytes). As, observed from the Figure 10 (a) and (c),
MIQS+ performs poorly compared to the proposed MOSIQS

variants. MIQS+ access data in the block size granularity
exposed to the OS, which is typically 4KB. Further, MIQS+
always needs to go through the I/O stack to fetch data, adding
extra system call overheads. We observed that in MIQS+,
the IO stack overhead has a much higher impact than the
write amplification due to block size mismatch, i.e., MIQS+
wastes I/O bandwidth if the required I/O size is smaller than
the block size. If the block size is bigger, MIQS+achieve
better bandwidth, but I/O stack overhead remains the same.
On the other hand, this overhead can be easily amortized in
MOSIQS variants as there is no file system or kernel involved.
However, throughput difference in MOSIQS variants is mainly
attributed to the additional metadata extraction and manage-
ment in the critical I/O path. MOSIQS-NoIndex shows a con-
sistent performance trendwith varied processes. It reaches the
peak write bandwidth including our software implementation
overhead. It incurs a single metadata insertion operation per
I/O to populate a mapping entry in pool key-value store
compared to MOSIQS-Sync and Async approach. Therefore,
with varying processes we can see performance drop in
MOSIQS-Sync and Async. For read throughput, we observe

FIGURE 11. MOSIQS’s index construction with and without consistency
overhead.

a scalable performance trend for all the approaches as shown
in Figure 10(b) and (d).

2) BANDWIDTH ANALYSIS
We have already discussed the read/write bandwidth of
MOSIQS with varying PMO size in our previous work [9].
The peak write bandwidth of MOSIQS-NoIndex is 63%
of 6.6 GB/s due to PMDK’s internal transaction manage-
ment, atomic memory allocations, pointer assignments and
MOSIQS’s object to persistent pointer mappings. Its peak
read bandwidth is 40% of 23GB/s with 512KB PMO size.
It is mainly due to iMC’s cache misses, accessing object’s
persistent pointer and PMDK’s internal persistent pointer
to memory address translation. As expected, we observe a
scalable read performance trend in all MOSIQS variants. The
difference in read and write throughput of MOSIQS and its
variants is mainly derived from PM properties, i.e., the read
and write performance of PM is highly asymmetric.

C. MULTI-ATTRIBUTE INDEXING AND QUERYING
Here, we present the evaluation of metadata search and query
service provided by MOSIQS.

1) INDEX CONSTRUCTION AND CONSISTENCY OVERHEAD
Figure 11(a) & (b) depict the average index construction
runtime of a single PMO with and without ensuring the con-
sistency. We varied the number of attributes per PMO to mea-
sure the time spent on each operation for constructing index.
We observed that all operations such as metadata extraction,
group scanning, and GSM metadata object persistence lin-
early increase with varying number of attributes except the
index update sub-operation. The index update incurs unified
logging overhead, i.e., a redo log and an undo log for data and
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TABLE 3. Versatile search queries to measure the query performance. Attribute column shows metadata object required to answer the query.

metadata updates. However, excluding logging overhead can
benefit from improved runtime but at the cost of inconsistency
tolerance.

2) INDEX STORAGE OVERHEAD
Here, we show the index storage overhead of MIQS+ and
MOSIQS variants with variable group sharing frequency val-
ues. Recall, group sharing frequency defines the number of
attributes contained in a group, which directly impacts the
index storage space overhead. Figure 12 presents the index
storage space consumed by MIQS+ and MOSIQS variants.
#A/G in Figure 12 denotes group sharing frequency, i.e., num-
ber of attributes per each group. The distribution of attributes
in group and attribute sharing frequency affects the index
storage overhead. For instance, if attribute sharing frequency
is less per group, then there is a high probability that attribute
will overlap across the groups, which in turn increases the
index storage overhead. Similarly, if a group has many
attributes and attribute sharing is very high that all associated
PMOs can fit in a single group, then index storage overhead
will be very minimum. We use real HDF5 dataset files and
observe that MOSIQS-4A/G (4 attributes per group) consume
almost half index storage space compared to MIQS+.

FIGURE 12. MOSIQS’s index storage space overhead. #A/G denotes
number of attributes per group.

Surprisingly, with increasing count of HDF5 files, i.e., 4K,
MIQS+ takes up almost 1.35GB. On the contrary MOSIQS–
4A/G and 32A/G consume only 920MB and 500MB of
index storage space for a total of (37 Attributes ×
2167 PMOs × 4K Files) PMOs. Note that, high shar-
ing of attributes among the group can increase the overlap-
ping PMOs across the groups. Therefore, GSM index tree
intelligently split andmerge based on the attribute sharing fre-
quencies to minimize the storage space overhead. However,
to clearly show the storage overhead, we do not split or merge
the GSM index tree. Further, MIQS+ incurs index storage

overhead in DRAM, whereas MOSIQS’s storage overheard is
PM overhead. DRAM is more expensive and lower density
than PM.

3) GSM LOAD FACTOR
Here, we explain the correlation between attribute and group
sharing frequency while taking into account multi-attribute
query, index storage overhead, and most importantly, query
search space. To analyze the trade-off between query search
space and index storage overhead, we insert 1 Million
zero-size PMOs, each tagged with 16 attributes. We consider
two multi-attribute queries, i) Q1 includes a single metadata
attribute and Q2 uses only 4 attributes with sharing frequency
≤ 20. Figure 13(a) & (b) show the query search space and
storage overhead for each query type. For Q1, the query
search space for PMOs is very high when a single group is
managing all the attributes. However, the index storage over-
head is very small because GSM manages attribute indexes
at group abstraction instead of individual PMO as shown
in Figure 13(a). On the contrary in Figure 13(b) we observed
that for Q2, attribute sharing frequency based group creation
is highly important as attribute sharing frequency enables us
to trim the query search space. We observed that an optimal
group sharing frequency value for our workload and query
is around 3-4, i.e., 4 attributes per group considering query
search space and storage space overhead.

FIGURE 13. Load factor between query search space and storage space.
The storage and query search space % is normalized with respect to
MIQS+ (100%).

Note that, the MIQS+ has an imbalance load factor among
the index trees, i.e., when a particular attribute shows a higher
association with PMOs, the resulting tree can be of higher
depth thus overloading a particular index tree.

4) MULTI-ATTRIBUTE QUERY PERFORMANCE
To analyze the query performance using realistic scientific
HDF5 datasets, we use previously populated PMO mappings
and GSM index tree from the experiment. The group sharing
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TABLE 4. Query throughput for queries defined in Table 3. EE shows an
end-to-end query and data retrieval time.

frequency is set to 4 as explained earlier.We define five realis-
tic PMOmetadata, and associated attribute queries, as shown
in Table 4. In particular, Q4 and Q5 represent a query span-
ning across multiple groups. Therefore, the query search
space will profoundly impact Q4 and Q5 throughput as com-
pared to Q1-Q3. For this experiment, we compare MIQS+
with two variants of MOSIQS. MOSIQS-Fixed, manages all
attributes in a single group and do not exhibit any split or
merge operation. Whereas, MOSIQS-Dynamic adjusts group
and attribute sharing frequency dynamically. For example,
if two groups have high overlapping objects or many groups
containing low attribute sharing frequency, we merge the two
groups dynamically to minimize index storage overhead and
number of additional I/Os. Similarly, if a group has high
attribute sharing frequency than pre-configured (4 in this
case), MOSIQS-Dynamic splits the group in two sub-groups,
i.e., child groups to benefit with query parallelism. Table 4
shows the average query throughput and end-to-end time
(query time + time to read the data object). In real scien-
tific usecases, such queries are used to find and retrieve the
data items. Therefore, we measure end-to-end time because
MIQS+ caches the indexes in DRAM, whereas data item
retrieval requires accessing disk storage system. We read
varied number of PMOs against each query for MIQS+ and
MOSIQS variants. On average, MOSIQS-Dynamic only shows
7% query throughput degradation and MOSIQS-Fixed shows
27% compared to MIQS+. However, for end-to-end time,
MOSIQS outperforms the MIQS+ due to dataset storage loca-
tion, i.e., PM pool against the file system.

VI. RELATED WORK
In this section, we review the related work on in-memory
indexes, PM in scientific computing along with significance
of metadata indexing and querying.

A. IN-MEMORY VOLATILE INDEXES
An approach to build a high performance scientific data man-
agement system is to store and index all of its metadata and at
least significant data in the main memory [31]. Several scien-
tific and database communities have adopted such in-memory
ordered and unordered index data structures including B/B+-
trees, Hashes, Tries, and Radix trees to mitigate the data
access problems [30], [31]. MIQS [25] provides a classical
example of building such in-memory indexes to provide effi-
cient querying support on scientific datasets. MIQS employs
multiple trees such as ART and SBST altogether to ensure
quick retrieval of dataset. However, in-memory volatile data

structures or DRAM-resident indexes have an inherent lim-
itation, i.e., they cannot survive power failures and unex-
pected crashes [32]. A simple power-failure makes the index
unreachable and requires rebuilding or recovering the whole
index.

B. PM IN SCIENTIFIC COMPUTING
A few recent studies employ PM to benefit scientific appli-
cations [4], [14], [17], [41]. NV-Process [41] proposed a
fault tolerance process model based on PM and provides an
elegant way for the applications to tolerate system crashes.
Similarly, [17] evaluates different fault-tolerance approaches
for scientific applications to use PM. pVM [14] provides the
dynamic expansion of the virtual memory technique with an
object storage abstraction on PM. DAOS-M [18] proposed
an object storage model on PM and NVMe SSDs, using
PM for small writes and metadata, whereas large objects are
written directly on SSDs. However, pVM and DAOS-M lack
scientific metadata indexing and querying for memory-level
objects. Further, these studies also lack data sharing controls,
an important requirement of scientific computing [27].

C. SCIENTIFIC DATA INDEXING AND QUERYING
Several studies have proposed various solutions and opti-
mizations to improve the scientific indexing and querying
tightly integrating into the file system or using external
databases [2], [9], [25]–[27], [30]–[32], [46], [51]–[56].
SoMeta [51] provides scientific metadata querying via scal-
able self-described object and map objects to files inter-
nally at the file system level. GUFI [55] embeds SQLite in
every directory hierarchy to improvise indexing and metadata
query in deeply nested file system directories. Brindexer [46]
employs a relational database to track and manage metadata
changes on the lustre. TagIt [2] offers a file system integrated
indexing and querying for a large collection of scientific
files stored on a shared-nothing distributed file system. Spy-
glass [56] proposed a hierarchical partitioning approach to
exploit locality for effective querying. EMPRESS [54] stores
and manages metadata in PostgreSQL. Dataspaces [57] pro-
posed a general programming model for data exchange using
virtual shared space abstraction with online data indexing
support and querying for coupled scientific workflows. Simi-
larly, ExaHDF5 [24] provides metadata extraction and query-
ing for scientific data formats such as HDF5 and NetCDF.
Furthermore, scientific data queries vary from simple point
query to prefix, suffix and range query based on com-
plex selection criteria involving multi-attributes as described
in [26]. A few common challenges solved by previous studies
involve: effective metadata extraction and indexing, efficient
metadata management, and querying over domain-specific
datasets.

A common goal among previous studies and our work
is to enable metadata indexing, and querying over a large
collection of diverse and complex layout scientific datasets.
However, it is very challenging to build a general frame-
work due to a variety of applications, diverse scientific data

85228 VOLUME 9, 2021



A. Khan et al.: MOSIQS: PM Object Storage With Metadata Indexing and Querying for Scientific Computing

formats, and APIs. Moreover, most of the aforementioned
solutions are built on the notion of underlying parallel file
system, which is block-addressable. Thus, requires a lot of
engineering and complex implementation efforts to apply
on persistent memory. Many of the challenges we face are
not radically new, but take on new characteristics when
coupled with object storage abstraction on shared PM pool
with high-speed interconnect such as Gen-Z [6], e.g., ensur-
ing consistency and failure-atomicity in case of application
crashes and ungraceful power failures.

Therefore, to this end, MOSIQS provides a memory-level
persistent object storage abstraction via a shared memory
pool on top of distributed array of PM devices. The sci-
entists and collaborators can create and remove persistent
objects from shared memory pool via MOSIQS. Moreover,
MOSIQS is equipped with metadata indexing and efficient
multi-attribute querying mechanism to accelerate scientific
computing applications.

VII. CONCLUSION
In this paper, we present MOSIQS, a persistent memory
object management system to accelerate scientific com-
puting. MOSIQS provides application to efficiently attach
and detach memory objects into their address space and
enables effective sharing of persistent memory resident
objects across different applications and collaborators. The
proposed PM-based application model not only allows effec-
tive metadata extraction and tagging of memory objects but
is also equipped with indexing and querying service aimed
at scientific datasets to further accelerate scientific exper-
iments, simulations and analysis. The preliminary evalua-
tion confirms a 100% improvement for write and 30% in
read performance against a PM-aware file system approach.
Further, GSM index data structure incurs 2.7× less storage
index space compared to existing state-of-the-art in-memory
indexing approach. MOSIQS application model has proven
to be extremely capable, and usable in a wide variety of
applications. We consider minimizing the translational over-
head to deference persistent pointers for direct load and store
accesses as our future work.
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