
Concurrent File Metadata Structure 
Using Readers-Writer Lock

Chang-Gyu Lee, Sunghyun Noh, Hyeongu Kang, Soon Hwang, Youngjae Kim
Sogang University, Seoul, Republic of Korea

DISCOS
LABORATORY



Manycore Server and Parallel I/O

• Manycore CPU enables a single server with tens to hundreds of core.
• Parallel I/O is the key to improve I/O throughput using the massive 

number of cores.

* https://www.amd.com/en/processors/epyc-7002-series * https://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/3rd-gen-xeon-scalable-processors-brief.pdf

2



Manycore Server and Parallel I/O

• However, there are several things we need to check before actively adopts 
parallel I/O into the manycore system

1. Fast and highly parallel storage device
enough to accommodate parallel I/O requests from the manycore system

2. The file system design
has to remove inode mutex, which serializes I/O requests to a shared file

3. Keep the POSIX requirements

3

PCIe connected NVMe SSD such as Intel Optane SSD

Fineer-grained locking mechanism based on the extent of I/O operation (Range Lock)

Recent studies presented the Range Lock with POSIX-compliant the file system
i.e., pNOVA (APSYS’19), F2FS-RL (SYSTOR’19), CrossFS (OSDI’20)



Range Lock to Enable Parallel IO
• Consider three threads are writing the same file.
• Thread 1 and Thread 2 are writing non-overlapping ranges.
• Thread 3 is writing the file range overlapping with Thread 2’s range.

4



Range Lock to Enable Parallel I/O

5

• Consider three threads are writing the same file.
• Thread 1 and Thread 2 are writing non-overlapping ranges.
• And Thread 3 is writing overlapping range with Thread 2.



Range Lock to Enable Parallel I/O

6

• Consider three threads are writing the same file.
• Thread 1 and Thread 2 are writing non-overlapping ranges.
• And Thread 3 is writing overlapping range with Thread 2.



Throughput still Collapses After 15 Cores.
• We tested two range-lock implementations that have different locking overheads.

• Interval Tree-based(F2FSRL) and atomic operation-based(F2FSAT)

• Interval Tree requires the tree-level lock to secure consistency against tree modification.
• In the atomic operation-based approach, the file is divided into fixed-length segments. Thus, 

it does not lock the entire file but only locks the corresponding segment.

Throughput Collapse
< Samsung EVO 970 >

DirectIO
Shared File I/O (DWOM in FxMark)

7



Problem: Lack of Concurrency in File Metadata

• Searching block addresses of file data from the file metadata become the bottleneck.

14.54% of total CPU cycles

51.37% of total CPU cycles

8

Used for searching and modifying the file metadata

Lack of concurrency in the file metadata



File Metadata in F2FS

• Inode, direct node, and indirect node are called Node in F2FS
• F2FS stores Node and Data in a log fashion

9

Called “Node” in F2FS

File metadata
F2FS On-disk structure

“Node” 



File Metadata is the Node Tree
• Since Nodes are aligned to the page size in F2FS, blocks that store Nodes are loaded into 

the page cache.
• When Nodes are in the page cache, the file metadata is simply a tree consist of Nodes.
• We call it Node Tree

10

< Node Tree >

Searching for block addresses of file data 
is traversing the Node Tree



What is happening to node tree in Parallel I/O?

• While traversing the Node Tree, F2FS uses Mutex lock on Node for consistency.
• It only release the lock only when Mutex lock is acquired for its child Node.

11

< Node Tree >

T1



What is happening to node tree in Parallel I/O?

• While traversing the Node Tree, F2FS uses Mutex lock on Node for consistency.
• It only release the lock only when Mutex lock is acquired for its child Node.

12

< Node Tree >

T1



Problem – Cascading Tree Lock
• Mutex lock on a Node blocks any other thread to enter its subtree regardless 

of read or write.
• As closer to the root node, a larger subtree will be blocked.

13

< Node Tree >

T1

T2T3
Waiting for Lock

Threads are serialized at the Node even though two thread are reading disjoint ranges of file.



Problem – Cascading Tree Lock
• Mutex lock on a Node blocks any other thread to enter its subtree regardless 

of read or write.
• As closer to the root node, a larger subtree will be blocked.

14

< Node Tree >

T1

T2T3
Waiting for Lock Waiting for Lock

Threads are serialized at the Node even though two thread are reading disjoint ranges of file.



Problem Summary

• Problems
1. Lack of Concurrency in File Metadata
2. Cascading Tree Lock

• To solve these problems, we propose nCache.

15



nCache Overview

• nCache employs Readers-Writer Lock to enable parallel accesses to Node Tree
• Allow readers to share the subtree while traversing the Node Tree.
• Block other threads only required subtree on a write case.

16

< Node Tree >

T1

T2T3
Waiting for Lock

T1T2
T3

Transition to Writer Lock on write case

< Node Tree with nCache >



Example of nCache

17

T1T2
T3

Transition to Writer Lock
When the thread need to modify the Node



Consistency Problem

• Consider two writer threads sharing subtree.
• Both threads are trying to add a new node to the tree but different extent.
• In this case, simply adopting Readers-Writer Lock results in an inaccessible 

Node in the tree.

18



Double-checked Locking

• To solve this, nCache employed double-checked locking.
• nCache releases the reader lock and re-acquires the writer lock when the 

thread notices it needs Node modification.
• So when a thread acquired the writer lock, it double-checks the condition 

because the previous writer thread might change the Node.

19



Evaluation Setup
• IBM 120 Core Machine with 3 different NVMe SSDs

• Samsung 970 EVO
• Intel 750 SSD
• Intel Optane 900P

• Workloads
• Synthetic Workload (FxMark) – Shared File Write (DWOM) and Shared File Read (DRBM)
• Realistic Workload

• HACC-IO : I/O Benchmark for Scientific Simulation Framework
• RocksDB : LSM-based Key-Value Store

• Configurations
• F2FS : The baseline F2FS
• F2FSRL : F2FS with the Interval Tree-based Range Lock
• F2FSAT : F2FS with Atomic operation-based Range Lock
• F2FSRL+NC : F2FSRL with nCache
• F2fsAT+NC : F2FSAT with nCache

20



Evaluation - DWOM (Samsung 970 EVO SSD)

• In FxMark DWOM Workload, each thread writes a private region on a shared file.
• Both of range lock design has improved the manycore scalability.

21



Evaluation – HACC-IO

< Samsung 970 EVO SSD > < Intel Optane 900P >

22

• HACC-IO emulates the checkpoint phase of HACC which is a large cosmological 
simulation framework for HPC



Evaluation - DWOM (Device comparison)

< Samsung EVO SSD >

< Intel 750 SSD >

< Intel Optane 900P >

23



Evaluation - DRBM (stride: 4KB vs 8MB)

• Device max throughput changes as IO pattern. (Refer the paper for detail) 
• 8MB Stride issues more random IO to the device which leads lower device max throughput
• On the other hand, 4KB Stride make more sequential IO. As a result, the device shows higher max throughput.

< Samsung EVO SSD >

24



Evaluation – RocksDB

25

• Tested via db_bench in RocsDB, varying number of issue thread bounded to each CPU.

• Random Read Random Write workload with 16B key and 100B Value.

• With Intel Optane 900P, nCache outperformed the baseline F2FS.
• However, the performance does not increase as the number of core increases. We see this is because of the 

contention in RocksDB, since LSM-tree has high compaction overhead and serialization at the memory table.



Conclusion

• Parallel I/O throughput in the manycore system had improved with the Range 
Lock.
• However, Range Lock solely cannot sustain the throughput till hundreds of 

cores.
• The main cause of the scalability bottleneck is the lack of concurrency in the 

file metadata structure.
• The tree data structure of file metadata has to allow concurrent accesses with 

considering the consistent updates to mitigate this.
• nCache enabled parallel accesses to the tree with consistency via readers-

writer lock and double-checked locking.

26



Thanks!

27


