
Isolating Namespace and Performance in Key-Value
SSDs for Multi-tenant Environments

Donghyun Min and Youngjae Kim
Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea

{mdh38112,youkim}@sogang.ac.kr

ABSTRACT

Key-value SSDs (KVSSDs) implement the storage engine of a

key-value store such as log-structured merge-tree (LSM-tree)

inside the SSD. However, recent LSM-tree based KVSSDs

cannot be used directly in a multi-tenant environment. LSM-

tree-based KVSSDs are not designedwith isolation inmind in

terms of namespaces and performance, leading to incorrect

data access between concurrent users and poor read perfor-

mance. In this paper, we propose Iso-KVSSD, a LSM-tree

based KVSSD for multi-tenancy by supporting namespace

and performance isolation. The Iso-KVSSD performs access

control based on the user’s namespace and constructs per-

namespace dedicated LSM-trees for users. We implement the

Iso-KVSSD on Cosmos+ OpenSSD in a Linux environment

and evaluate performance with Put() and Get() workloads

by varying the number of tenants. Our extensive evalua-

tion results showed that Iso-KVSSD has negligible write

performance overhead and an average 2.9 times higher read

throughput than a baseline that manages one global shared

LSM tree between users.

1 INTRODUCTION

Key-value stores (KV-stores) such as RocksDB [7], LevelDB [6],

and MongoDB [5] are NoSQL databases running on a host.

On the other hand, key-value solid-state drives (KVSSDs) [3,

4, 10, 12, 14, 19] run the storage engine of a KV-store on

the SSD. Recently, KVSSDs with a LSM-tree based indexing

approach have emerged [10, 14, 19]. LSM-tree [16] is a data

structure that performs out-of-place logging to disk sequen-

tially instead of in-place write when storing KV data. Thus,

LSM-tree-based KVSSDs provide optimized performance for

write-intensive workloads.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotStorage’21, July 27-28, 2021, Virtual

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8550-3/21/07. . . $15.00

https://doi.org/10.1145/3465332.3470883

Multi-tenancy is an architecture that can host multiple

database instances of tenants on a server. In a multi-tenant

environment, concurrent users are provided with an abstrac-

tion of having their own dedicated server, requiring isolation

in terms of security, privacy, and performance [8]. The afore-

mentioned requirements for isolation can be met based on

namespace isolation. Namespace is a granularity that sepa-

rates the KV data of tenants stored in physical space into log-

ical groups. Several existing KV-stores such as RocksDB and

MongoDB have been designed to be multi-tenant [13, 18].

Several studies on LSM-tree based KVSSDs [10, 14, 19]

even lack design and implementation for namespace isola-

tion. Therefore, each user fails to be provided a strict view

showing only the data corresponding to their own names-

pace. Accordingly, data from other users can be easily modi-

fied or read recklessly [11, 17]. Furthermore, current LSM-

tree-based KVSSDs have difficulty in providing the promised

read throughput that the storage device can provide for each

tenant in a multi-tenant environment. This is because multi-

ple KV data from tenants are still managed by a single global

LSM-tree index structure.

Specifically, the global shared LSM-tree structure of the

KVSSD has the following limitations. First, it is likely that

most tenants’ KV data will be indexed at the upper level of

the LSM-tree. So, traversing the LSM tree is time consuming

because the search algorithm starts at the lowest level of

the index. Second, to check the existence of the requested

key during LSM-tree search, it must read the Bloom filter

(BF) data structures of the LSM-tree from the NAND flash

memory several times.

In this paper, we propose Iso-KVSSD, a LSM-tree based

KVSSD that supports isolation in terms of namespace and

performance formulti-tenant environments. This papermakes

the following specific contributions.

• For namespace isolation, Iso-KVSSD identifies the user’s

namespace information and performs namespace-based

access control for each user. The namespace is stored in the

NSID region of the NVMe command and then transferred

to Iso-KVSSD.

• For performance isolation, Iso-KVSSD adopts a namespace

dedicated LSM-tree design according to the user’s names-

pace. Each user is given their own independent dedicated

8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3465332.3470883&domain=pdf&date_stamp=2021-07-27

HotStorage’21, July 27-28, 2021, Virtual D. Min et al.

(a) Response time (b) Level of accessed data

Figure 1: Comparative evaluation of the impact that

tenant x receives from co-located neighbor tenant y.

LSM-tree. This is achieved by partitioning the global LSM-

tree into per-user LSM-trees according to namespace. This

approach does not require any additional total cost of own-

ership while delivering promising performance to tenants

that the storage device can provide with little performance

loss.

• Iso-KVSSD was implemented on the Cosmos+ OpenSSD

Platform [1] in a Linux environment. Iso-KVSSDwas eval-

uated and compared with baseline which adopts a global

shared LSM-tree with workloads using Put() and Get()

while increasing the number of tenants. Our extensive ex-

periments showed that Iso-KVSSD improves read through-

put by up to 2.9 times while write performance is barely

different from the baseline.

2 BACKGROUND AND MOTIVATION

2.1 Log-Structured Merge-Tree

LSM-tree [16] is a hierarchical structure that consists of an

internal DRAM component (MemTable) and a NAND flash

memory component (SSTable) in KVSSDs. MemTable tem-

porarily stores KV data transferred from the user. MemTable

is mutable and is typically implemented as a skiplist. A

SSTable is an immutable index file created when KV data is

flushed and stored from MemTable to NAND flash memory.

This process is called SSTable flushing. SSTable is structured

into multiple levels (𝐿0, 𝐿1,..., 𝐿𝑛).
Each level contains several key-sorted SSTables. In the

LSM-trees following the key-value separation design pro-

posed in WiscKey [15], each SSTable is composed of a meta

(key, value log offset) region and Bloom filter (BF) region.

The meta region consists of a key and an offset of associated

value stored in the value log. BF is a space-efficient proba-

bilistic data structure and is used to test whether an element

is a member of a set. By leveraging BF, the existence of the

target key can be verified without checking all the keys of

the SSTable. The 𝐿𝑖 SSTable acts as a buffer for 𝐿𝑖+1, which
is larger in size compared to the 𝐿𝑖 . LSM-tree triggers a com-

paction process when the KV data in 𝐿𝑖 SSTable reaches a
certain threshold in size. The compaction means the process

of choosing at least two 𝐿𝑖 victim SSTables, merging into a

𝐿𝑖+1 SSTable, and sorting entries based on a key. After com-

paction, the older version of 𝐿𝑖 SSTable entry is removed.

2.2 Motivation

Several recent LSM-based KVSSDs [10, 14, 19] lack design

for namespace isolation. This causes the problem of KV data

being incorrectly modified or read if tenants have the same

key [11, 17]. Also, the design of such an LSM-based KVSSD

is not sufficient for performance isolation. For example, in

a traditional LSM-based KVSSD, multiple tenants share the

LSM tree, so the read performance of each tenant cannot be

guaranteed.

In order to quantitatively analyze the degradation of read

performance of each tenant, we conducted experiments for

the following scenarios: (i) When only tenant x’s 1 M data

occupies a LSM-tree, and (ii) When a LSM-tree is shared by

tenant x’s and tenant y’s own 1 M data at the same time.

The detailed experimental setup is the same as the settings

described in Section 4.

Figure 1 shows the read performance of tenant x and the

level at which KV data search occurs in the shared LSM-tree

for both scenarios. Figure 1 (a) shows that average latency

increased by 1.58x in scenario 2 compared to scenario 1. This

is because all tenants’ KV data are indexed in a global shared

LSM-tree. In particular, there are two causes of performance

interference between tenants. First, many KV data of each

tenant are indexed at the higher level of the LSM tree. Figure 1

(b) shows that in scenario 2, the indexes of KV data of tenant

x were pushed to the higher level in the LSM-tree compared

to scenario 1. About 67 % of indexes of KV data of tenant x is

searched in 𝐿2 SSTable. Second, the task of loading BFs into

DRAM multiple times from NAND flash memory during the

search process incurs significant overhead. It was confirmed

that the number of BF readings increased by about 77 % in

Scenario 2 compared to Scenario 1.

With the aforementioned research motivations, this paper

proposes Iso-KVSSD which aims to isolate namespace and

performance in a multi-tenant environment while providing

high read throughput and better response time. There may

be security and privacy issues for each user in relation to

namespace separation. The security and privacy issue are

out of the scope of this study. In addition, Iso-KVSSD can

implement an access authentication system for each user

or a secure partition mechanism inside the SSD to support

strong security such as DiskShield [2] and Inuksuk [20].

3 DESIGN AND IMPLEMENTATION

3.1 Problem Formulation

When KV data from each tenant are indexed to a single

global LSM-tree, the time to access KV data can increase.

9

Isolating Namespace and Performance in Key-Value SSDs for Multi-tenant Environments HotStorage’21, July 27-28, 2021, Virtual

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

DRAM

Flash

MemTable

OffsetKey 1

Namespace C

OffsetKey 9

Namespace C

SSTable
Shared
Lvl. 0

Namespace B Namespace C Namespace DNamespace A

NSTable

Segregated
Lvl. 1

OffsetKey

Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta
segment

Flash Memory
Pool

Pooled
allocation

OffsetKey 3

Namespace A

Key Range
C 1 ~ 9

Count
2

Namespace

A 3 ~ 3 1

Figure 2: An architecture for Iso-KVSSD.

The first cause is that many KV data stored by each tenant

may be pushed by data from other tenants and indexed at

a higher level in the LSM tree. The second cause is that

it requires loading the BF from NAND flash memory into

memory multiple times during the LSM tree search process.

The average latency for KV access (𝐴𝐿𝐾𝐴) can be estimated

as a cost model for accessing KV data indexed in the LSM-

tree. Table 1 shows a summary of the notations and their

descriptions in the cost model. The 𝐴𝐿𝐾𝐴 is estimated by

using the following Equation (1):

𝐴𝐿𝐾𝐴𝑖 = 𝐻𝑅𝑖 · 𝐻𝑇𝑖 + (1 − 𝐻𝑅𝑖) (𝑀𝑃𝑖 +𝐴𝐿𝐾𝐴𝑖+1)

𝐴𝐿𝐾𝐴 = 𝐴𝐿𝐾𝐴0 +𝑀𝑒𝑚𝑇𝑏𝑙
(1)

In Equation 1, 𝐴𝐿𝐾𝐴𝑛 = 𝐻𝑅𝑛 · 𝐻𝑇𝑛 in the last tree level 𝑛,
if GET(𝑘) is not requested on the KVSSD where key 𝑘 does

not exist. This recurrence relation is modeled based on an

insight of the average memory access time model [9] in the

multilevel cache/memory hierarchical architecture. This is

because LSM-tree is also a hierarchical structure of multi-

level SSTables, and the KV data search algorithm begins at

the lowest level SSTable in order. The first cause aforemen-

tioned corresponds to how much recursion is performed in

this recurrence relation. Thus, it implies how much𝑀𝑃𝑛 is

overlapped. The second cause corresponds to the𝑀𝑃𝑛 value

itself in the equation.

Table 1: Notations used and their descriptions.

Notion Description

𝑛 Total possible level of LSM-tree

𝑖 Index level of LSM-tree (0 ≤ 𝑖 ≤ 𝑛)
𝐻𝑅𝑛 KV hit ratio in the level 𝑛 SSTable

𝐻𝑇𝑛 KV hit time (combined latency of reading BF, meta, and value

of level 𝑛 SSTable from flash memory until key matches)

𝑀𝑃𝑛 KV miss penalty (combined latency of reading BF, meta of

level 𝑛 SSTables from flash memory)

𝑀𝑒𝑚𝑇𝑏𝑙 MemTable access time

3.2 Per-namespace dedicated LSM Tree

Figure 2 shows the overall architecture of the Iso-KVSSD.

First, for the index management of namespace isolation,

namespace information is stored in the indexing structure

along with the KV data. Namespace Table (NSTable) is a new

memory component that stores the namespace information

of the KV data in MemTable. As shown in Figure 2, NSTable

keeps track of min, max keys per namespace and the total

number of KV data per namespace. When KV data in the

MemTable is made to SSTable after a flushing operation, the

namespace and NSTable information per namespace are also

stored in the SSTable footer. Accordingly, when reading KV

data, access is allowed only if the matching of both the key

and the namespace is satisfied.

Iso-KVSSD employs the per-namespace dedicated LSM-

tree. In the per-namespace LSM-tree, MemTable and the low-

est level SSTable (e.g., 𝐿0) do not store KV data separately

according to the namespace. They are mixed and stored in

MemTable and 𝐿0 SSTable. On the other hand, in the other

levels (e.g., 𝐿1,..., 𝐿𝑛) SSTable, KV data is segregated by its

namespace and indexed to a different LSM-tree. This ap-

proach was designed for two reasons. First, the performance

degradation caused by a mixture of data from any tenants in

MemTable and 𝐿0 SSTable is negligible. According to our ex-

periment, the KV data are rarely searched in MemTable and

𝐿0 SSTable (less than 3.2 %) compared to other level SSTables.

The more the degree of multi-tenancy increases, the less

KV data searched in MemTable and 𝐿0 SSTable. Second, the
MemTable provisioning per namespace approach requires

additional DRAM space. If the number of concurrent tenants

increases, more DRAM capacity is required in proportion to

the degree of multi-tenancy.

Themain expected effect of the namespace-dedicated LSM-

tree is that𝐴𝐿𝐾𝐴 is reduced. The first reason is that KV data

from different namespaces are indexed to different LSM-

trees, preventing them from being indexed to upper levels

of LSM-trees. Thus, this mitigates the computation of𝑀𝑃𝑛
by overlapping several times in the 𝐴𝐿𝐾𝐴 equation. In other

words, the value of 𝑛 becomes smaller. The second reason

is that the number of BF readings from NAND flash mem-

ory decreases during data retrieval. This corresponds to a

decrease in the𝑀𝑃𝑛 value itself in the 𝐴𝐿𝐾𝐴 equation.

3.3 Namespace Isolation Mechanism

Figure 3 illustrates a namespace isolation mechanism that

segregates KV data in a global LSM-tree into per-namespace

dedicated LSM-trees based on a user’s namespace. Names-

pace isolation is performed during the background compres-

sion process as in traditional LSM trees. The compaction

process reads the victim SSTable from NAND flash memory

and merge-sorts victim SSTables into one new SSTable. This

10

HotStorage’21, July 27-28, 2021, Virtual D. Min et al.

DRAM

Flash

Lvl. 0
SSTable

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace D

7

Namespace A

Lvl. 1
SSTable

1 2

3

Lvl. 0 Victim
SSTable Load

Key
Range
Check

A 6 ~ 60 B 9 ~ 22

C 2 ~ 38 D 7 ~ 7

Lvl. 1 Victim
SSTable Load

4

New SSTable
Append

Lv1. 1
Victim SSTable

Lvl. 0
Victim SSTable

Victim SSTable New SSTable

Compaction per
each Namespace

779

2 7

6 38

22 60

11 6 7

11 60

8 9

22 40

2 38

8 40

8 40

6 38

22 60

9

2 7

11

6 7

11 60

8 9

22 40

8 9

4022

2 38 7

Figure 3: Per-namespace isolation process.

isolation strategy does not require an additional SSTable

read operation because it performs isolation for the victim

SSTable already read during compaction. Here, the names-

pace of each entry in the victim SSTable is called the victim

namespace.

When compaction for 𝐿0 SSTable starts, Iso-KVSSD first

chooses the victim SSTables and reads them intoDRAMmem-

ory (�). Since compaction is triggered at 𝐿0, per-namespace

isolation is enabled to classify KV data according to names-

pace. If compaction starts at a level other than 𝐿0, the isola-
tion task is disabled and performs the same as the traditional

compaction flow. If isolation is enabled, the key range for

each victim namespace in the 𝐿0 victim SSTable is checked

(�). This is done to verify whether the key range of the vic-

tim namespace is overlapped with the key range of the 𝐿1
SSTable of the victim namespace LSM-tree. Then, 𝐿1 SSTable
with an overlapping key range is read into DRAM memory

(�). Next, for each entry in the 𝐿0 victim SSTable,compaction

is performed with the corresponding namespace’s 𝐿1 victim
SSTable (�). This process creates a new SSTable for each

victim namespace. Finally, the indexing entry of multiple

namespaces that existed in 𝐿0 victim SSTable is appended by

indexing to 𝐿1 SSTable of the per-namespace LSM-tree (�).

Table 2: Key Value API for namespace spport.

API Explanation

𝑛𝑠 = CREATE() Create and initialize the new LSM-tree and return associ-

ated namespace (𝑛𝑠) to user.

DESTROY(𝑛𝑠) Clear contents of the LSM-tree corresponding to names-

pace (𝑛𝑠) and destroy the KV database.

PUT(𝑘, 𝑣, 𝑛𝑠) Store the value (𝑣) associated with the key (𝑘) to a LSM-

tree corresponding to the namespace (𝑛𝑠).
GET(𝑘, 𝑛𝑠) Load the value (𝑣) associated with the key (𝑘) from the

LSM-tree corresponding to the namespace (𝑛𝑠).

In the example shown in Figure 3, two 𝐿0 victim SSTables

are read during compaction. In this case, the 𝐿1 SSTables of
namespace A and B are read for isolation. For namespace A,

the key range (7-7) of the second 𝐿1 SSTable belongs to the

key range (6 - 60) of the 𝐿0 SSTable. For namespace B, the

key range (9 - 22) of the 𝐿0 SSTable belongs to the key range

(8 - 40) of the first SSTable of 𝐿1. A new 𝐿1 SSTable is created
by performing merge-sort for each namespace and is stored

individually in the per-namespace LSM-tree.

3.4 Key-Value API Library

Each user sends KV requests to Iso-KVSSD via the key-value

API library in a host. The key-value API library for names-

pace support is described in Table 2. The key-value API uses

a system call (e.g., ioctl) to pass KV data passed from the

user to the Key-Value SSD kernel driver. Then, the kernel

driver stores the namespace in the NSID region and key in

the LBA region of the NVMe command. The memory address

where the value is stored is recorded in the page list region

of the NVMe command. Then, the NVMe command is sent

to Iso-KVSSD.

4 EVALUATION

Experimental Setup: We prototyped Iso-KVSSD on the

basis of iLSM [14] following the LSM-tree design of Wis-

ckey [15]. The prototype environment was a FPGA-based

Cosmos+ OpenSSD [1] equipped with 1GB DDR3 DRAM

and ARM Cortex-A9 processors. Cosmos+ OpenSSD and

host were communicated through the NVMe protocol. The

default key and value sizes were set to 8 B and 1 KB, respec-

tively, which represent averages of common KV workloads.

During experiments, the number of concurrent users issuing

KV requests, or degree of multi-tenancy, was increased from

one to eight, and key was randomly specified. Each user

issued the same number of 1 M Put() or Get() KV requests

for Put() only and Get() only workloads. The baseline had

namespace isolation enabled, but no performance isolation,

which means that a LSM-tree was shared among users in the

baseline. On the other hand, Iso-KVSSD had both namespace

and performance isolation enabled.

PerformanceComparison: Wemeasured both per-tenant

throughput and response time of Iso-KVSSD and baseline

for Put() only and Get() only workloads. Figure 4(a) shows

the negligible throughput difference between Iso-KVSSD

and baseline for a Put() only workload. The throughput over-

head of Iso-KVSSD was within 1 % compared to baseline

regardless of the number of concurrent tenants. This slight

overhead with Iso-KVSSD is due to the namespace isolation.

Specifically, the isolation overhead is attributed to reading

𝐿1 SSTable of the LSM-tree corresponding victim namespace.

11

Isolating Namespace and Performance in Key-Value SSDs for Multi-tenant Environments HotStorage’21, July 27-28, 2021, Virtual

(a) Throughput (Put() only) (b) Response Time (Put() only) (c) Throughput (Get() only) (d) Response Time (Get() only)

Figure 4: Throughput and average response time of Baseline and Iso-KVSSD with KV-tenants (1–8).

(a) CDF of Baseline (b) CDF of Iso-KVSSD

Figure 5: Level distribution of where KV data is in-

dexed in the LSM-tree.

Also, Figure 4(b) shows little response time difference be-

tween the baseline and Iso-KVSSD. In particular, Iso-KVSSD

shows only 4 % additional latency compared to baseline,

when the number of tenant is eight.

In Figure 4(c), the Get() throughput difference between

Iso-KVSSD and baseline is prominent. When the number

of concurrent tenant is two, four, six, or eight, Iso-KVSSD

shows 1.1, 1.9, 2.3, and 2.9 × higher Get() throughput than

baseline, respectively. This is because Iso-KVSSD adopts

the per-namespace LSM-tree. Therefore, Iso-KVSSD reduces

the depth of LSM-tree as well as reduces the number of BF

reads required during the KV data search process. Figure 4(d)

shows a comparison of response times. The difference in aver-

age response time between baseline and Iso-KVSSD becomes

evident as the number of tenants increases. Specifically, if the

number of tenants is eight, the Iso-KVSSD has a 2.78 × lower

average response time than baseline. We also experimented

with the mixed workloads of Put() and Get() requests, but

observed that their results were hardly different from those

of Get() only workloads.

Impact of Per-namespace LSM-tree. Figure 5 repre-

sents a CDF on which the level of the LSM-tree indexing

information is searched during Get(). Figure 5 (a) is a CDF

of the baseline. When the number of tenants is one, KV data

search is completed only with the indexing information of

MemTable, 𝐿0, and 𝐿1 SSTable. However, as the number of

tenants increases, the number of searches from the lower

level index of the LSM-tree decreases and Get() is processed

by searching the higher level index. This is due to the fact

Figure 6: Bloom Filter load with KV-tenants (1–8).

that all index information of tenants is managed by a global

shared LSM-tree, thus forming a deeper level of LSM-tree.

Specifically, as the number of tenants increases from one

to eight, the percentage at which KV data is searched in 𝐿1
SSTable is reduced from 83.8 % to 26.55 %, and the percentage

at which KV data is searched in 𝐿2 SSTable is increased from
0 % to 70.1 %. The percentage of data searched in MemTable

and 𝐿0 SSTable is only 3.2 %. On the other hand, Figure 5 (b)

is a CDF of Iso-KVSSD. Since KV data from other names-

paces are indexed to individual LSM-trees, KV data search is

completed with only indexing information of MemTable, 𝐿0,
and 𝐿1 SSTable regardless of the number of tenants. These re-

sults are evidence that a per-namespace LSM-tree can lower

the number of recursions in 𝐴𝐿𝐴𝐾 Equation 1.

Figure 6 represents howmany BF loads are performed dur-

ing Get(). Iso-KVSSD can reduce the number of BF loads due

to the per-namespace LSM-tree. In particular, when the num-

ber of tenants is eight, Iso-KVSSD results in 3.6 × fewer BF

loads than the baseline. These results are evidence that 𝑀𝑃𝑛
in 𝐴𝐿𝐾𝐴 Equation 1 can be reduced. This BF overhead can

be further minimized by caching if there is enough DRAM

inside the SSD.

5 CONCLUSION

We proposed Iso-KVSSD, which controls access to data based

on a user’s namespace. Iso-KVSSD implements per-namespace

LSM-tree design and a namespace isolation mechanism. We

prototyped Iso-KVSSD on Cosmos+ OpenSSD in a Linux

environment and compared Iso-KVSSD with a baseline that

uses a global LSM-tree. Extensive evaluation showed that

read and write throughput of Iso-KVSSD was improved by

up to 190% and decreased by less than 1% from baseline,

respectively.

12

HotStorage’21, July 27-28, 2021, Virtual D. Min et al.

ACKNOWLEDGMENTS

We thank the reviewers and our shepherd, Janki Bhimani,

for their constructive comments that have significantly im-

proved the paper. This work was supported in part by a

research grant from SK Hynix and by an Institute of Infor-

mation communications Technology Planning Evaluation

(IITP) grant funded by the Korea government (MSIT) (No.

2020-0-00104). Y. Kim is the corresponding author.

REFERENCES
[1] 2017. Cosmos+ OpenSSD Platform. http://www.openssd.io/.

[2] Jinwoo Ahn, Junghee Lee, Yungwoo Ko, Donghyun Min, Jiyun Park,

Sungyong Park, and Youngjae Kim. 2020. DISKSHIELD: A Data

Tamper-Resistant Storage for Intel SGX. In Proceedings of the 15th

ACM Asia Conference on Computer and Communications Security (ASI-

ACCS). ACM, 799–812.

[3] Janki Bhimani, Jingpei Yang, Ningfang Mi, Changho Choi, and Manoj

Saha. 2021. Fine-grained Control of Concurrency within KV-SSDs. In

Proceeding of the 14th ACM International System and Storage Conference

(Systor). ACM, 1–12.

[4] SAMSUNG ELECTRONICS. 2018. Samsung Smart SSD. https://

samsungatfirst.com/smartssd-ocp/.

[5] Storage Engines. 2020. MongoDB Manual. https://docs.mongodb.com/

manual/.

[6] Facebook. 2017. LevelDB. https://github.com/google/leveldb.

[7] Google. 2012. RocksDB: A Persistent Key-Value Store for Fast Storage

Environment. https://rocksdb.org.

[8] Ajay Gulati, Arif Merchant, and Peter J Varman. 2007. pClock: An

Arrival Curve based Approach for QoS Guarantees in Shared Storage

Systems. ACM SIGMETRICS Performance Evaluation Review 35, 1 (2007),

13–24.

[9] John L Hennessy and David A Patterson. 2011. Computer Architecture:

A Quantitative Approach. Elsevier.

[10] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and Sungjin Lee.

2020. PinK: High-speed In-storage Key-value Store with Bounded

Tails. In Proceeding of the USENIX Annual Technical Conference (ATC).

USENIX, 173–187.

[11] Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin Goel. 2008.

Application-level isolation and recovery with solitude. In Proceedings

of the 3rd ACM SIGOPS/EuroSys European Conference on Computer

Systems 2008. 95–107.

[12] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven

Swanson. 2017. KAML: A Flexible, High-Performance Key-Value SSD.

In Proceeding of the IEEE International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 373–384.

[13] Willis Lang, Srinath Shankar, Jignesh M Patel, and Ajay Kalhan. 2013.

Towards multi-tenant performance SLOs. IEEE Transactions on Knowl-

edge and Data Engineering 26, 6 (2013), 1447–1463.

[14] Chang-Gyu Lee, Hyeongu Kang, Donggyu Park, Sungyong Park,

Youngjae Kim, Jungki Noh, Woosuk Chung, and Kyoung Park. 2019.

iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data An-

alytics. In Proceeding of the 27th International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS). IEEE, 384–395.

[15] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan

Gopalakrishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-

Dusseau. 2016. Wisckey: Separating Keys from Values in SSD-

conscious Storage. In Proceedings of the File and Storage Technologies

(FAST). USENIX, 133–148.

[16] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.

1996. The Log-Structured Merge-Tree (LSM-tree). Acta Informatica 33,

4 (1996), 351–385.

[17] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia

Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu. 2005. OpenDHT:

A Public DHT Service and Its Sses. In Proceedings of the 2005 conference

on Applications, technologies, architectures, and protocols for computer

communications. 73–84.

[18] David Shue, Michael J Freedman, and Anees Shaikh. 2012. Performance

Isolation and Fairness for Multi-tenant Cloud Storage. In Proceeding of

the 10th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI). USENIX, 349–362.

[19] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang. 2018. KVSSD:

Close Integration of LSM Trees and Flash Translation Layer for Write-

efficient KV Store. In Proceeding of the Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 563–568.

[20] Lianying Zhao andMohammadMannan. 2019. TEE-aidedWrite Protec-

tion Against Privileged Data Tampering. In Proceedings of the Network

and Distributed System Security Symposium (NDSS). USENIX.

13

