
Isolating Namespace and Performance in Key-Value
SSDs for Multi-tenant Environments

Donghyun Min and Youngjae Kim
Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea

{mdh38112,youkim}@sogang.ac.kr

ABSTRACT
Key-value SSDs (KVSSDs) implement the storage engine of a
key-value store such as log-structured merge-tree (LSM-tree)
inside the SSD. However, recent LSM-tree based KVSSDs
cannot be used directly in a multi-tenant environment. LSM-
tree-based KVSSDs are not designedwith isolation inmind in
terms of namespaces and performance, leading to incorrect
data access between concurrent users and poor read perfor-
mance. In this paper, we propose Iso-KVSSD, a LSM-tree
based KVSSD for multi-tenancy by supporting namespace
and performance isolation. The Iso-KVSSD performs access
control based on the user’s namespace and constructs per-
namespace dedicated LSM-trees for users. We implement the
Iso-KVSSD on Cosmos+ OpenSSD in a Linux environment
and evaluate performance with Put() and Get() workloads
by varying the number of tenants. Our extensive evalua-
tion results showed that Iso-KVSSD has negligible write
performance overhead and an average 2.9 times higher read
throughput than a baseline that manages one global shared
LSM tree between users.

1 INTRODUCTION
Key-value stores (KV-stores) such as RocksDB [7], LevelDB [6],
and MongoDB [5] are NoSQL databases running on a host.
On the other hand, key-value solid-state drives (KVSSDs) [3,
4, 10, 12, 14, 19] run the storage engine of a KV-store on
the SSD. Recently, KVSSDs with a LSM-tree based indexing
approach have emerged [10, 14, 19]. LSM-tree [16] is a data
structure that performs out-of-place logging to disk sequen-
tially instead of in-place write when storing KV data. Thus,
LSM-tree-based KVSSDs provide optimized performance for
write-intensive workloads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage’21, July 27-28, 2021, Virtual
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8550-3/21/07. . . $15.00
https://doi.org/10.1145/3465332.3470883

Multi-tenancy is an architecture that can host multiple
database instances of tenants on a server. In a multi-tenant
environment, concurrent users are provided with an abstrac-
tion of having their own dedicated server, requiring isolation
in terms of security, privacy, and performance [8]. The afore-
mentioned requirements for isolation can be met based on
namespace isolation. Namespace is a granularity that sepa-
rates the KV data of tenants stored in physical space into log-
ical groups. Several existing KV-stores such as RocksDB and
MongoDB have been designed to be multi-tenant [13, 18].
Several studies on LSM-tree based KVSSDs [10, 14, 19]

even lack design and implementation for namespace isola-
tion. Therefore, each user fails to be provided a strict view
showing only the data corresponding to their own names-
pace. Accordingly, data from other users can be easily modi-
fied or read recklessly [11, 17]. Furthermore, current LSM-
tree-based KVSSDs have difficulty in providing the promised
read throughput that the storage device can provide for each
tenant in a multi-tenant environment. This is because multi-
ple KV data from tenants are still managed by a single global
LSM-tree index structure.
Specifically, the global shared LSM-tree structure of the

KVSSD has the following limitations. First, it is likely that
most tenants’ KV data will be indexed at the upper level of
the LSM-tree. So, traversing the LSM tree is time consuming
because the search algorithm starts at the lowest level of
the index. Second, to check the existence of the requested
key during LSM-tree search, it must read the Bloom filter
(BF) data structures of the LSM-tree from the NAND flash
memory several times.
In this paper, we propose Iso-KVSSD, a LSM-tree based

KVSSD that supports isolation in terms of namespace and
performance formulti-tenant environments. This papermakes
the following specific contributions.
• For namespace isolation, Iso-KVSSD identifies the user’s
namespace information and performs namespace-based
access control for each user. The namespace is stored in the
NSID region of the NVMe command and then transferred
to Iso-KVSSD.

• For performance isolation, Iso-KVSSD adopts a namespace
dedicated LSM-tree design according to the user’s names-
pace. Each user is given their own independent dedicated

https://doi.org/10.1145/3465332.3470883

HotStorage’21, July 27-28, 2021, Virtual D. Min et al.
C
D
F	
(%
)

0

20

40

60

80

100

Latency	(us)
1000 2000 3000 4000 5000 6000

One	Tenant
Two	Tenants

C
D
F	
(%
)

0

20

40

60

80

100

Me
mT

Lv
.0	
SS
T

Lv
.1	
SS
T

Lv
.2	
SS
T

Lv
.3	
SS
T

(a) Response time (b) Level of accessed data

Figure 1: Comparative evaluation of the impact that
tenant x receives from co-located neighbor tenant y.

LSM-tree. This is achieved by partitioning the global LSM-
tree into per-user LSM-trees according to namespace. This
approach does not require any additional total cost of own-
ership while delivering promising performance to tenants
that the storage device can provide with little performance
loss.

• Iso-KVSSD was implemented on the Cosmos+ OpenSSD
Platform [1] in a Linux environment. Iso-KVSSDwas eval-
uated and compared with baseline which adopts a global
shared LSM-tree with workloads using Put() and Get()
while increasing the number of tenants. Our extensive ex-
periments showed that Iso-KVSSD improves read through-
put by up to 2.9 times while write performance is barely
different from the baseline.

2 BACKGROUND AND MOTIVATION
2.1 Log-Structured Merge-Tree
LSM-tree [16] is a hierarchical structure that consists of an
internal DRAM component (MemTable) and a NAND flash
memory component (SSTable) in KVSSDs. MemTable tem-
porarily stores KV data transferred from the user. MemTable
is mutable and is typically implemented as a skiplist. A
SSTable is an immutable index file created when KV data is
flushed and stored from MemTable to NAND flash memory.
This process is called SSTable flushing. SSTable is structured
into multiple levels (𝐿0, 𝐿1,..., 𝐿𝑛).
Each level contains several key-sorted SSTables. In the

LSM-trees following the key-value separation design pro-
posed in WiscKey [15], each SSTable is composed of a meta
(key, value log offset) region and Bloom filter (BF) region.
The meta region consists of a key and an offset of associated
value stored in the value log. BF is a space-efficient proba-
bilistic data structure and is used to test whether an element
is a member of a set. By leveraging BF, the existence of the
target key can be verified without checking all the keys of
the SSTable. The 𝐿𝑖 SSTable acts as a buffer for 𝐿𝑖+1, which
is larger in size compared to the 𝐿𝑖 . LSM-tree triggers a com-
paction process when the KV data in 𝐿𝑖 SSTable reaches a
certain threshold in size. The compaction means the process

of choosing at least two 𝐿𝑖 victim SSTables, merging into a
𝐿𝑖+1 SSTable, and sorting entries based on a key. After com-
paction, the older version of 𝐿𝑖 SSTable entry is removed.

2.2 Motivation
Several recent LSM-based KVSSDs [10, 14, 19] lack design
for namespace isolation. This causes the problem of KV data
being incorrectly modified or read if tenants have the same
key [11, 17]. Also, the design of such an LSM-based KVSSD
is not sufficient for performance isolation. For example, in
a traditional LSM-based KVSSD, multiple tenants share the
LSM tree, so the read performance of each tenant cannot be
guaranteed.

In order to quantitatively analyze the degradation of read
performance of each tenant, we conducted experiments for
the following scenarios: (i) When only tenant x’s 1 M data
occupies a LSM-tree, and (ii) When a LSM-tree is shared by
tenant x’s and tenant y’s own 1 M data at the same time.
The detailed experimental setup is the same as the settings
described in Section 4.

Figure 1 shows the read performance of tenant x and the
level at which KV data search occurs in the shared LSM-tree
for both scenarios. Figure 1 (a) shows that average latency
increased by 1.58x in scenario 2 compared to scenario 1. This
is because all tenants’ KV data are indexed in a global shared
LSM-tree. In particular, there are two causes of performance
interference between tenants. First, many KV data of each
tenant are indexed at the higher level of the LSM tree. Figure 1
(b) shows that in scenario 2, the indexes of KV data of tenant
x were pushed to the higher level in the LSM-tree compared
to scenario 1. About 67 % of indexes of KV data of tenant x is
searched in 𝐿2 SSTable. Second, the task of loading BFs into
DRAM multiple times from NAND flash memory during the
search process incurs significant overhead. It was confirmed
that the number of BF readings increased by about 77 % in
Scenario 2 compared to Scenario 1.

With the aforementioned research motivations, this paper
proposes Iso-KVSSD which aims to isolate namespace and
performance in a multi-tenant environment while providing
high read throughput and better response time. There may
be security and privacy issues for each user in relation to
namespace separation. The security and privacy issue are
out of the scope of this study. In addition, Iso-KVSSD can
implement an access authentication system for each user
or a secure partition mechanism inside the SSD to support
strong security such as DiskShield [2] and Inuksuk [20].

3 DESIGN AND IMPLEMENTATION
3.1 Problem Formulation
When KV data from each tenant are indexed to a single
global LSM-tree, the time to access KV data can increase.

Isolating Namespace and Performance in Key-Value SSDs for Multi-tenant Environments HotStorage’21, July 27-28, 2021, Virtual

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

DRAM

Flash

MemTable
OffsetKey 1

Namespace C

OffsetKey 9

Namespace C

SSTable
Shared
Lvl. 0

Namespace B Namespace C Namespace D

⋮ ⋮ ⋮ ⋮

Namespace A

NSTable

Segregated
Lvl. 1

OffsetKey
Namespace

0xAC20
A

0x114890
B

0xAF75
C

0x1475
D

Meta
segment

⋮Flash Memory
Pool

Pooled
allocation

OffsetKey 3

Namespace A

Key Range
C 1 ~ 9

Count
2

Namespace

A 3 ~ 3 1

Figure 2: An architecture for Iso-KVSSD.

The first cause is that many KV data stored by each tenant
may be pushed by data from other tenants and indexed at
a higher level in the LSM tree. The second cause is that
it requires loading the BF from NAND flash memory into
memory multiple times during the LSM tree search process.
The average latency for KV access (𝐴𝐿𝐾𝐴) can be estimated
as a cost model for accessing KV data indexed in the LSM-
tree. Table 1 shows a summary of the notations and their
descriptions in the cost model. The 𝐴𝐿𝐾𝐴 is estimated by
using the following Equation (1):

𝐴𝐿𝐾𝐴𝑖 = 𝐻𝑅𝑖 · 𝐻𝑇𝑖 + (1 − 𝐻𝑅𝑖) (𝑀𝑃𝑖 +𝐴𝐿𝐾𝐴𝑖+1)
𝐴𝐿𝐾𝐴 = 𝐴𝐿𝐾𝐴0 +𝑀𝑒𝑚𝑇𝑏𝑙

(1)

In Equation 1, 𝐴𝐿𝐾𝐴𝑛 = 𝐻𝑅𝑛 · 𝐻𝑇𝑛 in the last tree level 𝑛,
if GET(𝑘) is not requested on the KVSSD where key 𝑘 does
not exist. This recurrence relation is modeled based on an
insight of the average memory access time model [9] in the
multilevel cache/memory hierarchical architecture. This is
because LSM-tree is also a hierarchical structure of multi-
level SSTables, and the KV data search algorithm begins at
the lowest level SSTable in order. The first cause aforemen-
tioned corresponds to how much recursion is performed in
this recurrence relation. Thus, it implies how much𝑀𝑃𝑛 is
overlapped. The second cause corresponds to the𝑀𝑃𝑛 value
itself in the equation.

Table 1: Notations used and their descriptions.
Notion Description
𝑛 Total possible level of LSM-tree
𝑖 Index level of LSM-tree (0 ≤ 𝑖 ≤ 𝑛)
𝐻𝑅𝑛 KV hit ratio in the level 𝑛 SSTable
𝐻𝑇𝑛 KV hit time (combined latency of reading BF, meta, and value

of level 𝑛 SSTable from flash memory until key matches)
𝑀𝑃𝑛 KV miss penalty (combined latency of reading BF, meta of

level 𝑛 SSTables from flash memory)
𝑀𝑒𝑚𝑇𝑏𝑙 MemTable access time

3.2 Per-namespace dedicated LSM Tree
Figure 2 shows the overall architecture of the Iso-KVSSD.
First, for the index management of namespace isolation,
namespace information is stored in the indexing structure
along with the KV data. Namespace Table (NSTable) is a new
memory component that stores the namespace information
of the KV data in MemTable. As shown in Figure 2, NSTable
keeps track of min, max keys per namespace and the total
number of KV data per namespace. When KV data in the
MemTable is made to SSTable after a flushing operation, the
namespace and NSTable information per namespace are also
stored in the SSTable footer. Accordingly, when reading KV
data, access is allowed only if the matching of both the key
and the namespace is satisfied.
Iso-KVSSD employs the per-namespace dedicated LSM-

tree. In the per-namespace LSM-tree, MemTable and the low-
est level SSTable (e.g., 𝐿0) do not store KV data separately
according to the namespace. They are mixed and stored in
MemTable and 𝐿0 SSTable. On the other hand, in the other
levels (e.g., 𝐿1,..., 𝐿𝑛) SSTable, KV data is segregated by its
namespace and indexed to a different LSM-tree. This ap-
proach was designed for two reasons. First, the performance
degradation caused by a mixture of data from any tenants in
MemTable and 𝐿0 SSTable is negligible. According to our ex-
periment, the KV data are rarely searched in MemTable and
𝐿0 SSTable (less than 3.2 %) compared to other level SSTables.
The more the degree of multi-tenancy increases, the less
KV data searched in MemTable and 𝐿0 SSTable. Second, the
MemTable provisioning per namespace approach requires
additional DRAM space. If the number of concurrent tenants
increases, more DRAM capacity is required in proportion to
the degree of multi-tenancy.

Themain expected effect of the namespace-dedicated LSM-
tree is that𝐴𝐿𝐾𝐴 is reduced. The first reason is that KV data
from different namespaces are indexed to different LSM-
trees, preventing them from being indexed to upper levels
of LSM-trees. Thus, this mitigates the computation of𝑀𝑃𝑛
by overlapping several times in the 𝐴𝐿𝐾𝐴 equation. In other
words, the value of 𝑛 becomes smaller. The second reason
is that the number of BF readings from NAND flash mem-
ory decreases during data retrieval. This corresponds to a
decrease in the𝑀𝑃𝑛 value itself in the 𝐴𝐿𝐾𝐴 equation.

3.3 Namespace Isolation Mechanism
Figure 3 illustrates a namespace isolation mechanism that
segregates KV data in a global LSM-tree into per-namespace
dedicated LSM-trees based on a user’s namespace. Names-
pace isolation is performed during the background compres-
sion process as in traditional LSM trees. The compaction
process reads the victim SSTable from NAND flash memory
and merge-sorts victim SSTables into one new SSTable. This

HotStorage’21, July 27-28, 2021, Virtual D. Min et al.

DRAM

Flash

Lvl. 0
SSTable

LSM-tree DLSM-tree CLSM-tree BLSM-tree A

Namespace B Namespace C Namespace D

⋮ ⋮ ⋮ ⋮

7

Namespace A

Lvl. 1
SSTable

1 2

3

① Lvl. 0 Victim
SSTable Load

② Key
Range
Check

A 6 ~ 60 B 9 ~ 22

C 2 ~ 38 D 7 ~ 7

③ Lvl. 1 Victim
SSTable Load

4

⑤ New SSTable
Append

Lv1. 1
Victim SSTable

Lvl. 0
Victim SSTable

Victim SSTable New SSTable

④ Compaction per
each Namespace

779
2 7

6 38
22 60

11 6 7
11 60

8 9
22 40

2 38

8 40

8 40

6 38
22 60

9
2 7
11

6 7
11 60

8 9

22 40

8 9
4022

2 38 7

Figure 3: Per-namespace isolation process.

isolation strategy does not require an additional SSTable
read operation because it performs isolation for the victim
SSTable already read during compaction. Here, the names-
pace of each entry in the victim SSTable is called the victim
namespace.
When compaction for 𝐿0 SSTable starts, Iso-KVSSD first

chooses the victim SSTables and reads them intoDRAMmem-
ory (➀). Since compaction is triggered at 𝐿0, per-namespace
isolation is enabled to classify KV data according to names-
pace. If compaction starts at a level other than 𝐿0, the isola-
tion task is disabled and performs the same as the traditional
compaction flow. If isolation is enabled, the key range for
each victim namespace in the 𝐿0 victim SSTable is checked
(➁). This is done to verify whether the key range of the vic-
tim namespace is overlapped with the key range of the 𝐿1
SSTable of the victim namespace LSM-tree. Then, 𝐿1 SSTable
with an overlapping key range is read into DRAM memory
(➂). Next, for each entry in the 𝐿0 victim SSTable,compaction
is performed with the corresponding namespace’s 𝐿1 victim
SSTable (➃). This process creates a new SSTable for each
victim namespace. Finally, the indexing entry of multiple
namespaces that existed in 𝐿0 victim SSTable is appended by
indexing to 𝐿1 SSTable of the per-namespace LSM-tree (➄).

Table 2: Key Value API for namespace spport.
API Explanation
𝑛𝑠 = CREATE() Create and initialize the new LSM-tree and return associ-

ated namespace (𝑛𝑠) to user.
DESTROY(𝑛𝑠) Clear contents of the LSM-tree corresponding to names-

pace (𝑛𝑠) and destroy the KV database.
PUT(𝑘, 𝑣, 𝑛𝑠) Store the value (𝑣) associated with the key (𝑘) to a LSM-

tree corresponding to the namespace (𝑛𝑠).
GET(𝑘, 𝑛𝑠) Load the value (𝑣) associated with the key (𝑘) from the

LSM-tree corresponding to the namespace (𝑛𝑠).

In the example shown in Figure 3, two 𝐿0 victim SSTables
are read during compaction. In this case, the 𝐿1 SSTables of
namespace A and B are read for isolation. For namespace A,
the key range (7-7) of the second 𝐿1 SSTable belongs to the
key range (6 - 60) of the 𝐿0 SSTable. For namespace B, the
key range (9 - 22) of the 𝐿0 SSTable belongs to the key range
(8 - 40) of the first SSTable of 𝐿1. A new 𝐿1 SSTable is created
by performing merge-sort for each namespace and is stored
individually in the per-namespace LSM-tree.

3.4 Key-Value API Library
Each user sends KV requests to Iso-KVSSD via the key-value
API library in a host. The key-value API library for names-
pace support is described in Table 2. The key-value API uses
a system call (e.g., ioctl) to pass KV data passed from the
user to the Key-Value SSD kernel driver. Then, the kernel
driver stores the namespace in the NSID region and key in
the LBA region of the NVMe command. The memory address
where the value is stored is recorded in the page list region
of the NVMe command. Then, the NVMe command is sent
to Iso-KVSSD.

4 EVALUATION
Experimental Setup: We prototyped Iso-KVSSD on the

basis of iLSM [14] following the LSM-tree design of Wis-
ckey [15]. The prototype environment was a FPGA-based
Cosmos+ OpenSSD [1] equipped with 1GB DDR3 DRAM
and ARM Cortex-A9 processors. Cosmos+ OpenSSD and
host were communicated through the NVMe protocol. The
default key and value sizes were set to 8 B and 1 KB, respec-
tively, which represent averages of common KV workloads.
During experiments, the number of concurrent users issuing
KV requests, or degree of multi-tenancy, was increased from
one to eight, and key was randomly specified. Each user
issued the same number of 1 M Put() or Get() KV requests
for Put() only and Get() only workloads. The baseline had
namespace isolation enabled, but no performance isolation,
which means that a LSM-tree was shared among users in the
baseline. On the other hand, Iso-KVSSD had both namespace
and performance isolation enabled.

PerformanceComparison: Wemeasured both per-tenant
throughput and response time of Iso-KVSSD and baseline
for Put() only and Get() only workloads. Figure 4(a) shows
the negligible throughput difference between Iso-KVSSD
and baseline for a Put() only workload. The throughput over-
head of Iso-KVSSD was within 1 % compared to baseline
regardless of the number of concurrent tenants. This slight
overhead with Iso-KVSSD is due to the namespace isolation.
Specifically, the isolation overhead is attributed to reading
𝐿1 SSTable of the LSM-tree corresponding victim namespace.

Isolating Namespace and Performance in Key-Value SSDs for Multi-tenant Environments HotStorage’21, July 27-28, 2021, Virtual

Baseline
Iso-KVSSD

Pe
r-T
en
an
t	T
hr
ou
gh
pu
t	(
K
IO
PS
)

0

1000

2000

3000

4000

Number	of	KV-tenants
1 2 4 6 8

Baseline
Iso-KVSSD

Pe
r-T
en
an
t	R
es
po
ns
e	
Ti
m
e	
(u
s)

0

1000

2000

3000

4000

5000

Number	of	KV-tenants
1 2 4 6 8

Baseline
Iso-KVSSD

Pe
r-T

en
an
t	T

hr
ou

gh
pu

t	(
K
IO

PS
)

0

100

200

300

400

500

Number	of	KV-tenants
1 2 4 6 8

Baseline
Iso-KVSSD

Pe
r-T

en
an
t	R

es
po

ns
e	
Ti
m
e	
(u
s)

0

104

2×104

3×104

4×104

5×104

Number	of	KV-tenants
1 2 4 6 8

(a) Throughput (Put() only) (b) Response Time (Put() only) (c) Throughput (Get() only) (d) Response Time (Get() only)
Figure 4: Throughput and average response time of Baseline and Iso-KVSSD with KV-tenants (1–8).

C
D
F	
(%
)

0

20

40

60

80

100

Me
mT

Lv
.0	
SS
T

Lv
.1	
SS
T

Lv
.2	
SS
T

Lv
.3	
SS
T

#	of	tenants	=	1
#	of	tenants	=	2
#	of	tenants	=	4
#	of	tenants	=	6
#	of	tenants	=	8

C
D
F	
(%
)

0

20

40

60

80

100

Me
mT

Lv
.0	
SS
T

Lv
.1	
SS
T

Lv
.2	
SS
T

Lv
.3	
SS
T

(a) CDF of Baseline (b) CDF of Iso-KVSSD
Figure 5: Level distribution of where KV data is in-
dexed in the LSM-tree.

Also, Figure 4(b) shows little response time difference be-
tween the baseline and Iso-KVSSD. In particular, Iso-KVSSD
shows only 4 % additional latency compared to baseline,
when the number of tenant is eight.

In Figure 4(c), the Get() throughput difference between
Iso-KVSSD and baseline is prominent. When the number
of concurrent tenant is two, four, six, or eight, Iso-KVSSD
shows 1.1, 1.9, 2.3, and 2.9 × higher Get() throughput than
baseline, respectively. This is because Iso-KVSSD adopts
the per-namespace LSM-tree. Therefore, Iso-KVSSD reduces
the depth of LSM-tree as well as reduces the number of BF
reads required during the KV data search process. Figure 4(d)
shows a comparison of response times. The difference in aver-
age response time between baseline and Iso-KVSSD becomes
evident as the number of tenants increases. Specifically, if the
number of tenants is eight, the Iso-KVSSD has a 2.78 × lower
average response time than baseline. We also experimented
with the mixed workloads of Put() and Get() requests, but
observed that their results were hardly different from those
of Get() only workloads.

Impact of Per-namespace LSM-tree. Figure 5 repre-
sents a CDF on which the level of the LSM-tree indexing
information is searched during Get(). Figure 5 (a) is a CDF
of the baseline. When the number of tenants is one, KV data
search is completed only with the indexing information of
MemTable, 𝐿0, and 𝐿1 SSTable. However, as the number of
tenants increases, the number of searches from the lower
level index of the LSM-tree decreases and Get() is processed
by searching the higher level index. This is due to the fact

Baseline
Iso-KVSSD

#	
of
	B
lo
om
	F
ilt
er
	L
oa
d

0

5×106

107

1.5×107
2×107

Number	of	KV-tenants
1 2 4 6 8

Figure 6: Bloom Filter load with KV-tenants (1–8).

that all index information of tenants is managed by a global
shared LSM-tree, thus forming a deeper level of LSM-tree.
Specifically, as the number of tenants increases from one
to eight, the percentage at which KV data is searched in 𝐿1
SSTable is reduced from 83.8 % to 26.55 %, and the percentage
at which KV data is searched in 𝐿2 SSTable is increased from
0 % to 70.1 %. The percentage of data searched in MemTable
and 𝐿0 SSTable is only 3.2 %. On the other hand, Figure 5 (b)
is a CDF of Iso-KVSSD. Since KV data from other names-
paces are indexed to individual LSM-trees, KV data search is
completed with only indexing information of MemTable, 𝐿0,
and 𝐿1 SSTable regardless of the number of tenants. These re-
sults are evidence that a per-namespace LSM-tree can lower
the number of recursions in 𝐴𝐿𝐴𝐾 Equation 1.

Figure 6 represents howmany BF loads are performed dur-
ing Get(). Iso-KVSSD can reduce the number of BF loads due
to the per-namespace LSM-tree. In particular, when the num-
ber of tenants is eight, Iso-KVSSD results in 3.6 × fewer BF
loads than the baseline. These results are evidence that𝑀𝑃𝑛
in 𝐴𝐿𝐾𝐴 Equation 1 can be reduced. This BF overhead can
be further minimized by caching if there is enough DRAM
inside the SSD.

5 CONCLUSION
We proposed Iso-KVSSD, which controls access to data based
on a user’s namespace. Iso-KVSSD implements per-namespace
LSM-tree design and a namespace isolation mechanism. We
prototyped Iso-KVSSD on Cosmos+ OpenSSD in a Linux
environment and compared Iso-KVSSD with a baseline that
uses a global LSM-tree. Extensive evaluation showed that
read and write throughput of Iso-KVSSD was improved by
up to 190% and decreased by less than 1% from baseline,
respectively.

HotStorage’21, July 27-28, 2021, Virtual D. Min et al.

ACKNOWLEDGMENTS
We thank the reviewers and our shepherd, Janki Bhimani,
for their constructive comments that have significantly im-
proved the paper. This work was supported in part by a
research grant from SK Hynix and by an Institute of Infor-
mation communications Technology Planning Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.
2020-0-00104). Y. Kim is the corresponding author.

REFERENCES
[1] 2017. Cosmos+ OpenSSD Platform. http://www.openssd.io/.
[2] Jinwoo Ahn, Junghee Lee, Yungwoo Ko, Donghyun Min, Jiyun Park,

Sungyong Park, and Youngjae Kim. 2020. DISKSHIELD: A Data
Tamper-Resistant Storage for Intel SGX. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security (ASI-
ACCS). ACM, 799–812.

[3] Janki Bhimani, Jingpei Yang, Ningfang Mi, Changho Choi, and Manoj
Saha. 2021. Fine-grained Control of Concurrency within KV-SSDs. In
Proceeding of the 14th ACM International System and Storage Conference
(Systor). ACM, 1–12.

[4] SAMSUNG ELECTRONICS. 2018. Samsung Smart SSD. https://
samsungatfirst.com/smartssd-ocp/.

[5] Storage Engines. 2020. MongoDB Manual. https://docs.mongodb.com/
manual/.

[6] Facebook. 2017. LevelDB. https://github.com/google/leveldb.
[7] Google. 2012. RocksDB: A Persistent Key-Value Store for Fast Storage

Environment. https://rocksdb.org.
[8] Ajay Gulati, Arif Merchant, and Peter J Varman. 2007. pClock: An

Arrival Curve based Approach for QoS Guarantees in Shared Storage
Systems. ACM SIGMETRICS Performance Evaluation Review 35, 1 (2007),
13–24.

[9] John L Hennessy and David A Patterson. 2011. Computer Architecture:
A Quantitative Approach. Elsevier.

[10] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and Sungjin Lee.
2020. PinK: High-speed In-storage Key-value Store with Bounded
Tails. In Proceeding of the USENIX Annual Technical Conference (ATC).
USENIX, 173–187.

[11] Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin Goel. 2008.
Application-level isolation and recovery with solitude. In Proceedings
of the 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008. 95–107.

[12] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. 2017. KAML: A Flexible, High-Performance Key-Value SSD.
In Proceeding of the IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 373–384.

[13] Willis Lang, Srinath Shankar, Jignesh M Patel, and Ajay Kalhan. 2013.
Towards multi-tenant performance SLOs. IEEE Transactions on Knowl-
edge and Data Engineering 26, 6 (2013), 1447–1463.

[14] Chang-Gyu Lee, Hyeongu Kang, Donggyu Park, Sungyong Park,
Youngjae Kim, Jungki Noh, Woosuk Chung, and Kyoung Park. 2019.
iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data An-
alytics. In Proceeding of the 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 384–395.

[15] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan
Gopalakrishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2016. Wisckey: Separating Keys from Values in SSD-
conscious Storage. In Proceedings of the File and Storage Technologies
(FAST). USENIX, 133–148.

[16] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-Structured Merge-Tree (LSM-tree). Acta Informatica 33,
4 (1996), 351–385.

[17] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia
Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu. 2005. OpenDHT:
A Public DHT Service and Its Sses. In Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer
communications. 73–84.

[18] David Shue, Michael J Freedman, and Anees Shaikh. 2012. Performance
Isolation and Fairness for Multi-tenant Cloud Storage. In Proceeding of
the 10th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX, 349–362.

[19] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang. 2018. KVSSD:
Close Integration of LSM Trees and Flash Translation Layer for Write-
efficient KV Store. In Proceeding of the Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 563–568.

[20] Lianying Zhao andMohammadMannan. 2019. TEE-aidedWrite Protec-
tion Against Privileged Data Tampering. In Proceedings of the Network
and Distributed System Security Symposium (NDSS). USENIX.

http://www.openssd.io/
https://samsungatfirst.com/smartssd-ocp/
https://samsungatfirst.com/smartssd-ocp/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://github.com/google/leveldb
https://rocksdb.org

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Log-Structured Merge-Tree
	2.2 Motivation

	3 Design and Implementation
	3.1 Problem Formulation
	3.2 Per-namespace dedicated LSM Tree
	3.3 Namespace Isolation Mechanism
	3.4 Key-Value API Library

	4 Evaluation
	5 Conclusion
	References

