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ABSTRACT
Supercomputer design is a complex, multi-dimensional optimiza-
tion process, wherein several subsystems need to be reconciled
to meet a desired figure of merit performance for a portfolio of
applications and a budget constraint. However, overall, the HPC
community has been gravitating towards ever more Flops, at the
expense of many other subsystems. To draw attention to overall
system balance, in this paper, we analyze balance ratios and ar-
chitectural trends in the world’s most powerful supercomputers.
Specifically, we have collected the performance characteristics of
systems between 1993 and 2019 based on the Top500 lists and then
analyzed their architectures from diverse system design perspec-
tives. Notably, our analysis studies the performance balance of the
machines, across a variety of subsystems such as compute, memory,
I/O, interconnect, intra-node connectivity and power. Our analysis
reveals that balance ratios of the various subsystems need to be
considered carefully alongside the application workload portfolio
to provision the subsystem capacity and bandwidth specifications,
which can help achieve optimal performance.
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1 INTRODUCTION
For several decades, supercomputers have provided the needed
resources for modeling, simulation, and data analysis in numerous
scientific domains. The computing, storage, and data resources of-
fered by these systems have catered to both capability—requiring
a large fraction of the machine—and capacity—needing medium-
sized allocations—computing needs of applications [21]. The Top500
list [11] provides an excellent service to the HPC community by
meticulously compiling the leading systems from the world based
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on the High Performance Linpack (HPL) benchmark [22], and pub-
lishing it bi-annually since 1993. The list reports key high-level
architectural highlights (e.g., processor, interconnect type, memory,
power, etc.) and Flops scores (Rmax and Rpeak ).

Supercomputer design is a complex, multi-dimensional optimiza-
tion process, in which several aforementioned vectors (and others
such as storage) need to be reconciled to meet a desired figure of
merit performance for a portfolio of applications and a budget con-
straint. For example, the goal of the Summit system at Oak Ridge
National Lab (200 petaflop Rpeak , 148.6 petaflop Rmax , and No. 1
in the June 2019 Top500 list) was to achieve a 5-10× performance
improvement over its predecessor, Titan (the 27 petaflops system).
Besides, the application workload mix has also been going through
a transformation. Several supercomputing centers have to deal with
the new and emerging machine and deep learning codes, on top of
the traditional modeling and simulation applications. Thus, during
this process, it is natural that certain subsystems will be prioritized
over certain others.

However, overall, the HPC community has been gravitating to-
wards ever more Flops, at the expense of many other subsystems.
While in theory, it may seem obvious that a balance between the
various subsystems is more important than just blindly prioritizing
any one subsystem, in practice, however, this is seldom the case.
Time and again, it is easier for centers to make a case for more Flops
than for other subsystems. In reality, however, merely increasing
the Flops may not improve application throughput if the other sub-
systems do not witness commensurate advances, as the end-to-end
application performance is also dependent on other elements such
as memory bandwidth, I/O throughput (for result and checkpoint
data), and the like.

Therefore, what is needed is a careful consideration of the over-
all system balance and how the various subsystems reconcile with
one another. System designers need to understand the trends not
only within the individual subsystems but also with respect to one
another. For example, one needs to understand the Flops trends
in accelerator-based heterogeneous processors versus manycore
processor architectures, but at the same time glean the nuances in
Flops to memory bandwidth or memory capacity ratios; or memory
bandwidth to intra-node connectivity bandwidth ratios; or file sys-
tem to the memory subsystem ratios; or interconnect to Flops ratios.
Understanding the tradeoffs between the various subsystems will
enable system designers to reconcile and provision them carefully,
instead of producing suboptimal configurations that may be prone
to performance bottlenecks.

In this paper, we conduct a detailed analysis of 27 years of Top500
lists since 1993, studying 10,709 supercomputers across several
dimensions.

Specifically, our contributions in this paper are as follows.

11

https://doi.org/10.1145/3432261.3432263
https://doi.org/10.1145/3432261.3432263
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3432261.3432263&domain=pdf&date_stamp=2021-01-20


HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea A. Khan et al.

• We collect data from the Top500 lists and analyze detailed trends
based on 10,709 supercomputers that have ranked in the list for
the past 27 years between 1993 and 2019 (§ 4.1).We present perfor-
mance and energy trends such as the following: the progressive
increase in HPL scores over time, their comparison to Moore’s
law prediction, and the inflection point; the performance gap
(factor) between the top systems and the lower-end systems; the
historical trend in the energy efficiency of systems, and positions
of the No.1 systems; the trend in performance efficiency, i.e., the
practical achievement of the theoretical peak performance by the
majority of the systems; and the commonly observed increasing
trend in heterogeneous systems.

• We then select 28 systems, ranked in the top five in the past
decade, i.e., between 2009 and 2019, and perform a deeper analy-
sis on their architectural balance trends, including memory, file
system, and interconnect (§ 4.2). We present the following results:
the differences in the performance and energy efficiency of het-
erogeneous and traditional systems and the memory/core differ-
ences therein; the balance ratio between the memory subsystem
and compute subsystem; the balance ratios between the memory,
file system, and the burst buffer subsystems; the balance ratios
between network bisection and node injection bandwidth and
the importance therein; and the correlation between interconnect
performance and the over system performance efficiency.

• Lastly, we further select 16 heterogeneous machines from the
28 recent top five supercomputers and analyze the performance
balance between the subsystem components for each recent het-
erogeneous system (§ 4.3). In this analysis, we particularly target
the balance ratios and trends involved in newer technologies
within a heterogeneous compute node such as multi-level mem-
ory and intra-node connectivity, both of which are essential in
heterogeneous systems. We analyze the importance of memory
(both DRAM and HBM) capacity and bandwidth per core and
five different connections representing key intra-node links, and
their relevance to different aspects of applications.

2 BACKGROUND: TOP500
In this section, we introduce the Top500 project and the resources
it provides [11], which allow us to establish a basis for our analysis.

Since it was first launched in 1993, the Top500 project has been
publishing a list of 500 of theworld’smost powerful supercomputers
bi-annually, i.e., June and November in each year, on the project
website [11].

Between 1993 and 2019, the project website has published 54
lists, encompassing 10,709 supercomputers from 2,894 institutions
globally. For compiling the list, the project evaluates supercom-
puters based on the High-Performance Linpack benchmark (HPL)
score, which accesses a distributed memory system’s runtime and
accuracy in solving a dense linear system using double-precision
arithmetic [22]. Specifically, the participating supercomputers are
ranked based on the number of floating point operations per second,
or Flops. In addition to its semi-annual lists, the Top500 project
also publishes additional resources, e.g., useful statistics, interac-
tive graphs, etc., via the project website. Particularly, the Top500
website publishes key specifications of individual supercomputers,
e.g., processor type, memory capacity, interconnect family, etc.,

Attribute Example Record
Supercomputer Summit
Installation Site DOE/SC/Oak Ridge National Laboratory
Total Cores 2,397,824
Accelerator Cores 2,196,480
Total Memory Capacity 2,801,664 GB
Processor Type IBM POWER9 22C 3.07GHz
Network Interconnect Family Dual-rail Mellanox EDR Infiniband
Theoretical Peak (Rpeak ) 200,795 TFlop/s
Linpack Performance (Rmax ) 143,500 TFlop/s
Power Consumption 9,783 kW

Table 1: An example of the supercomputer specification from the
Top500 data.

and such information, when combined with the semi-annual lists,
can provide excellent insights on examining historical or recent
trends in supercomputing [14, 15, 24, 32]. In this paper, we use
the term Top500 data to refer to all available data that Top500 pub-
licly publishes, including the semi-annual lists and the individual
supercomputer specifications.

Table 1 shows an example specification of a supercomputer from
the Top500 data. Particularly, the Rpeak value is calculated based
on the Flops values of all individual processing chips in the system,
e.g., CPUs, GP-GPUs, etc., and demonstrates an ideal performance
of the supercomputer without considering any potential overhead,
e.g., network communication, data I/O, software algorithm, etc. In
contrast, Rmax is a measured score that has been acquired after
running the HPL benchmark. Therefore, comparing the Rpeak and
Rmax values provides a reasonable assessment of the overall pro-
cessing efficiency of a supercomputer. For instance, the Summit
supercomputer in Table 1, achieves approximately 71% of the ideal
performance when running the HPL benchmark. Despite its abun-
dance, the Top500 data lack comprehensive information about su-
percomputers, such as network bandwidth, file system performance,
burst buffer capacity/performance, intra-node connectivity details,
DRAM/HBM performance, etc., which is necessary for performing
analysis on the architectural balance of a system. Therefore, we
have collected extensive additional data through literature survey
to fill in the gaps.

Performance Balance
in Recent Supercomputers (§ 4.2)

Performance Balance
in Heterogeneous Supercomputers (§ 4.3)

Overall Performance Trends (§ 4.1)

- CPUs vs. Accelerators
- FLOPS vs. System Connectivity

- High Performance Linpack (HPL) Scores
- Performance/Power Efficiency

- System efficiency
- FLOPS vs. IO subsystem

Figure 1: An overview of analysis in this study.

3 ANALYSIS OVERVIEW
Here, we present our goals for analyzing the architectural trend of
supercomputers based on the Top500 lists. As shown in Figure 1,
we perform analysis based on the following three analysis goals.

Overall performance trend (§ 4.1). Top500 adopts the High
Performance Linpack (HPL) benchmark score [22] for normalizing
performance and ranking supercomputers. However, the HPL score
is a macro benchmark for measuring the aggregated processing
power, and the score alone is a limited metric when it comes to
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Figure 2: The growth of the High Performance Linpack (HPL) performance for the past 27 years, i.e., from 1993 to 2019. The graph depicts
the HPL score distribution of 500 supercomputers for each year. The first tera-scale supercomputer (scored over 1 TFlop/s) was ASCI Red and
the first peta-scale supercomputer was Roadrunner.

unveiling the sophisticated architectural trends in supercomput-
ers. We analyze the individual performance factors and find their
correlations with the HPL scores.

Balance trends in recent supercomputers (§ 4.2). In this di-
mension, we perform a deeper analysis of the architectural trends
and performance balance of the recent top five supercomputers on
the Top500 list in the past decade. Specifically, we collect detailed
information for each of the recent top supercomputers and perform
further analysis on the performance balance between the process-
ing power and other subsystems in a supercomputer, e.g., memory,
storage, burst buffer, and network.

Balance trends in heterogeneous supercomputers (§ 4.3).
Heterogeneous machines are becoming increasingly popular for
achieving the desired system efficiency within the given budget
and energy requirements [24]. We aim to identify key architec-
tural trends and balance ratios from recent heterogeneous systems,
e.g., intra-node connectivity and memory subsystem balance, and
acquire insights for designing future systems.

For performing our analysis, we have collected available datasets
from the Top500 website and also manually surveyed the detailed
specification of individual target supercomputers for complement-
ing the Top500 data. Our complete dataset is publicly available at
https://github.com/lass-lab/Top500-analysis-dataset.

4 ANALYSIS RESULTS
Based on the aforementioned goals (§ 3), this section reports analy-
sis results, namely, overall performance trend (§ 4.1), balance trends
in recent supercomputers (§ 4.2), and performance balance in het-
erogeneous supercomputers (§ 4.3).

4.1 Overall Performance Trend
We first study the overall performance trend in the Top500 list of
systems over the past 27 years. Particularly, we analyze the trend
in High Performance Linpack (HPL) scores of all 10,709 supercom-
puters that have appeared in Top500 between 1993 and 2019.

4.1.1 The Growth of HPL Scores. Figure 2 depicts the trend ofRmax
scores, i.e., the maximum observed performance (§ 2), of all super-
computers that have appeared in the Top500 listings since 1993.
We clearly observe a continuously increasing trend in performance
over the past 27 years. On average, a newly introduced No.1 super-
computer has doubled the Rmax score of its immediate predecessor.
In addition, ASCI Red (1997) first recorded over a TFlop/s, while
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Figure 3: Rmax scores of the No.1 supercomputers that are normal-
ized to the ideal projections of Moore’s Law [33] starting from 1993.

Roadrunner (2008) was the first petascale supercomputer. In Fig-
ure 3, we also compare the performance of No.1 machines against
the prediction of Moore’s Law [33]. Specifically, we normalize the
Rmax scores of No.1 machines based on the Rmax score of the CM-
5/1024, the No.1 machine in June 1993. We also project the ideal
Rmax scores based on theMoore’s Law, i.e., the chip density and per-
formance doubles every 18 months, using a dotted line. We observe
that all No.1 machines since 1997 perform beyond the prediction
of the Moore’s Law. Particularly, the Rmax score of Tianhe-2A in
2013 exceeds the projection of Moore’s Law by almost 100×. The
most recent Summit supercomputer exhibits Rmax that surpasses
the projection by 18×. This demonstrates that the HPC systems
address the physical limitation of the chip density by introducing
multi-processing and heterogeneous architectures [34].
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Figure 4: The distribution of normalized HPL scores in Top500.
This clearly demonstrates a significant performance gap between
the top and the rest of supercomputers. In 2019, for instance, the
HPL score of the No.1 supercomputer (Summit) is more than 100×
greater than the median HPL score of the year.

4.1.2 Low-end Supercomputers. Another notable trend in Figure 2
is a highly skewed distribution of the Rmax scores in all years,
indicating a significant performance gap between high-end and
low-end supercomputers. To articulate the trend, in Figure 4, we
normalize Rmax scores to the maximum score in each listing. We
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observe that 75% of the systems in each listing, i.e., 375 machines,
scored at least an order of magnitude less than the No.1 super-
computer. The performance gap is widest in the June 2013 Top500
list, when the median HPL score of 500 systems was almost 400×
lower than the score of Tianhe-1A. Although the performance gap
is becoming narrower since then, the median HPL score in 2019 is
still more than 100× lower than the top score.
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Figure 5: Trends in the power efficiency in Top500 supercomputers.
Over the past 27 years, the power efficiency of highly ranked supercom-
puters have been increasing.

4.1.3 Energy Efficiency. One of the important metrics in evaluating
system performance is energy efficiency, which is often measured
by Flops per watt. Figure 5(a) shows the energy efficiency of clus-
ters from the Top500 listings since 2005 1. We clearly observe an
increasing trend in energy efficiency. Particularly, for each listing,
the median energy efficiency of the corresponding 500 systems has
increased by 1.2× on average. In addition, with the exception of
2005, the energy efficiency of the No.1 supercomputers is steadily
positioned within the top 25%, demonstrating that the No.1 ma-
chines tend to run more energy efficiently than other machines.
To further investigate this observation, we studied the correlation
between the Top500 rank and energy efficiency, as shown in Fig-
ure 5(b). Each point in Figure 5(b) specifies the Pearson’s correlation
coefficient 2, where the energy efficiency is described as a function
of the rank in the corresponding Top500 listing. We see that the
strong negative correlation in earlier years, i.e., higher performance
supercomputers being less energy efficient, is no longer the case in
recent years (although no positive correlation). Evidently, Summit
(2018, 2019), the No.1 supercomputer in Top500, is also ranked No.2
in the Green500 [4] list for June 2019.

4.1.4 Performance Efficiency. We now study the performance effi-
ciency of systems, which we calculate as a ratio of Rmax to Rpeak ,

1The earlier Top500 listings do not provide the power consumption data. Also, the 2005 June list-
ing provides the power consumption data only for 52 supercomputers, which leads to the unusual
distribution in Figure 5(a).
2The Pearson correlation coefficient, ρ , is defined as covariance of the variables (e.g., X and Y ) di-
vided by the product of their standard deviations, i.e., ρ = cov (X ,Y )

σXσY
. A ρ value (ranging between

-1 and 1) close to 0 indicates that no significant linear correlation is found.
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Figure 6: The trend of the performance efficiency, i.e., Rmax :Rpeak , in
Top500 supercomputers. In contrast to the power efficiency, the perfor-
mance efficiency does not exhibit a clear increasing trend.

or Rmax
Rpeak

[24]. The average performance efficiency of 10,709 sys-
tems 3 is 0.67, indicating that most machines merely achieve less
than 70% of their potential performance. Figure 6 further presents
the annual trend in performance efficiency. In contrast to power
efficiency (Figure 5), we do not observe an increasing trend in per-
formance efficiency. Instead, on average, the median performance
efficiency has decreased by about 4% each year. In addition, we also
see that the performance efficiency of the No.1 supercomputers fluc-
tuates heavily, which is a notable contrast to their power efficiency
trend (Figure 5). For instance, the performance efficiency of the
K Computer (2011) is 0.93, while 77% of No.1 supercomputers (40
out of 52) record performance efficiency scores below the overall
median (0.67). Furthermore, performance efficiency in our analysis,
which includes all systems in Top500, is about 15% lower than the
earlier analysis with Top 10 supercomputers [24].
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Figure 7: Trends in the correlation between performance and sys-
tem attributes. Besides the number of cores, the memory capacity
has also become a major factor to deliver a higher performance.

4.1.5 Achieving Higher Performance. A key factor in achieving a
higher HPL score is to have a strong computing power. For this
purpose, recent supercomputers tend to be equipped with a massive
number of computing cores, as reported earlier in § 4.1.1. Therefore,
we now analyze how the total core count of a supercomputer affects
its Rmax score. Specifically, we performed a correlation analysis
between Rmax score and total core count for each year, as depicted
in Figure 7. We observe the correlation coefficient (ρ) between HPL
score and total core count is highest between 2013 and 2016, i.e.,
0.95 on average. However, ρ drops drastically starting from 2017
that the average ρ between 2017 and 2018 is only 0.66, more than
30% lower than the previous year. One reason for this weaker corre-
lation can be attributed to the increasing number of heterogeneous
supercomputers, which we discuss further in § 4.3. In addition,

3Rpeak scores of some earlier supercomputers prior to 1994 are not available.
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’1
9/
11 Rmax Rmax Cap. ΣBW Cap (ΣM=1) BW (ΣM=1) Bisection BW

to Rpeak to Power per Core to Rmax PFS BB PFS BB to ΣInjection BW
❍ BlueGene/L 5 0.80 0.21 0.35 1.18 2.60 · 0.0000 · 0.0038
✦ Roadrunner.1 2 3 0.76 0.44 5.98 0.27 28.56 · 0.0001 · 0.0627
✦ Roadrunner.2 ❶ 0.76 0.45 5.98 0.27 26.97 · 0.0001 · 0.0593
❍ Jaguar.1 2 0.77 0.15 2.05 0.34 34.13 · 0.0005 · 0.0072
❍ Pleiades 4 0.80 0.23 1.00 0.05 139.26 · 0.0017 · ·

❍ JUGENE 3 4 5 0.82 0.36 0.50 0.98 14.22 · 0.0000 · 0.0046
✦ Jaguar.2 ❶ ❶ 2 3 3 0.74 0.38 1.07 0.25 32.80 · 0.0004 · 0.0142
❍ Kraken 3 4 0.81 0.27 1.52 0.23 22.99 · 0.0001 · ·

✦ Tianhe-1 5 0.47 0.37 1.55 0.79 9.46 · 0.0003 · ·

✦ Nebulae 2 3 4 4 0.43 0.49 2.22 0.41 2.49 · 0.0001 · ·

✦ Tsubame-2.0 4 5 5 0.52 0.85 1.34 0.59 59.90 1.72 0.0001 0.0005 1.2291
✦ Tianhe-1A ❶ 2 2 5 0.55 0.64 2.92 0.25 8.36 · 0.0003 · ·

❍ Hopper 5 0.82 0.36 1.45 0.41 9.44 · 0.0001 · ·

❍ K Computer ❶ ❶ 2 3 4 4 4 4 4 4 5 0.93 0.83 2.00 0.46 22.31 8.18 0.0001 0.0002 0.0741
❍ Sequoia ❶ 2 3 3 3 3 3 3 4 4 5 0.85 2.18 1.00 0.20 36.67 · 0.0004 · 0.1221
❍ Mira 3 4 5 5 5 5 5 5 0.85 2.18 1.00 0.20 46.67 · 0.0001 · 0.0682
❍ Super MUC 4 0.91 0.85 2.00 0.29 53.33 · 0.0003 · 0.2778
❍ JUQUEEN 5 0.85 2.18 1.00 0.20 0.22 · 0.0001 · 0.0112
✦ Titan ❶ 2 2 2 2 2 2 3 3 4 5 0.65 2.14 2.37 0.20 44.30 · 0.0002 · 1.1158
✦ Tianhe-2A ❶ ❶ ❶ ❶ ❶ ❶ 2 2 2 2 4 4 4 4 0.61 3.32 8.00 0.07 5.83 · 0.0002 · 0.1918
✦ SW TaihuLight ❶ ❶ ❶ ❶ 2 3 3 3 0.74 6.05 16.00 0.09 8.00 · 0.0000 · 0.1094
❍ Cori 5 0.50 3.56 1.66 0.19 27.40 1.83 0.0001 0.0003 0.4814
✦ Piz Daint 3 3 5 0.78 8.91 2.23 0.06 46.06 · 0.0001 · 0.7703
✦ Gyoukou 4 0.68 14.17 33.94 0.03 24.67 · 0.0013 · ·

✦ ABCI 5 0.61 12.06 12.82 0.13 41.32 3.26 0.0004 0.0008 0.6995
✦ Summit ❶ ❶ ❶ ❶ 0.71 14.67 9.64 0.13 88.59 2.62 0.0001 0.0004 1.0222
✦ Sierra 3 2 2 2 0.75 12.72 7.52 0.14 110.00 5.06 0.0001 0.0005 0.5120
✦ Frontera 5 5 0.60 4.27 9.1 0.13 35.4 1.9 0.0001 0.0965 ·

Table 2: System characteristics of 28 supercomputers that have marked top five in Top 500 from 2009 to 2019. ❍ and ✦ indicate that the
corresponding supercomputer has homogeneous or heterogeneous architectures, respectively. The color intensity shows the comparison
between values within the corresponding column. A higher ratio in each column is considered to be better.

score and memory capacity becomes noticeably higher, i.e., 0.74 on
average between 2009 and 2019.
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Figure 8: The increasing number of heterogeneous supercomput-
ers in Top500 since 2011. The value at the top of each bar denotes the
number of heterogeneous supercomputers (out of 500 supercomput-
ers) in the corresponding listing.

4.1.6 Heterogeneous Supercomputers. Figure 8 shows the percent-
age of heterogeneous supercomputers, i.e., systems with additional
accelerator processors such as GP-GPU, in the recent Top500 list-
ings. For the past eight years, the number of heterogeneous systems
in the listings has steadily increased, i.e., 1% or five systems annually,
and they occupy about 28% (140 systems) in November 2019. We
expect that this increasing trend will continue, particularly for ad-
dressing technological limitations (§ 4.1.1) and also for controlling
the power consumption.

Note that our analysis in this section revisits some analysis
methods from prior studies [20, 28, 29, 39]. Despite similar analysis
methods, we believe it is meaningful to observe the most up-to-date
supercomputing trend. Furthermore, our analysis in this section
encompasses all 500 supercomputers in the Top500 lists.

4.2 Balance Trends in Recent Supercomputers
In this section, we perform a deeper analysis on the performance
trend in recent top supercomputers. Specifically, we focus on su-
percomputers that have ranked in the top five positions on the
Top500 listings in the last decade, i.e., between 2009 and 2019. As
summarized in Table 2, our target supercomputers consist of 16
heterogeneous (✦) and 12 traditional (❍) supercomputers.
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Figure 9: Trends of performance and power efficiency in recent top
five supercomputers. The heterogeneous architecture clearly im-
prove the power efficiency but also imposes challenges to increase
the performance efficiency.

4.2.1 Overall System Efficiency. Figures 9(a) and (b) show the per-
formance efficiency (Rmax:Rpeak) and power efficiency (Rmax:Power)
of these supercomputers. We first observe that heterogeneous sys-
tems dominate the architectural trend in the top supercomputers.
Particularly, since November 2017, all top five supercomputers are
heterogeneous, indicating that the increasing popularity of the het-
erogeneous architecture (§ 4.1.6). Furthermore, in Figure 9(a), we
notice that heterogeneous systems tend to exhibit a lower perfor-
mance efficiency, i.e., achieving less than 80% of the theoretical

Table 2: System characteristics of 28 supercomputers that have marked top five in Top 500 from 2009 to 2019. ❍ and ✦ indicate that the
corresponding supercomputer has homogeneous or heterogeneous architectures, respectively. The color intensity shows the comparison
between values within the corresponding column. A higher ratio in each column is considered to be better.

Figure 7 also shows the correlation between HPL score and mem-
ory capacity. Starting from late 2009, the correlation between HPL
score and memory capacity becomes noticeably higher, i.e., 0.74 on
average between 2009 and 2019.
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Figure 8: The increasing number of heterogeneous supercomput-
ers in Top500 since 2011. The value at the top of each bar denotes the
number of heterogeneous supercomputers (out of 500 supercomput-
ers) in the corresponding listing.

4.1.6 Heterogeneous Supercomputers. Figure 8 shows the percent-
age of heterogeneous supercomputers, i.e., systems with additional
accelerator processors such as GP-GPU, in the recent Top500 list-
ings. For the past eight years, the number of heterogeneous systems
in the listings has steadily increased, i.e., 1% or five systems annually,
and they occupy about 28% (140 systems) in November 2019. We
expect that this increasing trend will continue, particularly for ad-
dressing technological limitations (§ 4.1.1) and also for controlling
the power consumption.

Note that our analysis in this section revisits some analysis
methods from prior studies [20, 27, 28, 38]. Despite similar analysis
methods, we believe it is meaningful to observe the most up-to-date

supercomputing trend. Furthermore, our analysis in this section
encompasses all 500 supercomputers in the Top500 lists.

4.2 Balance Trends in Recent Supercomputers
In this section, we perform a deeper analysis on the performance
trend in recent top supercomputers. Specifically, we focus on su-
percomputers that have ranked in the top five positions on the
Top500 listings in the last decade, i.e., between 2009 and 2019. As
summarized in Table 2, our target supercomputers consist of 16
heterogeneous (✦) and 12 traditional (❍) supercomputers.
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Figure 9: Trends of performance and power efficiency in recent top
five supercomputers. The heterogeneous architecture clearly im-
prove the power efficiency but also imposes challenges to increase
the performance efficiency.

4.2.1 Overall System Efficiency. Figures 9(a) and (b) show the per-
formance efficiency (Rmax :Rpeak ) and power efficiency (Rmax :Power)
of these supercomputers. We first observe that heterogeneous sys-
tems dominate the architectural trend in the top supercomputers.
Particularly, since November 2017, all top five supercomputers are
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heterogeneous, indicating that the increasing popularity of the het-
erogeneous architecture (§ 4.1.6). Furthermore, in Figure 9(a), we
notice that heterogeneous systems tend to exhibit a lower perfor-
mance efficiency, i.e., achieving less than 80% of the theoretical
peak performance (Rpeak ). In contrast, Figure 9(b) shows that the
power efficiency of heterogeneous systems far exceed that of tra-
ditional systems, especially since 2017. Specifically, the average
power efficiency of the heterogeneous machines (5.5 GFlops/W)
is about five times higher than the average power efficiency of
the traditional machines (1.1 GFlops/W). Our observation clearly
demonstrates the benefit, i.e., energy efficiency, and also challenges,
i.e., technical obstacles to realize the potential performance [20], of
the heterogeneous architecture.
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(a) Memory capacity per core. (b) Memory bandwidth per Flops.

Figure 10: Performance balance in systemmemory. Despite the in-
creasing performance of thememory system, the per Flopsmemory
bandwidth has decreased due to the growth of the processing power.

4.2.2 System Memory. Next, we analyze the performance trend
in the memory subsystem. For heterogeneous systems, the mem-
ory capacity and bandwidth are the sums of the DRAM and HBM
capacity and bandwidth. First, Figure 10(a) shows the trend in the
memory capacity per core (ΣMemoryCap:ΣCoresTotal) of recent top
machines. We observe that most systems are clustered around 1 GB
in the graph. Only three supercomputers, i.e., Jaguar.1, K Computer,
and Super MUC, furnish more than 2 GB of memory per processing
core. In addition, the per-core memory capacity of heterogeneous
supercomputers (0.7 GB on average) tend to be lower than the per-
core memory capacity of traditional systems (1.3 GB on average),
although the heterogeneous systems tend to be equipped with a
greater amount of system memory (more than 300 TB on average).
This indicates that the increase in the core count from accelerators,
e.g., GP-GPU, is greater than the increase of memory (HBM) from
accelerators in the heterogeneous machines. In fact, in the hetero-
geneous systems, the average HBM capacity per accelerator core
is merely 0.2 GB, about 14× less than the average DRAM capacity
per CPU core (3.3 GB).

Next, Figure 10(b) depicts the performance balance between
the aggregate memory bandwidth and the peak processing power
(ΣMemoryBW:Rpeak ) of the target supercomputers. Overall, we
clearly see a diminishing trend in the balance ratio, indicating
that the processing power grows faster than the system memory
speed. For instance, the highest ratio value in 2019, i.e., 0.13 from
Summit, is about 9× lower than the highest ratio in 2009, i.e., 1.2
from BlueGene/L. Further, after 2011, none of the top systems exceed
0.5 B/s per Flops (more on this in § 4.3).

4.2.3 Parallel File System. Most supercomputers are equipped with
a networked parallel file system (PFS) to support capacity require-
ments of running applications. The main memory is inevitably used

10
0

10
1

10
2

10
3

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

R
a
ti
o

10
-2

10
-1

10
0

10
1

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

R
a
ti
o
 (

x
1
0
0
0
)

Traditional
Heterogeneous

No.1

(a) Capacity ratio. (b) Bandwidth ratio.

Figure 11: Performance balance between the file system and mem-
ory subsystem.We do not observe a drastic change in the file system
capacity and bandwidth. On average, the file system capacity and
bandwidth are about 44× larger and 13,353× slower, respectively,
than the system memory capacity in the recent top five supercom-
puters.

as a buffer space for manipulating datasets in the PFS. Therefore, we
analyze the performance balance between the PFS and the memory
subsystem. Figure 11(a) and (b) show the capacity and bandwidth ra-
tios between PFS and memory subsystem, i.e., PFSCap:ΣMemoryCap
and PFSBW:ΣMemoryBW, respectively. Note that we only consider
scratch file systems that parallel applications primarily exploit for
storing data, i.e., excluding NFS /home and archival storage areas.
For the file system capacity (Figure 11(a)), we observe that the ratio
values are scattered between 2 and 100, except for two systems,
i.e., Pleiades and Gyoukou, which provide substantially larger file
system space compared to their memory capacity, i.e., 140× and
410×, respectively. The overall average ratio is 44, meaning that
the recent top supercomputers tend to provision the PFS capacity
to be 44× larger than their memory capacity. In addition, Summit,
the No.1 supercomputer in 2018 and 2019, has a ratio of 89, almost
2× greater than the overall average. Similar to the capacity ratio,
we do not observe a clear change over time in the bandwidth ratio
(Figure 11(b)). On average, the file system bandwidth in the recent
top systems are 13,353× lower than the aggregated memory band-
width, although we have observed significant variance (σ=17,000)
among these systems. The PFS in Summit is about 10,000× slower
than its aggregated memory speed, justifying a burst buffer [31].

4.2.4 Burst Buffer Storage. The burst buffer (BB) is recently becom-
ing popular to mitigate the performance gap between memory and
file system [27]. Eight out of the 28 recent top systems (Table 2) have
the BB storage, either within a compute node or in a dedicated set
of nodes, e.g., IO forwarding nodes, inside the cluster. In Figure 12,
we compare the (a) capacity and (b) bandwidth of the aggregated
system memory, BB, and PFS of each of these seven systems, i.e.,
(a) ΣMemoryCap:PFSCap:BBCap and (b) ΣMemoryBW:PFSBW:BBBW,
respectively. From Figure 12(a), we see that the BB capacity of most
machines range between the capacity of memory and PFS except for
Tianhe-2A, which employs SSDs in its 256 IO forwarding nodes [40].
On average, the BB capacity is about 3× larger than the memory
capacity, and the K Computer exhibits the highest ratio, i.e., 8×
larger than the memory capacity. Similarly, the BB bandwidth also
ranges between the memory bandwidth and the PFS bandwidth,
as depicted in Figure 12(b). However, the bandwidth gap between
memory and BB is noticeably large in all seven systems. On average,
the BB bandwidth in the seven systems is about 3.2× greater than

16



An Analysis of System Balance and Architectural Trends
Based on Top500 Supercomputers HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

10
0

10
1

10
2

10
3

10
4

10
5

10
6

TSUBAME 2.0

K computer

Tianhe-2A
Cori

ABCI

Summit

Sierra

Frontera

C
a
p

a
c
it
y
 (

T
B

) Memory BB PFS

(a) Storage capacity.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

TSUBAME 2.0

K computer

Tianhe-2A
Cori

ABCI

Summit

Sierra

Frontera

B
a

n
d

w
id

th
 (

T
B

/s
)

Memory BB PFS

(b) Storage bandwidth.

Figure 12: Burst buffer characteristics in seven recent supercom-
puters. In these supercomputers, the burst buffer capacity is about
3× larger than the system memory, and its bandwidth is about 3×
faster than the bandwidth of the parallel file system.

the PFS bandwidth but also about 3,065× slower than the total mem-
ory bandwidth. In addition, compared to the earlier systems (e.g.,
K Computer, Cori, etc.), Summit and Sierra provide a significantly
higher BB bandwidth (i.e., 9.7 TB/s and 9.1 TB/s respectively) with
a less number of compute nodes and SSDs.

BBs are much lower in capacity compared to the PFS and can typ-
ically accommodate 2-3 snapshots of a system memory checkpoint
(e.g., Summit’s 512GB of DRAM compared to 1.6TB of node-local
SSD.) Another emerging provisioning strategy is to combine the
salient properties of a BB (high rates) and a PFS (better reliability
and capacity) into a single flash-based storage tier (e.g., the Perl-
mutter system at NERSC in 2020). While it can offer better rates,
a high-capacity, all-flash tier will be cost prohibitive (Perlmutter’s
all-flash PFS offers 4TB/s but only around 30PB). The intent is for
such a tier to be backed by a project or a campaign storage with
larger capacity. On the flip side, future systems such as OLCF’s
Frontier system in 2021 will continue to provide a node-local flash-
based BB and an HDD-based PFS, with 2-4x capacity and bandwidth
compared to OLCF’s Summit BB and PFS, respectively (BB: 7.4PB,
9.7TB/s; PFS: 250PB, 2.5TB/s; the PFS also caters to medium-term
analysis needs like a project store). Consequently, the deep-storage
hierarchy on the high-end systems is still evolving to better fit the
various usage scenarios at the respective centers.

4.2.5 Interconnect Network. The interconnect performance is a
crucial factor that affects the capability of a supercomputer when
it comes to processing large-scale, inter-node jobs. We summarize
the networking performance characteristics of the 28 recent top
supercomputers in Figure 13. Note that we could not find the bi-
section bandwidth information from seven systems (marked ’·’ in
Table 2) and exclude such systems in Figure 13. First, Figure 13(a)
shows the ratio between the bisection bandwidth and the total injec-
tion bandwidth (NetworkBWBisection: ΣNetworkBW Injection), demon-
strating how efficiently the global interconnection network of a
supercomputer can handle the communication requests from indi-
vidual compute nodes at the full scale. We observe that the bisection
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Figure 13: Performance trend in the interconnect network. (a)
shows the interconnect network performance in processing all-to-
all communication. (b) demonstrates that the interconnect network
performance does not exhibit a strong correlation to the HPL per-
formance efficiency.

bandwidth in most systems are substantially lower than the total
injection bandwidth, i.e., the aggregated injection bandwidth from
all compute nodes. On average, the bisection bandwidth is 32% of
the total injection bandwidth for the 20 systems. However, three
supercomputers, i.e., Tsubame-2.0 (ratio of 1.2, non-blocking fat
tree), Titan (1.1, 3D torus), and Summit (1.0, non-blocking fat tree),
show bisection bandwidth exceeding the total injection bandwidth,
indicating that the bisection bandwidth in these systems does not
impose a bottleneck in global communications such as all-to-all
communication. Although it is ideal to design a system bisection
bandwidth to suffice the total injection bandwidth, it also needs
to be weighed against other design factors including the target
application communication profile and budget.

Next, Figure 13(b) shows the correlation between this intercon-
nect performance, i.e., the ratio of the bisection bandwidth to the
total injection bandwidth, and the overall performance efficiency,
i.e., Rmax : Rpeak (§ 4.1.4). We do not find any strong correlation
between the overall performance efficiency and the interconnect
network performance. This weak correlation suggests that the net-
work performance does not substantially impact the ability to ac-
quire a high score in the HPL benchmark. However, depending
on the target environment and mission, attaining a high bisection
bandwidth for a system may be necessary. For instance, a recent
analysis of the five-year job log from Titan suggests that over 54%
of the CPU hours were consumed by large-scale jobs (using more
than 2,048 compute nodes) even though 90% of the submitted jobs
were using less than 256 compute nodes [39]. In such an environ-
ment, a sufficient bisection bandwidth is essential for supporting
large-scale jobs.

Although observing the correlation between injection bandwidth
and bisection bandwidth provides an insight of a general network-
ing trend among major supercomputers, our analysis is limited to
present comprehensive comparisons because of the intense diver-
sity in networking hardware technologies and interconnect topolo-
gies [17, 19, 37]. Moreover, in this study, we have collected the
performance specifications of Top500 supercomputers, including
the network performance specifications, from publicly available
sources such as institution websites or published papers 4, instead

4Our complete dataset is publicly available at https://github.com/lass-lab/Top500-
analysis-dataset
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Figure 14: Provisioning the accelerators. (a) shows the ratio of the
system Flops (Rpeak ) between CPUs and accelerators. (b) shows the
capacity ratio between system main memory and HBM.

of relying on our own calculations and projections. According to
the dataset that we have collected, some supercomputers, such
Tsubame-2.0, Titan, and Summit in Table 2, do provide a bisection
bandwidth that exceeds the total injection bandwidth.

4.3 Performance Balance in Heterogeneous
Supercomputers

In this section, we analyze the performance balance in the intra-
node connectivity of the 16 heterogeneous supercomputers from the
28 top recent supercomputers (§ 4.2). With the emerging heteroge-
neous architectures and data-intensive applications, achieving the
performance balance between the system components has become
more important than it was in the past. For each heterogeneous
supercomputer, we further summarize important characteristics of
the intra-node connectivity in Table 3.

4.3.1 Provisioning Accelerators. We first analyze the proportion
of accelerators in the overall system performance for the 16 het-
erogeneous supercomputers. Figure 14(a) depicts the Flops (Rpeak )
ratio between the conventional CPU and the accelerators for each
heterogeneous system (ΣFlopsCPU:ΣFlopsACC). It is clearly notice-
able that the accelerator dominates the overall performance in most
heterogeneous systems. For the 16 heterogeneous systems, the ac-
celerators contribute to 84% of the system Rpeak on average, and
Jaguar.2 is the only machine wherein the accelerators produce less
than 50% of the system Rpeak . However, Jaguar.2 was in a partial
upgrade phase from Cray XT5 to XK6 in November 2009 (Table 2)
and thus only 960 out of 18,688 compute nodes had GP-GPUs [18].
Recent Summit, Sierra, and Frontera systems rely on the accelerator
for more than 95% of overall system Flops. This indicates that it is
essential to utilize the accelerators efficiently to fully exploit the
processing power of heterogeneous supercomputers.

Figure 14(b) shows the capacity between DRAM (for CPUs)
and HBM (for accelerators), i.e., ΣDRAMCap:ΣHBMCap. Despite

the strong dominance of the accelerators in Rpeak , the DRAM ca-
pacity still dominates the HBM capacity in many heterogeneous
systems. On average, DRAM provides 68% of total system memory
capacity. Besides the higher cost of HBM, this is also because the
CPUs require more memory for arbitrating the tasks among acceler-
ators and also for handling other system demands, e.g., running the
operating system. In contrast, most accelerators primarily perform
computational tasks. In addition, systems may also be provisioning
more DRAM to accommodate CPU-only jobs. For instance, even on
heterogeneous systems, there is a significant fraction of CPU-only
jobs due to slower adoption of GPUs (e.g., GPU adoption on the
Titan supercomputer was only 28% in 2018 [39]) or some codes
may not be amenable to the GPU and the system may need to
support them anyway. While such jobs will not be using the full
potential of the system, it may be necessary for the system to ac-
commodate them in its portfolio. In such cases, one approach to
still effectively utilize the node would be to multiplex CPU-only
jobs and GPU-based jobs. For example, one can co-locate the post-
processing analysis of an end-to-end job (simulation + data analysis)
on the same CPU/GPU node, wherein a GPU-based simulation is
multiplexed with the CPU-based analysis in an in-situ fashion [26].

In Figure 14(b), only four heterogeneous systems, i.e., Roadrun-
ner.1, Roadrunner.2, Tianhe-2A, and Gyoukou, feature more amount
of HBM than the amount of DRAM. Interestingly, these four ma-
chines are equipped with accelerators that are not GP-GPUs. For
instance, Gyoukou is equipped with the PEZY-SC2 accelerators [12],
and the accelerator memory provides 95% of the overall memory
capacity. Similarly, Roadrunner and Tianhe-2A adopt the IBM Pow-
erXCell 8i processor and the in-house developed Matrix2000, re-
spectively, for their accelerators.

4.3.2 Memory Subsystem. In § 4.2.2, we have studied the perfor-
mance trend in systemmemory for 28 recent top supercomputers. In
a heterogeneous architecture, however, accelerators are commonly
installed with a dedicated memory system that can be independent
to the system main memory. Therefore, for the 16 heterogeneous
supercomputers, we separately analyze the performance balance
of the two different memory types, i.e., the system main memory
for CPUs and the HBM for accelerators. First, Figure 16(a) shows
the main memory capacity per CPU core (ΣDRAMCap:ΣCoresCPU)
and the HBM capacity per accelerator core (ΣHBMCap:ΣCoresACC)
for the 16 heterogeneous supercomputers. Noticeably, the per-CPU
core memory capacity (3.5 GB on average) is significantly larger, i.e.,
about 15×, than the per-accelerator core memory capacity (0.2 GB
on average). In addition, the per-CPU core memory capacity is par-
ticularly large in Sunway TaihuLight (8 GB), ABCI (9.6 GB), Summit
(11.6 GB), and Sierra (5.8 GB). As mentioned earlier in § 4.3.1, this
dissimilarity in the per-core memory capacity is attributed to the
fundamental difference between CPUs and accelerators in the pro-
cessing architecture and target tasks. Further, HBM is also more
expensive than DRAM, which will likely limit its capacity.

To address such cost constraints, future systems may also con-
sider deeper memory hierarchies, wherein HBM and DRAM are
supplemented with NVM (e.g., more HBM and very little to no
DRAM, but with a large node-local, byte-addressable NVM like 3D
XPoint [1, 2]). Also, emerging technologies can directly populate
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CN Flops Intranode Connectivity System Efficiency
CPU ACC CPU-to-CPU CPU-to-ACC ACC-to-ACC Injection BW RSD Performance Power

(GFlops) (GFlops) (GB/s) (GB/s) (GB/s) (GB/s) (σ :µ ) (Rmax :Rpeak) (GFlops/W)
✦ RoadRunner.1 14.40 435.20 12.80 2.00 25.60 2.00 1.75 0.76 0.44
✦ RoadRunner.2 14.40 435.20 12.80 2.00 25.60 2.00 1.75 0.76 0.45
✦ Jaguar.2 288.36 665.00 · 8.00 · 6.40 3.17 0.74 0.38
✦ Tianhe-1 269.98 224.00 11.20 8.00 8.00 5.00 3.08 0.47 0.37
✦ Nebulae 127.60 515.21 12.80 8.00 8.00 3.20 0.87 0.43 0.49
✦ Tsubame-2.0 152.00 1,545.00 12.80 8.00 8.00 16.00 1.72 0.52 0.85
✦ Tianhe-1A 140.64 515.00 12.80 8.00 8.00 20.00 5.39 0.55 0.64
✦ Titan 144.18 1,341.44 · 8.00 · 5.50 2.28 0.65 2.14
✦ Tianhe-2A 422.40 5,033.16 16.00 15.75 · 6.00 2.15 0.61 3.32
✦ SW TaihuLight 95.03 3,040.26 16.00 · 16.00 16.00 1.75 0.74 6.05
✦ PizDaint 166.40 4,812.80 · 15.75 · 10.00 2.22 0.78 8.91
✦ Gyoukou 332.80 23,511.04 · 15.75 15.75 13.00 0.46 0.68 14.17
✦ ABCI 3,840.00 28,672.00 20.80 15.75 50.00 25.00 5.52 0.61 12.06
✦ Summit 1,105.92 43,008.00 64.00 50.00 50.00 25.00 2.06 0.71 14.67
✦ Sierra 1,105.92 28,672.00 64.00 75.00 75.00 25.00 2.04 0.75 12.72

Table 3: Performance balance ratio in the 15 recent heterogeneous supercomputers. CN Flops column shows the breakdown of the Flops performance
between CPUs and accelerators (ACC) in a compute node. RSD column lists the relative standard deviation from bandwidth of main memory, HBM,
CPU-to-CPU, CPU-to-ACC, ACC-to-ACC, and network injection. A smaller RSD value indicates a smaller bandwidth variance among those intra-node
connections.

4.3 Performance Balance in Heterogeneous
Supercomputers

In this section, we analyze the performance balance in the intra-
node connectivity of the 16 heterogeneous supercomputers from the
28 top recent supercomputers (§ 4.2). With the emerging heteroge-
neous architectures and data-intensive applications, achieving the
performance balance between the system components has become
more important than it was in the past. For each heterogeneous
supercomputer, we further summarize important characteristics of
the intra-node connectivity in Table 3.

4.3.1 Provisioning Accelerators. We first analyze the proportion
of accelerators in the overall system performance for the 16 het-
erogeneous supercomputers. Figure 14(a) depicts the Flops (Rpeak)
ratio between the conventional CPU and the accelerators for each
heterogeneous system (ΣFlopsCPU:ΣFlopsACC). It is clearly noticeable
that the accelerator dominates the overall performance in most
heterogeneous systems. For the 16 heterogeneous systems, the ac-
celerators contribute to 84% of the system Rpeak on average, and
Jaguar.2 is the only machine wherein the accelerators produce less
than 50% of the system Rpeak. However, Jaguar.2 was in a partial
upgrade phase from Cray XT5 to XK6 in November 2009 (Table 2)
and thus only 960 out of 18,688 compute nodes had GP-GPUs [18].
Recent Summit, Sierra, and Frontera systems rely on the accelerator
for more than 95% of overall system Flops. This indicates that it is
essential to utilize the accelerators efficiently to fully exploit the
processing power of heterogeneous supercomputers.

Figure 14(b) shows the capacity between DRAM (for CPUs) and
HBM (for accelerators), i.e., ΣDRAMCap:ΣHBMCap. Despite the strong
dominance of the accelerators in Rpeak, the DRAM capacity still
dominates the HBM capacity in many heterogeneous systems. On
average, DRAM provides 68% of total system memory capacity.
Besides the higher cost of HBM, this is also because the CPUs
require more memory for arbitrating the tasks among accelerators
and also for handling other system demands, e.g., running the
operating system. In contrast, most accelerators primarily perform
computational tasks. In addition, systems may also be provisioning
more DRAM to accommodate CPU-only jobs. For instance, even
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Figure 14: Provisioning the accelerators. (a) shows the ratio of the
system Flops (Rpeak) between CPUs and accelerators. (b) shows the
capacity ratio between system main memory and HBM.

on heterogeneous systems, there is a significant fraction of CPU-
only jobs due to slower adoption of GPUs (e.g., GPU adoption
on the Titan supercomputer was only 28% in 2018 [40]) or some
codes may not be amenable to the GPU and the system may need
to support them anyway. While such jobs will not be using the
full potential of the system, it may be necessary for the system to
accommodate them in its portfolio. In such cases, one approach to
still effectively utilize the node would be to multiplex CPU-only
jobs and GPU-based jobs. For example, one can co-locate the post-
processing analysis of an end-to-end job (simulation + data analysis)
on the same CPU/GPU node, wherein a GPU-based simulation is
multiplexed with the CPU-based analysis in an in-situ fashion [27].

In Figure 14(b), only four heterogeneous systems, i.e., Roadrun-
ner.1, Roadrunner.2, Tianhe-2A, and Gyoukou, feature more amount

Table 3: Performance balance ratio in the 15 recent heterogeneous supercomputers. CN Flops column shows the breakdown of the Flops performance
between CPUs and accelerators (ACC) in a compute node. RSD column lists the relative standard deviation from bandwidth of main memory, HBM,
CPU-to-CPU, CPU-to-ACC, ACC-to-ACC, and network injection. A smaller RSD value indicates a smaller bandwidth variance among those intra-node
connections.
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Figure 15: Balance of the intra-node connectivity in 15 recent heterogeneous supercomputers. The graph shows the bandwidth of each
internal connection normalized to the system main memory bandwidth. ACC denotes an accelerator such as GP-GPU. Frontera [35] intra-
node connectivity specifications are not yet publicly available.

GPU’s HBM from the node-local SSDs using GPUDirect [3] meth-
ods, obviating the need to load data onto DRAM and then copy to
the GPU memory. However, this needs to be weighed against the
need to accommodate CPU-only jobs that will need enough DRAM.
In any case, memory hierarchies are likely to get even richer. While
applications prefer a flatter, easily addressable memory address
space, budget constraints will eventually influence how deep and
wide the memory hierarchy gets.

Figure 16(b) depicts the memory bandwidth per Flops for CPUs
and accelerators (ΣDRAMBW:ΣFlopsCPU and ΣHBMBW:ΣFlopsACC).
Here, we calculate the ratio of aggregated HBM bandwidth to the
aggregated Flops of accelerators (Table 3). Except for four super-
computers, i.e., Jaguar.2, Tianhe-1, Tianhe-1A, and ABCI, the DRAM
bandwidth to CPU Flops is about 3× greater than the HBM band-
width to accelerator Flops. However, this does not indicate the
DRAM bandwidth is generally higher than the HBM bandwidth,
but is because of the higher processing power of accelerators (Flops
count), as specified in Table 3.

4.3.3 Intra-node Connectivity. In a heterogeneous supercomputer,
a compute node houses additional hardware, e.g., GP-GPU, HBM,
which requires additional connections, e.g., data exchange between
CPU and GP-GPU (denoted as ACC), inside the node. Such inter-
nal connections, or intra-node connectivity, should be designed
carefully to prevent performance bottlenecks within a compute

node. Therefore, we analyze the balance in the intra-node connec-
tivity for 16 heterogeneous systems. Figure 15 shows the band-
width of five internal connections namely HBM-to-ACC bandwidth,
CPU-to-CPU bandwidth, CPU-to-ACC bandwidth, ACC-to-ACC
(peer-to-peer) bandwidth and injection bandwidth. All bandwidth
values are normalized to the system main memory bandwidth of
the corresponding supercomputer. A missing bar indicates that
the corresponding connection is not applicable to the system. For
instance, each compute node in Titan has a single CPU and GPU,
and thus CPU-to-CPU and ACC-to-ACC connections do not exist.
However, each node in Summit has two IBM P9 CPUs with CPU-
to-CPU connectivity via IBM’s X-Bus, CPU to DRAM connectivity,
six Nvidia Volta GPUs with HBM, resulting in HBM-to-ACC and
ACC-to-ACC connectivity (NVLink), and CPU-to-ACC (NVLink)
links. Overall, most internal connections within a compute node
are slower than the system main memory bandwidth except for the
HBM-to-ACC and the ACC-to-ACC bandwidth. On average, the
HBM-to-ACC bandwidth is 6.2× greater than the main memory
bandwidth, while the ACC-to-ACC bandwidth is almost comparable
(i.e., 0.9×) to the main memory bandwidth. In addition, the average
CPU-to-CPU, CPU-to-ACC, and network injection bandwidth are
0.8×, 0.3×, and 0.5×, respectively, of the main memory bandwidth.
Since the HBM-to-ACC bandwidth is 6.2× DRAM bandwidth, it
might appear that the DRAM bandwidth is the bottleneck in trans-
ferring data between the CPU and the ACC; however, it should be
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Figure 16: The performance balance of memory subsystem in 15
recent heterogeneous supercomputers. The per-corememory capac-
ity if about 15× higher for CPUs. Also, despite the higher memory
bandwidth of HBMs, the bandwidth to Flops ratio is lower for accel-
erators due to their higher Flops count.

noted that the CPU-to-ACC (e.g., PCIe or NVLink) bandwidth is
0.3× DRAM bandwidth, indicating that it is in fact the slower link
in the end-to-end data path.

An important measure for assessing the balance of the intra-node
connectivity is the variance among the multiple connections. In Ta-
ble 3, the RSD column lists the relative standard deviation 5 of main
memory, CPU-to-CPU, CPU-to-ACC, ACC-to-ACC, and network
interconnect bandwidth. According to the RSD values (lower means
better balance), Nebulae (RSD=0.87) and Gyoukou (RSD=0.46) ex-
hibit a well-balanced intra-node connectivity. In contrast, Tianhe-1A
(RSD=5.39) and ABCI (RSD=5.52) show the most skewed intra-node
connectivity ratios among the 15 heterogeneous supercomputers.
For the 15 heterogeneous supercomputers, the ACC-to-ACC con-
nection exhibits the largest impact on the performance efficiency of
the HPL benchmark, i.e., Rmax

Rpeak
, compared to the other individual

connections. Specifically, the correlation coefficient (ρ) between the
ACC-to-ACC bandwidth and the performance efficiency is about
0.6, about 2× greater than the average from all internal connection
bandwidth values, i.e., the average ρ from the main memory (ρ=0.1),
HBM (ρ=0.3), CPU-to-CPU (ρ=0.4), CPU-to-ACC (ρ=0.3), ACC-to-
ACC (ρ=0.6), and network injection bandwidth (ρ=0.1). This is
because the HPL benchmark is a compute-intensive task [22], for
which accelerators, e.g., GP-GPUs, are heavily utilized in hetero-
geneous supercomputers (§ 4.3.1). Likewise, the HBM bandwidth
(ρ=0.3) affects more than the main memory bandwidth (ρ=0.1) does
for HPL. Recent technologies, such as NVLink [23] and XGMI [7],
directly address this observation, i.e., the necessity for fast commu-
nication among CPUs and accelerators, by introducing a fast and

5For a standard deviation (σ ) and a mean (µ ), the relative standard deviation (RSD) is σ
µ .

specialized interconnect for accelerators instead of relying on the
generic PCIe interconnect.

While a low RSD implies a better balance across the links, it
is more important to provision apporopriately for the target ap-
plication workload and profile than to inconsiderately achieve a
balance across all of the intra-node connections. For instance, if
the target applications tend to transfer data frequently between
the processors using the CPU-to-CPU link, it will be practical to
provision a relatively higher CPU-to-CPU bandwidth than other
communication links.

5 RELATEDWORK
With the past 27 years of semi-annual reporting, the TOP500 [11]
project has become the most reliable, up-to-date source for studying
the leading technical trends of the world’s most powerful supercom-
puters. Particularly, Top500 adopts the High Performance Linpack
(HPL) benchmark [22], which solves a dense system of linear equa-
tions in double-precision arithmetics, to normalize and rank the
performance of supercomputers. Due to its long history and abun-
dant resources, several prior reports have studied historical and
architectural trends in supercomputing by analyzing the data from
the Top500 project [14–16, 20, 24, 28, 30]. For instance, an earlier
report in 2001 [32] summarized the supercomputing history based
on the Top500 data. A study in 2008 [30] also provided statistical
summaries of supercomputer architectures and future performance
predictions based on the Top500 data. Similarly, a recent study [24]
analyzed the architectural trend of supercomputers from 1993 to
2012 and anticipated the future trends based on the past tendency.
Compared to such prior studies, this paper not only provides the
most up-to-date analysis of its kind but also performs a deeper
analysis for revealing the trend in the performance balance, which
is often overlooked in prior reports.

There are other ranked lists for complementing the sole perfor-
mance metric of HPL [36], including the Gordon Bell Prize [13]
(focused on application performance), IO500 [6] (specialized in the
I/O performance), Green500 [4] (assessing the power efficiency),
and Graph500 [25] (measuring the parallel graph processing capa-
bility). Furthermore, the HPCG benchmark [5] aims to complement
the HPL benchmark by incorporating more diverse parallel appli-
cation models. Despite their usefulness, we do not include such
projects in this study especially due to insufficient resources and
history compared to the Top500 project.

There exist a few studies that have addressed the increasing
architectural complexity in supercomputers and the consequent im-
portance of the performance balance in the system design [28, 38].
For instance, an earlier study [28] indicated that the performance
of subsystem components in a supercomputer, e.g., memory, disk,
network, etc., should be comparable to the processing performance
of CPU. However, the study is outdated and thus does not consider
recent technologies such as accelerators or burst buffers. A recent
study [38] analyzes the architecture and the performance balance
in three supercomputers, i.e., Titan [10], Summit [9], and Sierra [8],
that are developed and deployed under the U.S. Department of
Energy (DOE) project. Despite its technical details, the study only
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discusses the architectures of the three aforementioned supercom-
puters and is limited for demonstrating the overall trend in su-
percomputing. Similarly, there exist other studies [20, 27, 29] that
primarily analyzed a single performance aspect of supercomputers,
e.g., accelerator, file system, interconnect network, etc. In contrast,
this paper thoroughly analyzes the architectural trend and perfor-
mance balance in memory subsystem, file system, interconnect
network, and intra-node connectivity in recent supercomputers.

6 CONCLUSION
In this paper, we have analyzed over 10,000 supercomputers from
the Top500 list and presented recent architectural trends in leading
supercomputers. Furthermore, we have analyzed the performance
balance trends for the top supercomputers in the past decade. Par-
ticularly, our analysis is focused on revealing the trend in the per-
formance balance, which has been disregarded in the prior analysis
reports. We claim that our analysis will provide a useful guideline
to understand the architectural trends in leading supercomputers
and also to design next generation supercomputers.

Our analysis dataset is publicly available at https://github.com/
lass-lab/Top500-analysis-dataset.
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