
Towards Scalable Manycore-aware Persistent B+-Trees for

Efficient Indexing in Cloud Environments

Safdar Jamil1, Awais Khan1, Bernd Burgstaller2 and Youngjae Kim1

1Sogang University, Seoul, Republic of Korea
2Yonsei University, Seoul, Republic of Korea

{safdar, awais, youkim}@sogang.ac.kr, bburg@yonsei.ac.kr

Abstract—The emergence of manycore machines with Intel DC
Persistent Memory (DCPM) aims to provide high performance
and scalability with persistence guarantees. Thus, it is required to
offer opportunities to port DRAM-based index data structures
to DCPM to fully exploit the performance of these machines.
Fast & Fair (F&F) is the state-of-the-art concurrent variant
of the B+-tree for DCPM. However, its adoption on manycore
machines suffers from scalability limitations due to lengthy, lock-
based synchronization including structure modification opera-
tions (SMOs). In this work, we propose F3-tree, a concurrent,
persistent future-based B+-tree that shows superior scalability
on DCPMs. F3-tree design relies on thread-local future objects
and a global B+-tree. We employ an in-memory hash table to
mitigate the read overhead for the key searches in thread-local
future objects. We implemented the proposed ideas atop F&F
and performed experiments on Linux (kernel v5.4.0) using both
synthetic and real-world workloads. We evaluated F3-tree with
F&F and the results show that F3-tree outperforms F&F by 3.4x
on average for sequential, random, and mixed workloads.

I. INTRODUCTION

Cloud environments are facing unprecedented challenges

due to the enormous data and the number of applications that

must be handled [1]–[3]. Therefore, many cloud providers

have deployed manycore machines, aiming to provide high

performance and reduce the total cost of ownership by con-

solidating multiple users within a single server. However, the

recent inclusion of Intel DC Persistent Memory (DCPM) in

manycore machines brings in persistency at memory level [4]

but severely degrades application scalability on manycore

machines. Applications that run extensively on cloud services

include databases and file systems that manage user-generated

data [5]. These applications rely heavily on indexed data

structures for high performance to access the data.

Several indexing methods have been proposed for

DCPM [6]–[9]. The B+-tree is one of the most popular index

data structures used in databases and file systems. A few stud-

ies used B+-trees on DCPM [7], [8], [10]. Fast&Fair (F&F) [8]

is the state-of-the-art concurrent variant of the B+-tree studied

on DCPM. However, its adoption on manycore machines leads

to scalability limitations. The write operations in F&F need to

obtain a lock to ensure mutual exclusion, which becomes a

point of contention when multiple threads attempt to access

a B+-tree node. Structural modification operations such as

node splitting and merging increase contention when a thread

Y. Kim is the corresponding author.

triggers a chain of SMOs from a leaf to the root of the B+-

tree. This chain needs to acquire a per-node lock from the leaf

to the root node where a number of threads are already trying

to acquire the lock for the node.

Lock optimization techniques such as MCS [11], FC-

MCS [12], and HMCS [13] cannot solve the inherent scala-

bility limitations of B+-trees (refer to Section II-B). An alter-

native to lock optimization techniques is to employ scalable-

friendly future objects (FO) [14], proposed to improve the

performance of shared data structures. FOs are data objects

that promise to deliver the results of an operation once the re-

sults become available. Futures are thread-local objects where

each thread allocates its own FOs. The operations represented

by FOs are applied to the shared data structure when their

evaluate method is called. The evaluation of futures can be

done in a flexible manner. For instance, threads can accumulate

pending future operations to process all the FOs in a batch to

perform a single operation on the shared data structure. Some

operations may cancel each other out before taking effect

over the shared data structure. Threads can delegate their FO

operations to another thread.

Adopting futures for indexing data structures such as B+-

trees can improve their insertion performance, but it comes

with its own challenges. Integrating FOs with a B+-tree can

cause consistency issues. The evaluate method must incorpo-

rate operations from thread-local FOs to the shared B+-tree

in a crash-resilient manner; otherwise, data loss may occur,

leaving the B+-tree in an inconsistent state. Thread-local FOs

can severely degrade the read performance of B+-trees. The

read operations have to traverse the thread-local FOs to search

for updated keys, which incurs an additional read overhead.

Placing FOs in PM requires a durability guarantee; otherwise,

after a crash, the FOs may be in an inconsistent state, such as

missing pointers between thread-local FOs.

To address the aforementioned problems, we propose the

F3-tree, a concurrent persistent B+-tree for PM-based many-

core machines. The F3-tree design relies on two important

elements, i) thread-local FOs, and ii) a shared, global B+-tree.

Our approach is inspired by the producer-consumer design

principle where application threads are only allowed to update

the thread-local FOs (as producers), while the designated asyn-

chronous threads are privileged to perform update operations

on the global tree (as consumers). We converted DRAM-based

FOs to persistent FOs and rely on durable linearizability as the

44

2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)

978-1-6654-4393-7/21/$31.00 ©2021 IEEE
DOI 10.1109/ACSOS-C52956.2021.00022

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
on

om
ic

 C
om

pu
tin

g
an

d
Se

lf-
O

rg
an

izi
ng

 S
ys

te
m

s C
om

pa
ni

on
 (A

CS
O

S-
C)

 |
 9

78
-1

-6
65

4-
43

93
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AC
SO

S-
C5

29
56

.2
02

1.
00

02
2

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:16:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A multi-thread insertion use case to demonstrate the scalability limitation in F&F [8].

correctness condition to guarantee crash consistency. The F3-

tree is equipped with two operational modes to update entries

to the global tree, i.e., key-based and batch-based. In the key-

based mode, the asynchronous evaluate threads checkpoint the

keys within a single thread-local future object one by one

to the global tree. In the batch-base mode, the asynchronous

evaluate threads checkpoint a single whole future object to the

global tree. To mitigate the read performance, we employ an

in-memory hash table to avoid key search in thread-local future

entries. We evaluate the proposed F3-tree against baseline

F&F with sequential and random workloads. The experimental

results confirm an average performance improvement of 3.4x

for both workloads.

II. BACKGROUND AND MOTIVATION

A. Fast & Fair: B+-tree

A recent study, F&F, proposed a DCPM-based durable and

concurrent B+-tree, that provides lock-free reads [8]. F&F

completely avoids the logging overhead by transforming a

B+-tree to another consistent state or a transient inconsistent

state that readers can tolerate. The reads detect and tolerate

inconsistencies such as duplicated elements in a sorted list.

Writers hold a lock for mutual exclusion. The writes detect

inconsistencies such as duplicated elements, and try to fix

them.

F&F is composed of two algorithms, Failure Atomic Shift

(Fast) and Failure Atomic In-place Rebalance (Fair). Fast is

used to insert the keys within a node of the B+-tree by

performing atomic shift operations to maintain the sorted order

of the keys. Since B+-tree node is an array of entries, the

shift operation is a sequence of load and store instructions in

cascading order, and it maintains the total store order. This

also helps in avoiding excessive calling of FLUSH+FENCE
instructions, as the updated entries within the B+-tree node

can be flushed together. Maintaining a consistent view of

the tree-based indexing data structure during the structural

modification operations is one of the challenging tasks since it

requires for additional caretaking in terms of logging. Logging

becomes an additional overhead as it duplicates the number

of pages, increases the write traffic, and blocks the concurrent

access of tree nodes. The fair algorithm avoids the use of

logging by maintaining the sibling pointers in the B+-tree

nodes and creates a B-link tree [15].

B. Motivation

F&F in highly concurrent write scenarios face scalability

limitations on manycore machines. For instance, the critical

section of F&F is composed of several sub-operations, i.e.,

linear search, acquiring MUTEX lock, shift operation, and

SMOs. Figure 1 shows the concurrent write operation in F&F,

where two threads, T1 and T2, perform insert operation. Both

threads look up the candidate node for the key insertion, as

shown in Figure 1 1 . Note that both threads select the same

node as the candidate node for key insertion. However, F&F

uses MUTEX locks for mutual exclusion; therefore, only a

single thread acquires the lock and proceeds with insertion. As

shown in Figure, T1 wins and acquires the lock and proceeds

with the insert operation, 2 . At this point, T1 checks the

capacity of the candidate node and triggers the SMO, as the

candidate node (N1) capacity is full. During SMO, T1 allocates

a new node, migrates half of the entries from N1 to the newly

allocated node N5 and inserts the key into the corresponding

node, steps 3 and 4 . At step 5 , T1 acquires the lock at

parent node PN and updates the links accordingly. Meanwhile

T2 is able to acquire the lock at node N1 and notices that the

N1 has been split, and now the key needs to be inserted in the

new candidate node N5. So, at step 6 , T2 releases the lock

at node N1 and acquires the lock at new candidate node N5

and performs the insert operation.

This blocking mechanism limits the scalability of F&F on

manycore machines where hundreds of application threads are

contending to perform insert operations.

III. DESIGN AND IMPLEMENTATION

A. System Overview

Figure 2 shows the overall design of our proposed system.

Our approach is inspired by the asynchronous computation

design principle, i.e., producer and consumer model. Our

design consists of three components, per-thread local future

objects (PTFO), global B+-tree, and in-memory HT (HT).

PTFOs act as thread local buffers and allow application threads

(producers) to perform write operations locally. We adopt the

doubly linked list design for the PTFO. In the meantime,

45

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:16:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. F3-tree design overview

PTFOs are checkpointed to the global B+-tree through the

evaluate function, where a dedicated worker thread pool serves

as consumers. To minimize the search query performance for

keys resident in PTFO, we adopt an in-memory hash table

(HT). A key is inserted into the HT after it is durably written

to the PTFO.

B. Operation Flow

We show the operation flow for the insert, search, and delete

operations in Figure 2. The red encircled steps show the insert

operation flow. The insert operation will first insert the key-

value pair into the thread local buffers, i.e., into the thread’s

PTFOs. Once the key is successfully written, it is pushed

to the HT. Note that the delete and search operations use

a different path compared to insert. Both delete and search

perform a hierarchical key lookup, i.e., i) a lookup in the HT;

If the key is not found, then ii) a lookup is performed in

the corresponding thread local linked list followed by iii) the

global B+-tree. Note that the lookup complexity increases as

the search operation progresses to higher hierarchies due to

the increased search space.

The evaluate operation works as follows: each evaluate

thread is responsible for a particular thread-local linked list

and it checkpoints each linked list’s FO to the global B+-tree

once it meets a given threshold. We defined two thresholds

for the checkpoint of PTFOs, i) time-based and ii) based on

the number of KV pairs. A PTFO is accessed using the tail

pointer of the linked list by the evaluation threads when either

one of the thresholds is met. Once a PTFO is checkpointed,

the tail pointer is updated atomically to the previous node.

A significant factor that affects performance is the size of

the PTFOs. If there is no limit to their size, then producers do

not get blocked by consumers that checkpoint those FOs to the

global B+-tree. On the contrary, limiting the number of PTFOs

would degrade the performance of the producer threads. Once

the threshold of future object allocation is met, the producer

thread has to wait for the consumer threads to checkpoint

the data to the global B+-tree, so that the producer thread

can service further requests. Producer threads are blocked for

two major reasons. First, a too small number of consumer

threads limits the scalability of the producers. Second, if

we increase the number of consumer threads, the evaluate

operation eventually meets the inherent scalability limitation

of the global B+-tree.

Fig. 3. Durable Linearizability examples. DLP represents the DL point
achieved. (a) shows the single FO achieving DLP while (b) shows the multi
FO DLP.

During the recovery phase after a system crash, the asyn-

chronous eval() threads will checkpoint the PTFOs from

before the crash to the global tree. In addition, for application

threads, new PTFO and HT will be allocated in DCPM

and DRAM, respectively. This will allow the application to

continue its execution without waiting for the recovery process

to finish.

C. Thread Local Future Objects

A future is a data object that promises to deliver the results

of an operation when ready [14]. In this work, we define future

objects as an array of keys, entry count, next and previous FO

pointer, as shown in Figure 2. Every thread has a dedicated

Local Future Object stitched in a doubly linked list.

The reasons to use a doubly linked list are as follows.

First, it mitigates the contention between the producers and

the asynchronous consumers, and we only allow producers

to modify the linked list from the head pointer while the

consumers flush from the tail of the linked list, as shown in

Figure 2. Second, for checkpointing all the entries to the global

B+-tree even after a crash. For instance, if a crash happens

in between updating the head point to the newly allocated FO

(as shown in step 2 and step 4 of Figure 3(b)) then the

recovery mechanism would still be able to access the new node

by traversing the thread local linked list through tail pointer.

With PM, providing a consistent view of PTFO is critical.

Note that we do not rely on any existing locking mecha-

nism while consuming data from PTFO. Therefore, we adopt

durable linearizability to ensure that each PTFO takes effect

in a sequential order.

D. Durable Linearizability (DL)

A concurrent data structure is linearizable if each oper-

ation takes effect in between the method’s invocation and

response [16]. With DCPM, a durability guarantee is addi-

tionally required because the data will be persistent and need

to be crash resilient. A durably linearizable concurrent data

structure satisfies the linearization property. In addition, after a

full-system crash (i.e., all threads crash), the state of the data

structure must reflect a consistent sub-history of operations

that includes all operations completed by the time of the crash.

We use the term durability point as the point in the execution

history E where an operation becomes durable, i.e., its effects

46

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:16:01 UTC from IEEE Xplore. Restrictions apply.

are visible to other threads and persistent. After a durability

point, if we execute the recovery mechanism, then the data

structure will be in a consistent state. The durability order of

an execution can be elaborated in terms of durability points,

where each durability point implies an order on the operations.

For the F3-tree, we achieve DL for the PTFO as shown in

Figure 3. We do not consider the same for the global B+-tree

because it follows the same design principle of F&F. Figure 3

shows two examples for achieving a DL point. Figure 3(a)

shows an example where we achieve the DL within a single

FO by atomically updating the key-value pairs. Steps 1 to 4

in Figure 3(a) show the write operation within an FO. The

lines labeled DLP represent the DL points achieved by the

insert operation by calling FLUSH+FENCE instructions. In

Figure 3(a), there are two DLPs achieved, DLP-1 and DLP-2.

If a crash happens in between DLP-1 and DLP-2 (step 2

and step 3) the recovery mechanism will be able to achieve

a consistent view of the thread-local linked list by DLP-1.

Figure 3(b) shows an example of the second scenario where

a new FO is updated within the thread-local linked list.

Steps 2 to 4 show the allocation of a new FO in the

thread-local linked list. In this scenario, the DLP is achieved

once the next pointer of the newly allocated FO is updated

atomically, followed by the FLUSH+FENCE instructions. We

call the FLUSH+FENCE instruction pair right after updating

the next pointer of the new FO so that if a crash happens

after the DLP, we are able to access the new FO by backward

traversing. If a crash happens before the DLP-2, our recovery

mechanism will be able to achieve the consistent state of the

thread-local linked list to the DLP-1. There is a potential

memory leak that needs to be addressed if a crash happens

in between steps 2 and 3 . There are several mechanisms

that can be adopted for memory leaks such as hazard eras [17]

and the optimistic access scheme [18].

E. Space and Time Complexity

The space overhead of our proposed design is similar to the

traditional B+-tree, i.e., O(N), because a key is either in the

PTFO or in the global B+-tree. Also, the in-memory HT is

placed in DRAM and not DCPM, so we do not consider its

space overhead for DCPM. Though, for DRAM the HT space

overhead is O(M), where M is the number of keys stored in

the PTFO entries at a particular time instance.

The time complexity for the lookup operation is composed

of two cases, one where a thread is required to traverse the

PTFO and second where a thread only looks for the key in

the global B+-tree. In addition, the read operation has to go

through the in-memory HT. Now, if a thread is looking for a

key it has to first search the hash of the key in the HT, which

has constant time complexity O(1). If the key is found in the

HT then the thread will traverse the particular PTFO linearly

and return once the key is found. The time complexity (T)

for this case is O(1) +O(M). For the second scenario, if the

key is not found in the HT, then the thread will directly look

for the key in the global F&F tree. F&F offers lock-free read

operations that are also based on linear search.

IV. EVALUATION

A. Testbed Setup

We performed our experiments on a Linux machine (kernel

v5.4.0) equipped with 4 Intel Xeon(R) E5-4640 v2 CPUs

@ 2.20 GHz with 10 physical cores per node, 80 MiB last

level cache, and 256 GiB DDR3 DRAM. We enable hyper-

threading to increase threads for scalability evaluation. We

emulate the latency of Intel DCPM as presented in [19]. We

implemented the proposed F3-tree on top of F&F. We used a

synthetic benchmark with one million 8-byte key-value pairs

with sequential and random key distribution. We bind the

threads first to the first CPU node using the numactl command

and then move to other nodes.

We compared the proposed approach to two different vari-

ants of F3-tree, i.e., key-based (F 3-K) and node-based (F 3-

N). In the former variant, the evaluate thread consumes the

keys from PTFOs in a sequential order and checkpoint to the

global B+-tree. The later variant benefits from batching, i.e., a

single PTFO consists of multiple keys and the evaluate thread

checkpoints the entire future object to the global B+-tree in

a single operation. Therefore, the node-based F3-tree variant

imposes strict key sorting inside a single PTFO.

B. Results

1) Sequential Workload Analysis: Figure 4(a) depictes the

performance for sequential workloads. We clearly observe that,

on average, F3-N outperforms F3-K with 1.3x and 3.3x com-

pared to F&F. The reasons are manifold. First, F3-N benefits

from the sequential order of keys within the workload and does

not explicitly perform sorting. Second, F3-N checkpoints the

whole PTFO to the global F&F tree, which leads to fewer shift

operations and SMOs on the global tree. Third, F3-N incurs

less thread synchronization and communication overhead with

foreground threads. Similarly, F3-K also outperforms the F&F

tree on average 2.4x on average due to its PTFO design.

We also observed a scalable trend in F&F performance with

varying threads for sequential workloads because F&F does

not perform frequent shift operations due to sequential key

order. Moreover, the workload is equally distributed among

threads, leading to less contention on a single B+-tree node.

Notably, we observed a scalable trend by all approaches

for threads within a single CPU node. However, performance

degrades with threads crossing the single CPU node boundary

due to high remote memory accesses. Although the F3-tree

writes to PTFO still the asynchronous threads read the PTFO

and checkpoint them to the global tree and thus suffer from

remote memory accesses and performance saturation. We plan

to address the NUMA issue (remote memory accesses prob-

lem) in our future work. Figure 4(a) also shows a similar trend

for throughput with varying numbers of consumer threads, i.e.,

evaluate threads.

2) Random Workload Analysis: Figure 4(b) shows the

results of the random workload. We observed that F3-K

outperforms F3-N due to two major reasons. First, F3-N

traverses the whole global tree to check if the key-value pairs

within the local future object overlap with the key-values pairs

47

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:16:01 UTC from IEEE Xplore. Restrictions apply.

1 10 20 30 40 50 60 70 80

7000

14000

21000

28000

35000

Number of threads

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
) F&F F3-K (C1) F3-K (C2) F3-K (C4) F3-N (C1)

F3-N (C2) F3-N (C4)

0
1 10 20 30 40 50 60 70 80

7000

14000

21000

28000

35000

Number of threads

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
)

F&F F3-K (C1) F3-K (C2) F3-K (C4) F3-N (C1)

F3-N (C2) F3-N (C4)

0

(a) Sequential insert workload (b) Random insert workload

Fig. 4. Scalability analysis of F3-tree on manycore machines. In F 3-K(Ci) and F 3-N(Ci), Ci represents the number of asynchronous evaluate threads.

1 10 20 30 40

7000

14000

21000

28000

Number of threads

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
)

F&F

0

F3-K(100) F3-K(500) F3-K(1000)

F3-K(No Limit)

Fig. 5. PTFO size impact on performance.

of any of the global tree nodes. Second, F3-N performs a

double shift operation, i.e., on the PTFO and the global tree.

With the random workload, F&F performance saturates as

the number of threads increases, i.e., after eight threads. This

is due to excessive amount of shift operations, during non-

SMOs and SMOs, and the increasing contention over the

MUTEX lock of the tree node. With a smaller number of

threads, we observed that shifting is the dominant operation

of F&F because it has the highest execution-time contribution.

Whereas, when the number of threads increases, contention to

acquire the lock and shifting become the dominant factors for

the performance saturation of F&F.

In addition, the F3-tree suffers from remote memory ac-

cesses in the random workload as well. This is because,

with the random workloads, the keys are distributed randomly

between PTFOs, unlike the sequential workload. The asyn-

chronous evaluate threads suffer from remote memory accesses

and since the underneath global tree is F&F, it suffers from

the same limitations explained above. Although we limit the

asynchronous evaluate threads to four, the major factor in

performance degradation are remote memory accesses to read

the PTFO.

3) Varying Future Objects: Figure 5 shows the performance

impact of varying PTFO size. We limit the number of future

objects to 100, 500, and 1000, shown as F3-K(100), F3-

K(500), and F3-K(1000) in Figure 5. We limit the number

of eval() threads to only four and compared them with the

performance of F&F with four threads only. We can observe in

Figure 5 that the scalability of our proposed system is limited

by the number of future objects. Meanwhile, the application

threads (producers) spend most of their time waiting for the

eval() threads (consumers) to checkpoint the data from

PTFO to the global B+-tree. Furthermore, we observe that the

F3-K(No Limit), where we do not limit the number of future

objects, has the best overall performance. F3-K(1000) shows

1 10 20 30 40 50 60 70 80

0

10000

20000

30000

40000

50000

Number of threads

T
h
ro

u
g
h
p
u
t
(K

IO
P

S
) F&F F3-Hash F3-No Hash

Fig. 6. Search performance analysis.

equivalent performance to F3-K(No Limit) for 40 threads

because the number of PTFOs is less than the threshold of

1000 future objects, and so the producers are not blocked

during the entire execution.

In summary, we conclude that the workload patterns play an

important role. If the workload has a constant bursty pattern

(as in our experiments), then the performance of the producer

threads is limited by the performance of the consumer threads.

On the contrary, in a realistic workload where the bursty

pattern is not constant, the impact on the performance of

producer threads will not be affected by the consumer threads

at a notable rate.

4) Read Performance: We perform read experiments to

show the overhead of PTFO in Figure 6. We compare F&F

with our proposed F3-tree, which includes in-memory HT and

F3-tree without in-memory HT. For this experiment, we place

20% key-value pairs at the PTFO while 80% key-value pairs

are placed at the global F&F tree. We observed that F3-tree-No

Hash has the worst read performance. This is because every

read operation has to go through the PTFO first and if the key

is not found, it then searches the global tree, whereas F3-tree

with HT shows equivalent performance to F&F with negligible

overhead to check the HT first and then looking for the key

in the corresponding PTFOs.

5) Realistic Workload Analysis: We simulate a realistic

workload scenario where an application performs a mixed

workload of read and write operations. For this experiment,

we used random key distribution and the key-based operation

mode of the F3-tree. During this experiment, each thread

alternates between four insert queries, 16 search queries, and

one delete query, as performed in F&F. Figure 7 shows that

the F3-tree outperforms F&F and gains about 2.6x speedup

when the number of threads increases. This is due to high

48

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:16:01 UTC from IEEE Xplore. Restrictions apply.

1 10 20 30 40 50 60 70 80

0

10000

20000

30000

Number of threads

T
h
ro

u
g
h
p
u
t
(K

IO
P

S
)

F&F F3(C1) F3(C2)

F3(C4)

Fig. 7. Realistic workload analysis (2M Search/1M Insert/12.5K Delete). Ci

shows the number of evaluate threads.

performing insert operations of the F3-tree and the in-memory

HT for search operations. Supporting range queries for the

F3-tree is challenging because range queries fetch multiple

key-value pairs. The range of keys in the F3-tree can overlap

between PTFO and the global B+-tree. Within PTFO, range

query performance degrades even after using the in-memory

HT because it does not support range queries. We plan to

invest in range queries and NUMA-awareness in our future

work.

V. RELATED WORK

Recent studies on B+-tree indexing data structures can

be classified into two types, i.e., hybrid (DRAM-PM) B+-

trees [7], [10], [20] and PM-only B+-trees [6], [8], [21]. For

PM-only, data is entirely in PM, ensuring the possibility of

nearly instant recovery. For hybrid indexes, DRAM is used

for auxiliary data that is rebuilt on recovery. DRAM has

lower latency than PM, and this scheme usually results in

improved performance at the cost of longer recovery time.

But most of these studies have either violated the basic

design of the B+-tree for performance improvement, such

as allowing unsorted entries within the B+-tree nodes [21],

or lack concurrency support [6]. F&F is the state-of-the-art

persistent B+-tree variant that maintains the basic properties

of B+-tree and also supports concurrent operations. However,

none of the existing PM-based B+-tree write operations scale

on manycore machines with hundreds of threads. In this work,

we proposed F3-tree, a highly concurrent persistent B+-tree for

DCPM-based manycore machines. We adopted future-based

data structures from asynchronous computation [14] over F&F

and achieve higher performance on manycore machines. Note

that futures are not yet adopted for indexing data structures,

and this is the first work that has adopted future-based data

structures for B+-tree indexing data structures.

VI. CONCLUSION

In this paper, we present F3-tree, a highly concurrent per-

sistent B+-tree for DCPM-based manycore machines. F3-tree

achieves scalability and high write concurrency by adopting

per-thread local future objects. The per-thread future objects

are later checkpointed to the global B+-tree in an asyn-

chronous manner based on tunable threshold, i.e., time and

size-based. The search queries are optimized by employing

a volatile in-memory hash table. We evaluate F3-tree on a

manycore Linux machine with emulated DCPM. The results

show that F3-tree achieves high scalability (3.4x on average)

compared to F&F.

ACKNOWLEDGMENTS

This work was supported by the Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2014-3-00035, Research on
High Performance and Scalable Manycore Operating System).

REFERENCES

[1] A. Papadopoulos and D. Katsaros, “A-tree: Distributed indexing of
multidimensional data for cloud computing environments,” in 2011 IEEE
Third International Conference on Cloud Computing Technology and
Science, pp. 407–414, 2011.

[2] A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and Y. Kim, “An
analysis of system balance and architectural trends based on top500
supercomputers,” HPC Asia 2021, p. 11–22, 2021.

[3] B. Jeong, A. Khan, and S. Park, “Async-lcam: a lock contention aware
messenger for ceph distributed storage system,” Cluster Computing,
vol. 22, pp. 373–384, 2018.

[4] A. Khan, H. Sim, S. S. Vazhkudai, J. Ma, M.-H. Oh, and Y. Kim, “Per-
sistent memory object storage and indexing for scientific computing,”
in Proceedings of the 2020 IEEE/ACM Workshop on Memory Centric
High Performance Computing (MCHPC), pp. 1–9, 2020.

[5] A. Khan, C.-G. Lee, P. Hamandawana, S. Park, and Y. Kim, “A robust
fault-tolerant and scalable cluster-wide deduplication for shared-nothing
storage systems,” in 2018 IEEE 26th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 87–93, 2018.

[6] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proc. VLDB Endow., vol. 8, p. 786–797, Feb. 2015.

[7] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree:
A hybrid scm-dram persistent and concurrent b-tree for storage class
memory,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, p. 371–386, 2016.

[8] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” in Proceedings
of the 16th USENIX Conference on File and Storage Technologies,
FAST’18, p. 187–200, 2018.

[9] A. Khan, H. Sim, S. S. Vazhkudai, and Y. Kim, “Mosiqs: Persistent
memory object storage with metadata indexing and querying for scien-
tific computing,” IEEE Access, vol. 9, pp. 85217–85231, 2021.

[10] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-
tree: Reducing consistency cost for nvm-based single level systems,” in
the Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST 15), pp. 167–181, Feb. 2015.

[11] M. L. Scott, Shared-Memory Synchronization. Morgan and Claypool
Publishers, 2013.

[12] D. Dice, V. J. Marathe, and N. Shavit, “Flat-combining numa locks,”
SPAA ’11, p. 65–74, Association for Computing Machinery, 2011.

[13] M. Chabbi, M. Fagan, and J. Mellor-Crummey, “High performance locks
for multi-level numa systems,” vol. 50, p. 215–226, Jan. 2015.

[14] A. Kogan and M. Herlihy, “The future(s) of shared data structures,” in
Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, p. 30–39, 2014.

[15] P. L. Lehman and S. B. Yao, “Efficient locking for concurrent operations
on b-trees,” ACM Trans. Database Syst., vol. 6, p. 650–670, Dec. 1981.

[16] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[17] P. Ramalhete and A. Correia, “Brief announcement: Hazard eras -
non-blocking memory reclamation,” in Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’17,
p. 367–369, Association for Computing Machinery, 2017.

[18] N. Cohen and E. Petrank, “Efficient memory management for lock-free
data structures with optimistic access,” in Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’15,
p. 254–263, Association for Computing Machinery, 2015.

[19] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST
20), pp. 169–182, Feb. 2020.

[20] X. Zhou, L. Shou, K. Chen, W. Hu, and G. Chen, “Dptree: Differ-
ential indexing for persistent memory,” Proc. VLDB Endow., vol. 13,
p. 421–434, Dec. 2019.

[21] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” in Proceedings of the 9th USENIX Conference on File and
Stroage Technologies, FAST’11, p. 5, 2011.

49

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on May 01,2025 at 08:16:01 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T00:47:17-0400
	Preflight Ticket Signature

