
Q-Spark: QoS Aware Micro-batch Stream
Processing System Using Spark
Suyeon Lee†, Yeonwoo Jeong‡, Minwoo Kim‡ and Sungyong Park∗

Department of Computer Science and Engineering, Sogang University
Seoul, South Korea

Email: †leesy0506@sogang.ac.kr, ‡akssus12@sogang.ac.kr, ‡joey@sogang.ac.kr, ∗parksy@sogang.ac.kr

Abstract—Unlike the event-driven stream processing systems,
the micro-batch stream processing systems collect input data for
a certain period of time before processing. This is because they
focus on improving the throughput of the entire system rather
than reducing the latency of each data. However, ingesting a
continuous stream of data and its real-time analysis is also nec-
essary in micro-batch stream processing systems where reducing
the latency is more important than improving the throughput.
This paper presents Q-Spark, a QoS (Quality of Service) aware
micro-batch stream processing system that is implemented on
Apache Spark. The main idea of Q-Spark design is to set a
deadline time for each query and dynamically adjust the batch
size so as not to exceed it. Since Q-Spark executes a micro-batch
by buffering as much as possible until the deadline set for each
query is exceeded, it guarantees the QoS requirement of each
query while maintaining the throughput as much as the original
Spark batching mechanism. Experimental results show that the
tail latency of Q-Spark is always bound to the deadline compared
to the original Spark where data is buffered using triggers for a
certain period. As a result, Q-Spark reduces the tail latency per
query by up to 75%, while maintaining the throughput stably
compared to the original Spark without the concept of a deadline.

Keywords—Micro-batch Stream Processing, Spark, QoS, Ad-
mission Control

I. INTRODUCTION
1 As we enter the big-data era, not only is the amount of new

data generated increasing, but its cycle is also getting shorter.
Advances in IoT (Internet of Things) and embedded sensor
technologies have enabled the collection of vast amounts of
data generated in everyday life, unconstrained by time and
space, emphasizing the need to process these data in real-
time. As a result, a stream processing system has recently
been attracting attention.

Stream processing systems can be largely categorized into
two mechanisms: event-driven and micro-batch [1]. The event-
driven mechanism processes each data immediately whenever
it occurs. Pipelining allows the system to process different data
across multiple operations immediately, which optimizes the
latency of each data. The micro-batch mechanism buffers real-
time data for a certain period and processes it in a small batch
unit, which improves throughput at the cost of latency. Re-
cently, micro-batch stream processing systems such as Apache
Spark [2] [3] have been widely used to optimize the overall
throughput. However, in micro-batch stream processing sys-
tems, there are several cases where data continuously comes

1This work was supported by IITP grant funded by MSIT (No. 2014-0-
00035, Research on High Performance and Scalable Manycore Operating
System). (Corresponding author: Sungyong Park)

in at short intervals, and applications require real-time analysis
results for the data. Accordingly, it is not always appropriate
to lower the priority of latency and focus only on throughput
in stream processing systems. Spark uses the trigger concept
to ensure that processing is performed periodically in a certain
interval of time. Since the trigger value is a static value set
by the user, it often cannot become the boundary value of
latency in fluid traffic. For example, if the processing time
becomes longer than the trigger time due to bursty input data,
the amount of data waiting increases, forming a faulty cycle.
From this point on, the latency of each data gradually increases
without an upper limit.

To solve this problem, this paper proposes Q-Spark, a
QoS (Quality of Service) aware micro-batch stream processing
system that processes the incoming stream without violating
the QoS for each query. The QoS in Q-Spark is a deadline
time that is set by the user for each query. Deadline values are
not applied to a single execution unit (i.e., micro-batch), but
to the individual data that constitutes the unit. In the event-
driven systems, data immediately enters the processing phase
as soon as its generation. Thus, the deadline concept can be
easily applied to each data. On the other hand, in the micro-
batch systems, the data first goes through a buffering phase
for a constant period of time to form a single execution unit,
and then the data is sent to the processing phase. In this case,
latency cannot be defined solely by the processing time of
individual data in micro-batch stream systems. In other words,
within a single micro-batch, the latency depends on the event
time of each data. Q-Spark is designed to ensure that the
system can handle data with tail latency within the deadline
time.
Q-Spark is implemented on top of Apache Spark, which

supports micro-batch multi-stream processing. Q-Spark has
a micro-batch constructor module that replaces the trigger
concept used in the original Spark. This module constructs
a temporary micro-batch as soon as new data to be processed
for each query is generated. Q-Spark also has an admis-
sion controller module that decides whether the micro-batch
generated per query can be processed or not. Considering
the tail latency of the data in a micro-batch, the admission
controller module permits processing if the micro-batch has
an imminent deadline. Otherwise, it aborts processing and
signals the micro-batch constructor. In this case, the micro-
batch constructor buffers more data and creates a new micro-
batch. That is, Q-Spark is a multi-stream processing system



that collects and processes as much data as possible within the
range where all individual data does not violate the deadline.

Experimental results show that Q-Spark improves the tail
latency per query up to 75%, while maintaining the throughput
stably compared to the original Spark without a separate QoS
concept. Also, Q-Spark always bound the tail latency to the
user-specified deadline, which solves the critical problem of
increasing latency without an upper limit.

To summarize, this paper makes the following specific
contributions.

• Q-Spark is the first attempt to introduce a deadline
concept to ensure QoS of each query in micro-batch
streaming processing system.

• Q-Spark proposes a simplified dynamic batching mech-
anism to reduce QoS violation per streaming query. This
is a general-purpose mechanism that can be applied to
any framework that uses the micro-batch model, since
the scheduling modules are not modified.

• Q-Spark solves the problem that the processing time of
multi-queries in a single streaming application increases
non-linearly on the original Spark.

II. BACKGROUND

A. Micro-batch Stream Processing
Stream processing can be performed in two models: event-

driven model and micro-batch model. Event-driven model
prepares data by creating a topology or DAG (Directed Acyclic
Graph) in the form of a pipeline before data ingestion. When
data is generated from the input source, it is processed
immediately without buffering or local storage, ensuring low
latency. Since the latency in the event-driven model includes
only processing time, a deadline can be easily applied.

As the need for analyzing data generated over a certain
period of time increases, a micro-batch model that collects
and processes a certain amount of streaming data at once
has emerged to improve throughput. The processing step
of micro-batch streaming processing system is divided into
buffering phase and processing phase. In the buffering phase,
data ingested in real-time is aggregated for a certain period
to construct a single execution unit called micro-batch. The
micro-batch is then fed to the processing phase for further
processing.

Apache Spark, a representative framework that supports the
micro-batch model, uses trigger [3] to allow users to determine
the execution cycle by setting an appropriate value. After the
system starts processing a specific micro-batch, it begins to
process subsequent micro-batch only after the trigger time. If
micro-batch execution is completed before the trigger time, the
system performs buffering for the remaining time. The trigger
value cannot be changed at runtime. If the trigger value is 0,
a new micro-batch is created as soon as the previous micro-
batch is processed.

B. Related Works

Event-driven QoS-aware stream processing Hoseiny et
al. [4] proposes an event-driven adaptive feedback controller

system to consider QoS for latency-sensitive streaming appli-
cations. It satisfies the QoS requirements of each query by
predicting the load intensity of each workload in the sampling
phase and responding quickly to the workload fluctuations.
Wang et al. [5] suggests a priority-based resource allocation
strategy to ensure QoS requirements of real-time streaming
applications. It solves a multi-objective optimization problem
to minimize the sum of QoS violations across all applications
and maximize the CPU utilization of the node on which the
application is deployed. Hoseiny et al. [6] proposes a dynamic
resource control mechanism based on the consideration of
traffic fluctuations that satisfies the QoS required for each
query, reduces query response time, and maximizes resource
utilization.

Micro-batch QoS-aware stream processing Das et al. [7]
proposes an adaptive online-based dynamic batching algorithm
that considers workload patterns and data ingestion rates in
order to solve QoS violations of queries processing streaming
data. It dynamically adjusts the micro-batch size so that the
system performance is stable by continuously monitoring the
input rate and the throughput of the streaming processing
engine. Although this dynamically adjusts the batch size to
satisfy the QoS for each query, it does not consider the
environment where multiple queries are performed in a single
application and the deadline for each query. Cheng et al. [8]
designs an adaptive query scheduling mechanism to maximize
resource efficiency and system performance in an environment
where multiple queries are executed in parallel in a single
streaming application. In addition, this study devises a dy-
namic micro-batch interval control algorithm considering the
workload fluctuation and input speed. Most studies considering
QoS in the micro-batch model focus on scheduling queries to
match the processing capacity of the processing engine for
each framework. On the other hand, our proposed approach
sets a deadline for each query in the buffering phase and
fetches data up to the guaranteed line. To the best of our
knowledge, this is the first micro-batch stream processing
system applying the deadline concept among multi-queries in
a single application.

III. MOTIVATION

Streaming applications based on the micro-batch model
fetch data from the input source by calling the trigger at
regular intervals. Considering that the trigger value is statically
determined by the user and does not change during entire
executions, this method raises two main issues.

First, the user does not know the processing capacity of the
entire system precisely. This makes it difficult for the user
to set an optimal trigger value considering both input rate
and processing rate at the same time. Second, in streaming
workloads, the input rate changes in real-time [4]. As a
consequence, the fixed polling interval is likely to create a
micro-batch that puts a load on the system. If the size of
a single micro-batch becomes too large, the time required
for processing phase increases. In the meantime, since real-
time data continues to flow in, the size of the subsequent



Figure 1: (A) and (B) are end-to-end latency graphs for each micro-batch for each scheduling algorithm.
(C) and (D) are batch size graphs for each micro-batch for each scheduling algorithm.

micro-batch further increases. This faulty cycle eventually
degrades the performance of the system and makes the stream
processing unstable.

To confirm this, we have measured the end-to-end latency
and the size of processed data for each micro-batch in the
original Spark where we ran three most widely used queries [9]
simultaneously, noted as LR1, LR2, and LR3. We used the
same experimental setup and workloads explained in Chap-
ter V. In this paper, the end-to-end latency is the sum of the
times required both at buffering phase and processing phase
for individual data.

Figure 1 shows the performance results over the original
Spark configured with two main scheduling algorithms: FIFO
and FAIR. We can observe in Figure 1 that the end-to-
end latency of three queries increases almost linearly as we
increase the batch size, regardless of the scheduling algorithms
used. This indicates that if the stream processing engine
overlooks the micro-batch size, the performance of the stream
processing engine continues to deteriorate. The main reason
for this is that the original Spark aggregates all newly created
data during buffering phase as a single micro-batch. Therefore,
there is a high possibility that the original Spark ingests an
immense amount of data by bursty traffic, which causes the
streaming engine to spend more time on processing than the
previous micro-batch. Since traffic continues to occur while
processing for a more extended period, subsequent micro-
batch must process more data, and the end-to-end latency
continues to increase.

To cope with this problem, this paper introduces the concept
of a deadline. Since the trigger value in the original Spark de-
termines the execution cycle, it becomes a lower bound value
in terms of latency. However, what is needed to guarantee
QoS in real-time systems is to secure the upper boundary of
latency. Therefore, designing a streaming system that receives
the user-specified deadline value and operates not to violate it
is essential.

IV. DESIGN

A. Definition of QoS in Micro-batch Processing

In an event-driven model, the execution unit is individual
data. As soon as data is generated, the stream processing

Figure 2: Yellow figures indicate system modules newly im-
plemented in Q-Spark.

engine proceeds processing through multiple pipelines. Be-
cause the latency of each data in the event-driven model is
equal to the processing time, it is easy to apply a deadline to
each data to ensure QoS. In contrast, the execution unit in a
micro-batch model is created by buffering incoming data from
the input source in real-time. Buffered data is passed to the
processing phase simultaneously, distributed to each executor,
and processed in parallel. Since the processing time per each
micro-batch and the latency of individual data are different,
applying deadline is not easy. Also, if the deadline is applied
based on the average latency of data included in single micro-
batch, there may be data with tail latency that exceeds the
query deadline. In this case, it is not appropriate to state that
the system meets the user-specified deadline.

In this paper, we define QoS as the deadline time applied to
individual data processed in the micro-batch stream processing
system. Before starting a streaming application, users can set
a deadline time for processing individual data in each query.
For example, if you set a deadline of 5 seconds as an option
for stream query A, the latency of individual data for query A
cannot exceed 5 seconds, regardless of which micro-batch the
query belongs to. In this case, the latency of each data is the
sum of the buffering time waiting for micro-batch creation
and the processing time it takes for the micro-batch to be
processed.

B. Overview of Q-Spark

Figure 2 shows the overall architecture of Q-Spark and
yellow boxes indicate new modules implemented over original



Table I: Parameters of cost models and rules. All parameters are visible through entire systems.
Type Notation Description

Specified by User Deadlineq Required deadline time specified per query q in user application.

Used in System

TailLatency(q,i) Tail latency of dataset within micro-batch i of query q.
EstimatedRunTime(q,i) Estimated runtime of micro-batch i of query q.

BatchSize(q,i) Size of micro-batch i of query q.
MaxThrouhgputq Maximum throughput of query q.

Lthroughput Loss of throughput depend on scheduling mode.
Llatency Loss of latency depend on scheduling mode.

NumActive Number of active queries (jobs) in a Spark scheduler. (When scheduling mode is FAIR)
NumWaiting Number of waiting queries (jobs) in a Spark scheduler. (When scheduling mode is FIFO)

Spark.
As shown in Figure 2, multiple stream queries can be

executed simultaneously in a streaming application, and each
query can receive data from different input sources. Q-Spark
dynamically adjusts the batch size by applying a QoS deadline
to the micro-batch to be executed per query instead of the
existing trigger function. First, the micro-batch constructor
module that operates for each query periodically polls the input
source and creates a temporary micro-batch as soon as new
data is created. After that, the admission controller receives
the micro-batch and the deadline of corresponding query, and
decides whether it can process the micro-batch based on the
cost model. If the admission controller permits processing,
it confirms the micro-batch and passes the query job to the
Spark scheduler for execution. If the admission controller
aborts processing, it cancels the micro-batch and proceeds
the admission review of another query job. Cancelled micro-
batch data is queued to the micro-batch generator module for
buffering. During this process, the latency of the previously
queued data continues to increase. Therefore, even if new data
from the previous one does not arrive during the buffering
phase, it re-requests processing from the admission controller
at regular intervals to satisfy the deadline.

C. Admission Control Mechanism

Algorithm 1: Admission Control Mechanism

1 Def AdmissionControl(microBatch, D):
2 BatchSize(q,i) = sizeof(microBatch)
3 Get TailLatency(q,i) // Eq (1)

4 Compute EstimatedRunTime(q,i) // Eq (2)

5 if TailLantecy(q,i) +
EstimatedRunTime(q,i) ≥ Deadlineq then

// Admit processing

6 numBuffered = 0
7 return (True, microBatch)

// Abort Processing; Do buffering

8 Set #files in microBatch as numBuffered
9 BatchSize(q,i) = 0

10 return (False, ∅)

This section describes the admission control mechanism
and the cost models used throughout this paper. The detailed
specifications of system parameters are summarized in Table I.

A user-defined deadline Deadlineq applies to individ-
ual data within a micro-batch of a query q. Buffering is

performed as much as possible in the range where the
sum of latency TailLatency(q,i) and estimated runtime
EstimatedRunTime(q,i) of the oldest data in a specific
micro-batch i of the query does not violate the deadline.

Algorithm 1 shows the QoS-aware dynamic admission con-
trol mechanism in detail. In Algorithm 1, the tail latency of
the data in the i-th micro-batch in the query q can be defined
as Equation 1. Moreover, the estimated runtime of the micro-
batch is defined as Equation 2.

TailLatency(q,i) =

currentT ime− oldestDataCreationT ime
(1)

EstimatedRunTime(q,i) =

BatchSize(q,i)

(MaxThroughputq ∗ Lthroughput)
+ Llatency

(2)

In Equation 2, MaxThroughputq is defined as the max-
imum throughput of the query and is the value when the
query is executed alone by occupying all resources. As
a result, the execution time can be estimated by dividing
BatchSize(q,i)(i.e., the size of the data to be processed)
by MaxThroughputq . However, additional overhead can be
occurred depending on the query scheduling algorithm in a
multi-query environment. If the scheduling algorithm is FAIR,
the query can be executed immediately, but resources must
be shared equally with other running queries. Therefore, the
throughput degrades more than MaxThroughputq . On the
other hand, if the scheduling algorithm is FIFO, the query
q is executed by occupying all resources after other queries
are terminated. Since this causes a scheduling delay that
waits until the query is executed in the processing phase,
EstimatedRunTime(q,i) increases accordingly. According to
the scheduling algorithm s, the loss in throughput and latency
can be determined as Equation 3 and Equation 4.

Lthroughput =

1, if s is FIFO
1

NumActive , if s is FAIR
(3)

Llatency =


∑NumWaiting

i=0
BatchSize(q,i)

MaxThroughputq
, if s is FIFO

0, if s is FAIR
(4)

Based on Algorithm 1, data buffering is performed
until the sum of the values of TailLatency(q,i) and
EstimatedRunTime(q,i) does not exceed Deadlineq .



Figure 3: Average throughput per batch by each workload during continuous execution.

Figure 4: Max tail latency by each workload during continuous execution. The deadline is set to 10 seconds.

V. EVALUATION

A. Experimental Setup

For the experiment, we configured Spark cluster consisting
of one master node and two worker nodes. All experiments are
performed on a server with Intel Xeon Silver 4210 2.20GHz
CPUs with 10 physical CPU cores and 128 GB of memory.
All nodes are interconnected by 10 Gbps Ethernet. We set 2
executors per node with 12 CPU cores and 48GB of memory.

B. Workloads and Comparison Target

The workload used in the experiment is a real-world stream-
ing workload, Linear Road Benchmark [10] that includes
various query operations, such as filter, project, aggregate,
and join. We used query 2,3,4 [9], which are frequently used
in previous works. Each query notation is LR1, LR2, LR3.
In addition, we used two types of workload traffic, and the
detailed description is as follows.

• B(300): A constant 300 records are generated every
second.

• U(300): A random record is generated every second so
that its average converges to 300 records per second.

In order to show the effectiveness of our approach, an
overall system performance was compared with the original
Apache Spark [3]. In the original Spark, the trigger value is
set to 0 (OS(t0)) or 5 (OS(t5)) seconds. In contrast, we set the
deadline to be 10 seconds in Q-Spark. The deadline value of
10 seconds is assumed to be sufficient for LR1 and tight for
LR2 and LR3.

C. Overall Performance

In this section, we compared the overall performance during
the entire execution of applications. We ran each workload for
30 minutes and LR1, LR2, and LR3 were performed simulta-
neously in the same traffic for the multi-query environment.

Figure 3 shows the average throughput obtained immedi-
ately after completing micro-batch in each platform. In this
paper, we defined the throughput, which is calculated by the
size of data processed in each micro-batch, as the processing
time of the micro-batch. Looking at the results, the average
throughput of OS(t0), which does not proceed with buffering
at all, is the lowest, followed by the average throughput of
OS(t5) and Q-Spark in that order. In the case of Q-Spark,
the deadline is 10 seconds, but it does not mean it buffers for
10 seconds. Considering the situation where multiple other
queries are running or waiting for scheduling, the admission
controller adjusts each query to meet the deadline. Therefore,
the buffering time is different from each query and micro-
batch set, depending on the system situation. In addition, the
deadline time contains the time taken during processing phase,
which means Q-Spark sometimes buffers less period than
OS(t5). Therefore, there may not be a big difference in average
throughput with the OS(t5), which performs regular buffering
for 5 seconds each time.

Figure 4 shows the maximum tail latency values obtained
from each micro-batch. Considering the maximum tail latency
of each system together, we can see that the overall perfor-
mance of Q-Spark outperforms other approaches. Since the
latency of individual data constantly increases in the original
Spark, the maximum value appears relatively high. However,
in Q-Spark, the average latency of each data converges to
the deadline. As a result, the tail latency is reduced by up
to 65% when the scheduling algorithm is FIFO and up to
73% when the scheduling algorithm is FAIR. In particular, in
the original Spark, the overhead imposed by the scheduling
algorithm is directly related to data latency. For example, if
the scheduling algorithm is FIFO, the size of a single micro-
batch to be processed by each query gradually increases. As
the processing time of a specific query increases, the waiting



Figure 5: Violation rate for each workload during continuous execution. The deadline is set to 10 seconds.

time for other queries increases as well. In the meantime, the
latency of each data in the micro-batch of the query continues
to increase accordingly. When the scheduling algorithm is
FAIR, all queries share the system resources. Therefore, the
processing time becomes longer and generates high latency
to process the data. In contrast, Q-Spark shows constant tail
latency regardless of the scheduling algorithm.

D. Deadline Violation Analysis

In this section, we compare the deadline violation rate
of Q-Spark with the original Spark. In the case of the
original Spark, we treat that the deadline violation happens
if the latency exceeds 10 seconds (i.e., deadline in Q-Spark).
Figure 5 shows the ratio of the number of datasets with the
latency of 10 seconds or more among all datasets. Regardless
of the scheduling algorithm, the violation rate of Q-Spark
is the lowest among all systems in common. In particular,
in OS(t0) and OS(t5), LR2 and LR3, which have longer
unit processing times than LR1, have much higher violation
rates. As mentioned in Section V-C, a query with a long
processing time affects the latency of other queries according
to the scheduling algorithm. For example, if the scheduling
mode is FIFO, the data latency in other waiting queries keeps
increasing. However, Q-Spark shows a violation rate below
a certain value regardless of the workloads.

In the case of LR1-B in Figure 5-(A), the difference between
the violation rate measured in Q-Spark and other systems
is not significant. The rate calculated by simple counts may
be similar, but there is a big difference in the degree and
pattern of violation. Also, as mentioned in Section III, the
size of the processed data and tail latency is continuously
increasing in the case of the original Spark. Therefore, over
time, the degree of violation will increase significantly, and
this trend continues. On the other hand, in Q-Spark, the
phenomenon does not persist. The degree of violation is much
smaller than the original Spark, and the tail latency value
quickly recovers below the deadline value. The results show
that Q-Spark effectively manages the latency of streaming
data by introducing the concept of deadline compared to the
original Spark.

VI. CONCLUSION

In this paper, we have proposed a QoS-aware micro-batch
stream processing system called Q-Spark that supports a
dynamic batching mechanism for the streaming applications.

Q-Spark introduces a new QoS concept in micro-batch multi-
stream processing systems. Q-Spark meets the user-specified
deadline for individual data by dynamically adjusting the
batch size. In addition, Q-Spark aggregates incoming data
as much as possible within the range that does not violate
the deadline, which allows us to maximize throughput. In
particular, Q-Spark improves the micro-batch decision logic
without modifying the core system so that it can be generally
applied to various micro-batch model frameworks other than
Spark. Through experiments, we have shown that the proposed
mechanism is effective for minimizing QoS violation per
streaming queries while maintaining system throughput.

REFERENCES

[1] G. Van Dongen and D. Van den Poel, “Evaluation of stream processing
frameworks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 8, pp. 1845–1858, 2020.

[2] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,” in
Proceedings of the twenty-fourth ACM symposium on operating systems
principles, 2013, pp. 423–438.

[3] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured streaming: A declarative api for
real-time applications in apache spark,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 601–613.

[4] M. R. Hoseiny Farahabady, A. Jannesari, J. Taheri, W. Bao, A. Y.
Zomaya, and Z. Tari, “Q-flink: A qos-aware controller for apache flink,”
in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID), 2020, pp. 629–638.

[5] Y. Wang, Z. Tari, M. R. HoseinyFarahabady, and A. Y. Zomaya, “Qos-
aware resource allocation for stream processing engines using priority
channels,” in 2017 IEEE 16th International Symposium on Network
Computing and Applications (NCA), 2017, pp. 1–9.

[6] M. R. Hoseiny Farahabady, H. R. Dehghani Samani, Y. Wang, A. Y.
Zomaya, and Z. Tari, “A qos-aware controller for apache storm,” in
2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA), 2016, pp. 334–342.

[7] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive stream processing
using dynamic batch sizing,” 2014, p. 1–13.

[8] D. Cheng, X. Zhou, Y. Wang, and C. Jiang, “Adaptive scheduling parallel
jobs with dynamic batching in spark streaming,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 12, pp. 2672–2685, 2018.

[9] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa,
and P. Pietzuch, “Saber: Window-based hybrid stream processing for
heterogeneous architectures,” in Proceedings of the 2016 International
Conference on Management of Data, 2016, pp. 555–569.

[10] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvk-
ina, M. Stonebraker, and R. Tibbetts, “Linear road: a stream data
management benchmark,” in Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, 2004, pp. 480–491.


	Introduction
	Background
	Micro-batch Stream Processing
	Related Works

	Motivation
	Design
	Definition of QoS in Micro-batch Processing
	Overview of Q-Spark
	Admission Control Mechanism

	Evaluation
	Experimental Setup
	Workloads and Comparison Target
	Overall Performance
	Deadline Violation Analysis

	Conclusion
	References

